Фракталы и теория хаоса в биологии. Фракталы в биологии

Введение

" Почему геометрию часто называют "холодной" и "сухой" ? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака - не сферы, горы - не конусы, береговые линии - не окружности, древесная кора не гладкая, молния распространяется не по прямой. В более общем плане я утверждаю, что многие объекты в Природе настолько иррегулярные и фрагментированы, что по сравнению с Евклидом - термин, который в этой работе означает всю стандартную геометрию, - Природа обладает не просто большей сложностью, а сложностью совершенно иного уровня. Число различных масштабов длины природных объектов для всех практических целей бесконечно".

Б. Мандельброт

Фрактальное множество - само подобная структура- один из "горячих" объектов современной науки.

Подобные объекты были известны довольно давно, но настоящий интерес к ним появился после активной популяризаторской деятельности Бенуа Мандельброта, работающего в корпорации IBM.

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта «The Fractal Geometry of Nature». В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

1977 год можно считать началом переворота, который геометрия фракталов производит не только а в математике и в физике, но и во всем естествознании. И даже уже в обществоведении, где лингвисты открыли общие фрактальные закономерности в строении самых разных языков. И все это - в считанные годы! Таких темпов общенаучной экспансии не знает история в науке.

Фракталы - это фигуры с бесконечным количеством деталей. При увеличении, они не становятся более простыми, а остаются такими же сложными, как до увеличения. В природе, вы можете находить их повсюду. Любая ветка дерева, при увеличении, напоминает целое дерево. Любой камень с горы напоминает целую гору. Теория фракталов была сначала разработана для изучения природы. Теперь она используется в ряде других областей. И, естественно, красота делает фракталы популярными!

Красота фракталов двояка: она услаждает глаз (и слух), о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге "Красота фракталов". Но существует и другой, более абстрактный или возвышенный, аспект красоты фракталов, открытый, по словам Р.Фейнмана, только умственному взору теоретика, в этом смысле фракталы прекрасны красотой трудной математической задачи.

Фракталы обладают еще одной ипостасью, делающей их еще более прекрасными В глазах теоретика. Структура фракталов настолько сложна, что оставляет заметный отпечаток на физических процессах, протекающих на фракталах как на носителях. Фракталы иначе рассеивают электромагнитное излучение, по другому колеблются и звучат, иначе проводят электричество, по фракталам иначе происходит диффузия вещества. Возникает новая область естествознания - физика фракталов. Фракталы становятся удобными моделями, чем-то вроде интегрируемых задач классической механики, для описания процессов в средах, ранее считавшихся неупорядоченными.

Жидкость, газ, твердое тело - три привычных для нас состояния однородного вещества, существующего в трехмерном мире. Но какова размерность облака, клуба дыма, точнее их границ, размываемые турбулентным движением воздуха? Оказалось, что она больше двух, но меньше трех. Аналогичным образом можно посчитать размерности других реальных объектах вроде береговой линии или кроны дерева. Кровеносная система человека, например, имеет размерность порядка 2.7. Все объекты с нечеткой, хаотичной, неупорядоченной структурой оказались состоящими из фракталов. Связь между хаосом и фракталами далеко не случайна - она выражает их глубокую общность. Фрактальную геометрию можно назвать геометрией хаоса.

При фрактальном подходе хаос перестает быть синимом беспорядка и обретает тонкую структуру. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале.

Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому".

Классификация фракталов

Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации .

1.Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. .

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

2.Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах.

3.Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные – несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

У любого фрактала есть бесконечно повторяющаяся форма. При создании такого фрактала, естественно, что самый простой способ состоит в том, чтобы повторить несколько действий, которые создают эту форму. Вместо слова "повтор" можно использовать математический синоним "итерация".

Чтобы создать настоящий фрактал, надо выполнить итерацию бесконечное количество раз. Однако, при выполнении этого на компьютере, возможности ограничены скоростью и количеством точек, так что итерации выполняются несколько раз. Увеличение количества итераций делает фракталы более точными.

ВИДЫ ИТЕРАЦИИ

Существуют три основных вида итерации:

1. Заменительная Итерация - Создает фракталы, заменяя некоторые геометрические фигуры другими фигурами.

2. Итерация ИФС - Создает фракталы, применяя геометрические преобразования (типа вращения и отражения) для геометрических фигур.

3. Итерация Формулы - Включает несколько путей создания фракталов, повторяя некоторую математическую формулу или несколько формул.

Существуют также несколько не основных видов итерации. Например, фракталы можно создавать, итерируя процесс свертывания бумаги. Однако, эти фракталы могут также быть созданы, используя по крайней мере один из основных видов итерации.

Заменительная итерация

Один из способов создания фракталов - заменительная итерация. Для ее выполнения мы начинаем с фигуры называемой основой. Затем каждая часть основы заменяется другой фигурой, называемой мотивом. В новом рисунке мы снова заменяем каждую частью мотивом. Если мы выполним эти замены бесконечное количество раз, мы закончим фракталом.

L -системы

Заменительная итерация очень проста. Все, что дня нее необходимо - это повторная замена основы мотивом. Для компьютера, однако, не достаточно иметь изображение основы и мотива. Мы нуждаемся в способе сохранения данных о фрактале, который не тратит много памяти на графические изображения и позволяет создавать простые алгоритмы для черчения фракталов. Наилучший подобный способ - это л-системы.). L-система - это грамматика некоторого языка (достаточно простого), которая описывает инициатор и преобразование, выполняемое над ним, при помощи средств, аналогичных средствам языка Лого (аксиоматическое описание простейших геометрических фигур и допустимых преобразований на плоскости и в пространстве). Л-системы были разработаны А. Линденмейером ("л" в слове " L -система" - его инициал). Они составлены из определения угла, аксиомы и по крайней мере одного правила. Аксиома - это начальная форма (основа), используемая в процессе создания фрактала. Правила указывают, какие символы в аксиоме должны быть заменены другими символами.

Большинство фракталов с фрактальной размерностью от 0 до 2 могут быть выражены, используя л-системы. Комбинация нескольких символов и правил могут создавать очень сложные фракталы. Такие л-системы используются, чтобы делать реалистичные модели растений.

Формульная итерация

Формульная итерация - самый простой вид итерации, однако он наиболее важный и дает самые сложные результаты. Он основан на использовании математической формулы для постоянного изменения числа.

Теоретические предпосылки.

Но Фрактальную геометрию в основном использовали только математики и Физики. Вот появилась идея использовать принципы фрактальной геометрии в биологии.

Исходя из того, что Фракталы в неживой природе отображают процесс разрушения (энтропия увеличивается), а в живой природе - процесс созидания (энтропия уменьшается).

Термодинамические процессы в живой природе идут по пути уменьшения энтропии системы, увеличения организованности объектов. Эти свойства являются фундаментальными для живой природы. Другие свойства живого - это рост и развитие. То есть живой объект постепенно разворачивается в пространстве и времени, увеличивая свои размеры и массу. (береговая линия - результат разрушения неких неживых тел (пород)). То есть, исходя из выше сказанного, мы предположили - в живой природе можно наблюдать фрактальные явления, можно попытаться их построить. На первом этапе мы решили попробовать проследить фрактальные явления там, где они сами напрашиваются на реализацию. В биологии при изучении роста растений была выявлена такая закономерность как "Ветвление".

Ветвление возникло в процессе эволюции тела растений еще до появление органов. Существуют несколько типов ветвления: дихотомическое, моноподиальное, симподильное.

При дихотомическом ветвлении конус нарастания раздваивается, образуя два побега, каждый из которых в свою очередь дает еще два побега и т.д. Это ветвление наиболее древние и, оно представлено у плаунов и некоторых других растений (рис 2) для построения таково тип ветвления надо выставить в рабочей области как показано на рис 3.

(рис 2)

(рис 3)

При моноподиальном ветвлении имеет место длительный неограниченный верхушечный рост главной оси первого порядка - моноподия от которой отходят более короткие боковые оси второго и последующих порядков. Их количество зависит от времени жизни растения. Это ветвление свойственно многим голосеменным (ель, пихта, кипарис и т.д.) (рис 4). Их ствол представляет ось одного порядка. Для построения такого типа ветвления надо установить все параметры в рабочей области как показано на рисунке 5.


(рис 4)

(рис 5)

При симподильном ветвлении главная ось рано прекращает вой рост, но под ее верхушкой трогается в рост боковая почка Выросший из нее побег как бы продолжает ось первого порядка. Этот побег в свою очередь также прекращает верхушечный рост, и тогда начинает расти его боковая почка, из которой возникает ось третьего порядка, и т.д. Такое ветвление характерно для большинства деревьев, кустарников и т.д.(рис 6). Для построения такого тип ветвления надо установить все параметры в рабочей области как показано на рисунке 7. Симподильное ветвление эволюционно более продвинутое.

(рис 6)


(рис 7)

Существуют два вида тоста первичный рост и вторичный рост.

Первичный рост происходит в близи верхушечных корней и стеблей. Он начинает их апикльными маристеиами и связан главным образом с удлинением тела растений. В ходе первичного роста образуются первичные ткани, составляющее первичное тело растения. Примитивные, также и многие современные сосудистые растения состоят целиком из первичных тканей.

Кроме первичного у многих растений происходит дополнительный рост, вызывающий утолщения стебля. Он называется вторичным и вязан с активностью латеральной меристемы, камбия, который формирует вторичные проводящие ткни. Вторичные проводящие вместе с пробковой тканью составляют вторичное тело растения.

Вторичный рост сопровождается изменением цвета стебля. И в зависимости от количества вторичной проводящей ткни окрас темнеет.

Решение проблемы.

Появилась идея попробовать создать программу при помощи которой можно было бы моделировать кроны деревьев.

В ходе работы была создана программа позволяющая быстро и удобно моделировать ветвление. В данной программе в отличии от других при увеличении числа итераций структура усложняется путем не дробления на себе подобные, а разворачивания себе подобных структур из точек роста. Поэтому в данном случаи можно рассматривать число итераций как возраст растения. Отличительной особенностью программы является удобный интерфейс. В отличии то других программ не нужно вводить данные в виде формулы, а визуально строить единичную структуру.

В своей работе я использовал геометрический метод построения фракталов, поскольку он является наиболее удобным для построения изображений кроны. Изображения строится как растущее.

Существенным отличием моей программы от программ подобного рода является применение удобного интерфейса. Этот интерфейс удобен тем, что пользователю легко вводить все необходимые данные.

В данной программе я использовал рекурсивный вызов процедуры построения единичной фигуру.

Алгоритм программы следующий:

Пользователь задает единичную фигуру, расположения почек роста, угол наклона, количество генерацией, степень уменьшения следующий фигуры.

Затем все эти данные записываются в массив.

Программа строит единичную фигуру с данным углом. Определяет где находятся точки роста. Строит следующею фигуру с этой точки заданное количество раз. Размер фигуру меньше начальной в заданное количество раз. При этом каждая новая фигур отличается по цвету от предыдущей. Цвет последней линии ярко зеленый поэтому, при большом количестве итераций, это имитирует листья которые действительно находятся на концах веток. Скорость построения зависит от количества итераций, поэтому следует вводить значение не больше 10.

Заключение

Привлекательность задачи на построения фрактальных изображений состоит не только в том, что эти изображения очень красивы, но и в том что и строятся они по средством простых алгоритмов.

В реальном мире мы не встретим геометрических форм, соответствующих канонам евклидовой геометрии, Его геометрическая первооснова оказывается фрактальной. Объединив идею фрактальности с идеей формообразующей случайности, современная геометрия совершила гигантский качественный скачок. Впервые за свою историю математика оказалась в состоянии правильно отражать мир во всем многообразии его сложных форм, не прибегая к многоярусным нагромождениям все более абстрактных и искусственных интеллектуальных конструкций. В этом плане особенно показательно то, как фрактальная геометрия рисует мир. Здесь человек научился творить многообразие геометрических форм наподобие самой природы. Пусть для начала - лишь на экране дисплея.

Кроме того, модели фрактального роста быстро вышли за рамки компьютерной графики. Они оказались феноменально продуктивны во многих областях физики и химии. Так, они вносят теоретическую ясность во многие проблемы, связанные с прочностью материалов. Даже загадочный феномен шаровой молнии удалось смоделировать на фрактальных структурах из тонкой проволоки. В помещении поведение этой конструкции аналогично поведению залетевшей шаровой молнии. Если материальная модель столь эффективна, то из этого прямо следует эффективность представлений о фрактальной структуре самих шаровых молний.

В данной работе я, вместе с наукой наших дней, попытался освоить определенный тип геометрического описания природы - фрактальный. Перспективы работы в этой области безграничны, как и сама природа.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

С. К.Абачиев Концепция современного естествознания. Балашиха - 1998.

Р. Баас, М. Фервай, Х. Гюнтер Delphi 5: для пользователей:пер. с нем. - Издательская группа BHV , 2000г.

Г. П. Яковлев, В. А. Челомбитько Ботаника. М. 1990г.

Http://library.thinkquest.org/26242/russian/tutorial/tutorial.html

Http://mahp.oil.rb.ru/kniga/

Http://www.chat.ru/~fractals/

Http://www.geocities.com/SoHo/Studios/6648/fractals.htm

Http://www.ipm.sci-nnov.ru/~demidov/java.htm

Http://www.visti.net/cplusp/all_96/6n96y/6n96y1a.htm

“Дьявол кроется в деталях”

Все слышали, что рынок фрактален (часть подобна целому), что на всех таймфреймах он выглядит одинаково, что он постоянно воссоздает подобные элементы на разных уровнях своей структуры. Обнако с руки Б.Вильямса произошла подмена и резкое сужение непростого понятия “Фрактал” до банальной свечной комбинации.

Процитирую Мандельброта. Он то и ввел в обиход этот термин лет 40 тому назад..

“Фрактал - геометрическая форма, которая может быть разделена на части, каждая из которых - уменьшенная версия целого. В финансах эта концепция - не беспочвенная абстракция, а теоретическая переформулировка практичной рыночной поговорки – а именно, что движения акции или валюты внешне похожи, независимо от масштаба времени и цены. Наблюдатель не может сказать по внешнему виду графика, относятся ли данные к недельным, дневным или же часовым изменениям. Это качество определяет диаграммы как фрактальные кривые и делает доступными многие мощные инструменты из математического и компьютерного анализа”.

Ну, положим, кто-то может по гэпам почувствовать дневные графики, но, по крайней мере, речь шла не о свечной комбинации, а о существенно более емком понятии. А то, “фрактал на покупку, фрактал на продажу”. Все-таки, скажу слово в защиту Билла Вильямса. В последней книге “Торговый Хаос 2” он сетует, что рынки изменились и пытается усилить свою систему. Ему жалко, что он упускает много из ценового движения. И я увидел маленький намек, что он слегка, может, даже не осознавая, сделал маленький шажок в сторону настоящего Фрактала, который скрывался между некоторыми фракталами по Б.В. Между некоторыми точками рынка (хаи и лои, но не все пары) существует невидимая связь, не всегда очевидная, Мандельброт ее чувствовал и пытался ее развить. Один из приемов (он подавал его как шутку) – вырастить из простой затравки график рынка, соблюдая простой алгоритм усложнения через простое подобие (Генератор Мандельброта).

Б.Вильямс этого не чувствовал. Странная у него была команда, математики, программисты. Не понимали они друг друга. Или загрузили себя рутинной работой по подбору параметров скользящих средних. Возможно, надо быть универсалом и строить Вавилонскую башню до какого-то уровня в одиночку. А Хаоса (настоящего, математического) у него, конечно же, тоже не было, как и Фрактала. Есть и еще гипотеза – он прикрывал настоящее знание.

Да, рынок бывает фрактальным. Временами это очевидно. Например, на следующем графике это можно было бы заметить невооруженным, но тренированным, глазом. Здесь, правда, все-таки, с применением техники. Зеленые, розовые и синяя фигуры (все - Фракталы) очень похожи. Можно было бы зеленые фигуры дробить еще глубже, но материала надолго не хватит, свечек ограниченное количество, да, и, из-за дискретности, нарастает относительная погрешность.

На TF(timeframe)=М1.

Довольно типичная для рынка структура (триадная), что на росте-спуске, что в боковике.

Для продвинутых. Теперь уже заметно, что идея генератора у Мандельброта была неплоха (как шутка).

Был бы он еще и трейдером, все бы уже лет 15 изучали его систему трейдинга, а не “машки” или Эллиота. Кстати, Эллиот изучал тренд, педалируя схему 5+3, и много “потерял”, в частности – боковик. А вполне мог бы ограничиться числом 3. А, так, Фрактал многое поглотил, включая волны Эллиота.

Заметно, что некоторые структуры начинают ломаться. На TF=М15 кто-то уже сказал бы: “пила, тухлый боковик”. А на самом деле боковик при соответствующей детализации просто прекрасен, надо просто перейти на более мелкий TF.

На TF=D структура просто была бы совершенно не видна, вся эта красота закрывалась бы одной дневной свечкой.

Рынок дискретен. Поток элементарных сделок, идущих то чаще, то реже. Снимаю шляпу перед теми, кто работает на тиковом уровне – они пытаются работать с первоисточником. Идеально, если у вас есть HFT-робот, находящийся непосредственно на бирже. Но большинство из нас торгуют дома или на работе. Между нами и биржей – брокер и телекоммуникационная среда. Информация о заявках и сделках, обычно накопленная в пакетах в некотором количестве (как бы, минисвечка или минибар), доходит до нас с некоторым опозданием, примерно на десятые доли секунды или еще медленнее. Да, еще, может, и разными логическими каналами в разные таблицы торгового терминала. Дискретность пакета и задержки – это реалии.

А потом начинается ужасное - торговый терминал режет эту еще слегка искаженную последовательность на свечки-бары по желанию пользователя, как колбасу, обычно ровными порциями, на минутной, часовой, дневной и т.д. основе. Детали теряются, и чем выше TF, тем больше их теряется. Конкретное время, когда рынок достиг своего экстремума, спряталось внутри интервала свечки. Да, еще и эта условная нарезка по временным интервалам. Есть же и другие виды графиков. Одно время я исследовал эквивольюмные графики, на которых свечки имеют ширину, пропорциональную объему. Этап был проходной, но полезный.

Еще один дефект нарезки рыночного трафика на свечки-бары. Экстремумы (High-Low) абсолютны, а вот Open-Close – относительны. Сместите часовой график минут на 5, экстремумы еще могут остаться на месте в той же часовой свечке и не изменить своего значения, а у Open-Close шансов очень мало.

Поэтому, для меня естественным было бы работать на минимально допустимом TF (по техническим или физиологическим возможностям). Это качественно, по степени детализации и близости к тиковому уровню.

Многие задаются вопросом, на каком TF надо работать? Попробуем оценить количественно, пусть грубо, что еще, кроме деталей, теряется при переходе на другой, более высокий таймфрейм.

В середине прошлого века был обнаружен парадокс береговой линии. Разные измерения одной и той же границы или береговой линии давали сильно отличающиеся результаты, в зависимости от того какой единицей она измерялась. Через некоторое время Бенуа Мандельброт разработал новую область математики, фрактальную геометрию, для описания именно таких объектов в природе. И рынок по этой же причине попал в поле зрения Мандельброта.

Прикинем сумму высот свечек за день, например, для fRTS, на TF=D, TF=H1 и TF=M1. Может, кто-то думает, что они совпадают (объемы – да, совпадают)? Можно, например, воспользоваться индикатором ATR (Average True Range) или, грубо, можно ориентироваться на корень квадратный из соотношения таймфреймов. Распределением объемов и высот свечек я тоже занимался и даже сделал полезный индикатор.

Для TF=D сумма высот свечек в заурядный день это 2-3 тысячи пунктов, для TF=H1 это 8-10 тысяч пунктов, а для TF=M1 – 60-80 тысяч (если правильно запомнил, то 16.12.2014 было 484 тысячи). Это ориентир для нашей потенциальной прибыли (выбрать все свечки по всей высоте). Получить прибыль в 7 раз больше при переходе с H1 на M1 – нельзя игнорировать это обстоятельство (правда, объем работы увеличится в 60 раз.). Это я прояснил для себя еще до того, как выбрал брокера. Но физиологически я не мог работать на TF ниже M15. Сейчас, вооруженный до зубов, считаю TF=M1 медленным.

Оценивал TF=1sec, искусственно строя секундные свечки для fRTS и исследуя их в Excel. На этом таймфрейме рынок выглядит так же, как и на других. Алгоритмы выдержали. Вот и определился тот таймфрейм, на котором надо работать дома (роботом) с учетом задержек. Потенциально увеличение прибыли еще где-то в 7 раз.

Я не люблю использовать термин “таймфрейм”. У меня он фиксирован – M1 (предельная детализация по свечкам). Мне естественнее говорить “торговый горизонт”. У меня он редко уходит за 2-3 дня. Могу для поддержания разговора или если надо посмотреть что-то. Мог бы работать и на H1, и на D1 (система позволяет), но арифметику я знаю хорошо.

Разумеется, все это справедливо для ликвидных инструментов. Проверял работу системы на акциях ТГК-2, там 90% всех минуток проходили без сделок, были дни, когда до обеда сделок совсем не было. Работая на TF=M1 я застрял в позе на месяц, тогда, как на fRTS среднее время нахождения в позе – 10мин.

А если вы ворочаете миллиардами, то для вас нужен отдельный пост. Как продать или купить большой пакет акций, не уронив рынок и не взвинтив его в космос? Тоже есть ответ.

Вы не можете перейти на споте на минутки, потому, что комиссия превысит прибыль? Переходите на ФОРТС, там комиссия просто символическая (не считая других достоинств).

Ваша система покупает летом, а продает зимой или работает по фазам луны? Извините, ваша система не масштабируется, преимущества фрактальности не для вас.

В вашей системе зафиксированы конкретные значения параметров каких-то индикаторов и она плохо работает на других TF? Тоже, извините.

Вы физиологически не успеваете следить за своими индикаторами и выполнять нужные построения? Это проблема ваша или вашей системы. Автоматизируйте.

Потенциально, масштабируемые системы могут воспользоваться этим очевидным свойством фрактальности, особенно при автоматизации.

Математики спокойно занимались фрактальными объектами задолго до Мандельброта. Так часто бывает. Но как только становится очевидным прикладной характер, идет взрывоподобное развитие. Материаловедение, технология Stealth, фрактальные антенны – много куда проникла фрактальность. Теперь и рынок может взорваться (в разных смыслах).

С несколькими Фракталами я познакомился в средних классах, еще лет 10-15 оставалось до внедрения в массы этого термина. О кроликах Фибоначчи я узнал еще раньше, все из тех же научно-популярных книжек и брошюрок.

Треугольник Серпинского.

Кривая Дракона (опреденно есть у Гарднера, но, уверен, встречал и раньше).

Генератор Мандельброта. Идея, как в кривой Дракона. Уже ближе к рыночным графикам.

О курьезах. Я с детства, оказывается, знал что-то о Фракталах и Фибоначчи. О генераторе Мандельброта я узнал, когда уже писал этот пост. Фамилию Мандельброт мне подсказали, когда я уже озвучил свои первые результаты. Я никогда не занимался ни чистой математикой, ни прикладной. Но, думаю, мехмат с красивой и строгой математикой сидит во мне прочно. Я не помню, когда я узнал о проблеме береговой линии, но фрактальность рынка принял совершенно естественно.

Говорят, что Фракталы хорошо описывают природу, но не объясняют ее. В части рынка хорошие объяснения его сути у меня определенно есть. Хотя, формально это уже, как бы, лишнее.

Я стал подбирать математический аппарат, на базе которого можно было развивать некоторые мысли и наблюдения.

Экспонента Херста. Временные ряды. Персистентность. Антиперсистентность. Прошел исключительно поверхностно. Почувствовал некоторую инерционность, усредненность и закладываемое отставание. Требовалось большое количество данных. Использование стандартных отклонений отталкивало. Мне больше подходила динамика, ведь рынок очень динамичен. Да и слишком много народа занималось временными рядами.

Теория групп – тогда было очень рано, ее время еще не пришло, но скоро может наступить. Трейдеры, специалисты по теории групп, готовьтесь занять нишу. Можно попробовать навести порядок во фрактальных структурах.

Фрактальная геометрия – очень легко, по простым алгоритмам, получаются красивые сложные статические фигуры. Смоделировать рынок из простых затравок, типа генератора Мандельброта, было очень частной задачей. Было бы этими моделями охвачено все многообразие рынка – неизвестно.

Но была одна необычная математическая дисциплина. Она была несколько не в ладах с классической наукой, в которой какие-то идеи что-то предсказывают, а предсказания сверяют с реальными результатами. Теория Хаоса занималась непредсказуемыми системами.

Теория Хаоса (теория нелинейных динамических систем, с непостоянным и непериодическим изменением траектории) имеет отношение к фрактальными системам и к рынку. Только не Билла Вильямса, а математическая (вот, ведь, человек – использовал два прекрасных термина совершенно не по назначению). Под хаосом в быту вообще понимают полный беспорядок, в то время как Хаос - это особая, изысканная форма порядка.

Представьте себе автомобиль, который едет равномерно-прямолинейно по прямой. Вы всегда знаете, где он был или будет находиться в любой момент времени. Можно заменить прямую на синусоиду, а равномерное движение на равноускоренное – принципиально ничего не меняется. Полная предопределенность.

Другая крайность – бросание монетки. Полная непредсказуемость результата.

Хаос занимает промежуточное положение. Он выглядит случайным, беспорядочным, однако в нем есть закономерности, но они обнаруживаются не сразу (“Видишь суслика? Нет. И я не вижу. А он есть.” (ДМБ)). Но, в то же время, при наличии закономерностей, результат движения является непредсказуемым. Вот такое интересное сочетание.

Первый вывод Теории Хаоса – будущее точно предсказать невозможно. Много раз встречал ситуации, когда до целевой кривой оставалось буквально полсвечки, но рынок откатывался и закономерно выходил на целевую только на следующий день и совсем на другом уровне. Поэтому прогнозами не занимаюсь – теория не велит.

При всей непредсказуемости траектории движения существуют рамки, пределы, которые это движение ограничивают. Эти статичные рамки и образуют Фрактал, но только по завершении движения. То есть, предельное положение хаотической системы (динамического явления) и есть Фрактал (статическое явление). Тот самый Фрактал из фрактальной геометрии. В процессе движения прообраз фрактала тоже меняется, уточняется, приближается к законченной форме, с возникновением промежуточных финишей. Дополнительно, результат существенно зависит от начальных данных и от факторов воздействия во время движения (для рынков, например, от новостей или действий трейдеров).

Некоторая аналогия (аналогия – это не доказательство). Зарядили пушку (порох, ядро), установили угол (прицелились) и выстрелили. Место пушки, количество пороха, прицел – начальные условия. Баллистик скажет – полетит по параболе. При некоторых условиях – правдоподобно. При других – вполне может выйти и на эллиптическую орбиту, и на гиперболическую. А в микромире и вовсе другие закономерности. В рынке фрактальные свойства тоже могут иметь свой диапазон.

И летит ядро, пока не встретит препятствие. А здесь уже рельеф местности играет роль, гора ли на пути или ущелье, а, при правильных начальных условиях – какая-нибудь точка на крепостной стене. Встреча ядра с препятствием неизбежна (закономерность) и зависит от начальных условий и текущего рельефа (+ гравитационные аномалии), а каким рельеф будет – мы еще не знаем, поэтому и не знаем, где и когда ядро встретит рельеф (непредсказуемость).

У нас так же. Только траектория (целевая кривая) специфическая. И начальные условия важны, еще и профиль графика корректирует траекторию.

Как при таких установках найти что-то закономерное?

Есть смягчающие ситуацию факторы. Хаотические системы – с обратной связью, последующие значения зависят от предыдущих (память). В хаотических системах есть много точек равновесия.

Взгляните еще раз на вышеприведенные графики, теперь уже на динамику.

Мне понравился второй вывод Теории Хаоса – достоверность прогнозов со временем быстро падает. Этот вывод является существенным ограничением для применимости фундаментального анализа, оперирующего, как правило, именно долгосрочными категориями. Поэтому для меня естественно работать накоротке, “прямой наводкой”, на не очень больших торговых горизонтах (обычно не более 1-2 дня на минутках). Есть еще очень важное обстоятельство. К моему удовлетворению, рыночная фрактальность дала очень мощную возможность повысить точность (что-то вроде самофокусировки лазерного луча).

Прекрасно подходила Теория Хаоса под мои задачи, но осваивать ее я не собирался.

Теория Хаоса сказала мне, что в хаотичных системах есть странные аттракторы (точки, кривые, фигуры), к которым притягиваются элементы системы. В частности, странные аттракторы образуют определенные рамки движения. И есть у них особенность - они существенно зависят от точки приложения (более широко – от начальных условий).

И стал я искать странные аттракторы. Мне просто деваться было некуда, все было так хорошо объяснено. Я нашел их с десяток. Один из странных аттракторов оказался фигурой - Фракталом. Есть в его формуле одна интересная деталь, я ее обнаружил когда решил основное уравнение - деталь называется «среднее гармоническое». Для математика это очень ценно. А Фрактал получился и обобщением основной гармонической модели AB=CD, и обобщением Генератора Мандельброта, похоже, что и Волны Эллиота может закрыть. Одновременно целевая и коррекционные кривые обобщили дискретность расширений и коррекций Фибоначчи до непрерывности. И еще какие-то мелочи.

Странными путями иногда доходила до меня информация, дающая мне ценные импульсы.
В выходные на даче как-то застал по ТВ самый конец боевика-детектива, где играли У.Снайпс и Дж.Стэтэм.
Один из них говорит (не дословно): ”Cобытия, поначалу кажущиеся случайными, со временем могут стать закономерностью. Называется Теория Хаocа".

Посмотрел в домашней коллекции с другим переводом: «Один случайный поступок тянет за собой другой, другой следующий, в конце возникает закономерность. Это Теория Хаоca».
Фильм назывался ”Хаос".

Какие ассоциации у нормального человека должны были возникнуть при упоминании термина “подобие”? Правильно, подобные треугольники.

Но, не только. Чем не суперпозиция (в собранном виде)?

Фракталы не обязаны иметь красивую форму, как в триадной структуре. Вот форма, напоминающая треугольники.

P.S. Кто прочитает предпоследний абзац раздела из книги Э.Наймана (“Путь к финансовой свободе. Глава 6. В поисках Грааля. 6.2.Теория Хаоса на службе у трейдера”) о проблемах совместимости Теории Хаоса с классической наукой, поймет, что я только из духа противоречия должен был выбрать Теорию Хаоса.

Э.Найман советует не спешить с применением знаний о хаосе. А я и не спешил.

А еще он подтверждает, что это самое перспективное современное направление для прикладных исследований финансовых рынков .

И я тоже это подтверждаю.

Доктор физико-математических наук А. ДМИТРИЕВ, ведущий научный сотрудник Института радиотехники и электроники РАН (Москва).

Динамический (детерминированный) хаос и фракталы - понятия, вошедшие в научную картину мира сравнительно недавно, лишь в последней четверти ХХ века. С тех пор интерес к ним не угасает не только в кругу специалистов - физиков, математиков, биологов и т. д., но и среди людей, далеких от науки. Исследования, связанные с фракталами и детерминированным хаосом, меняют многие привычные представления об окружающем нас мире. Причем не о мире микрообъектов, где глаз человечес кий бессилен без специальной техники, и не о явлениях космического масштаба, а о самых обычных предметах: облаках, реках, деревьях, горах, травах. Фракталы заставляют пересмотреть наши взгляды на геометрические свойства природных и искусственных объектов, а динамический хаос вносит радикальные изменения в понимание того, как эти объекты могут вести себя во времени. Разрабатываемые на основе этих понятий теории открывают новые возможности в различных областях знаний, в том числе в информационных и коммуникационных технологиях.

Наука и жизнь // Иллюстрации

Деревья, как и многие другие объекты в природе, имеют фрактальное строение.

Наука и жизнь // Иллюстрации

Крымская сосна (слева) и искусственная фрактальная структура (справа) удивительно похожи.

Реакция колебательного контура на внешний периодический сигнал: а - периодический отклик линейного контура, б - хаотический отклик нелинейного контура. Роль нелинейной емкости выполняет p-n-переход полупроводникового диода.

Движение динамической системы можно наглядно изобразить траекторией на фазовой плоскости, где оси X и Y - обобщенные координата и импульс частицы. а - колебания затухающего маятника.

Примеры систем с хаосом.

Наука и жизнь // Иллюстрации

Основные способы синхронизации хаотических систем: а - через глобальные связи: каждая система влияет на каждую; б - с помощью пейсмейкера, или "ритмоводителя": одна из систем задает ритм всем остальным элементам.

Наука и жизнь // Иллюстрации

Пример записи информации с помощью детерминированного хаоса.

Сотрудники лаборатории ИнформХаос Института радиотехники и электроники РАН А. И. Панас и С. О. Старков проводят эксперимент по скоростной прямохаотической передаче данных в СВЧ-диапазоне (вверху).

Так выглядят хаотические СВЧ-колебания, позволяющие увеличить скорость передачи информации в десятки раз по сравнению с традиционными системами.

Что такое фрактал?

Фракталы вокруг нас повсюду, и в очертаниях гор, и в извилистой линии морского берега. Некоторые из фракталов непрерывно меняются, подобно движущимся облакам или мерцающему пламени, в то время как другие, подобно деревьям или нашим сосудистым системам, сохраняют структуру, приобретенную в процессе эволюции.
Х. О. Пайген и П. Х. Рихтер.

Геометрия, которую мы изучали в школе и которой пользуемся в повседневной жизни, восходит к Эвклиду (примерно 300 лет до нашей эры). Треугольники, квадраты, круги, параллелограммы, параллелепипеды, пирамиды, шары, призмы - типичные объекты, рассматриваемые классической геометрией. Предметы, созданные руками человека, обычно включают эти фигуры или их фрагменты. Однако в природе они встречаются не так уж часто. Действительно, похожи ли, например, лесные красавицы ели на какой-либо из перечисленных предметов или их комбинацию? Легко заметить, что в отличие от форм Эвклида природные объекты не обладают гладкостью, их края изломаны, зазубрены, поверхности шероховаты, изъедены трещинами, ходами и отверстиями. "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности", - этими словами начинается "Фрактальная геометрия природы", написанная Бенуа Мандельбротом. Именно он в 1975 году впервые ввел понятие фрактала - от латинского слова fractus, сломанный камень, расколотый и нерегулярный. Оказывается, почти все природные образования имеют фрактальную структуру. Что это значит? Если посмотреть на фрактальный объект в целом, затем на его часть в увеличенном масштабе, потом на часть этой части и т. п., то нетрудно увидеть, что они выглядят одинаково. Фракталы самоподобны - их форма воспроизводится на различных масштабах.

Открытие фракталов произвело революцию не только в геометрии, но и в физике, химии, биологии. Фрактальные алгоритмы нашли применение и в информационных технологиях, например, для синтеза трехмерных компьютерных изображений природных ландшафтов, для сжатия (компрессии) данных (см. "Наука и жизнь" № 4, 1994 г.; №№ 8, 12, 1995 г.; № 7, 1998 г.). Далее мы убедимся, что понятие фрактала тесно связано с еще одним не менее любопытным явлением - хаосом в динамических системах.

Детерминированность и хаос

ХАОС (греч. caos) - в греческой мифологии беспредельная первобытная масса,
из которой образовалось впоследствии
все существующее. В переносном смысле - беспорядок, неразбериха.

Энциклопедия
Кирилла и Мефодия

Когда говорят о детерминированности некой системы, имеют в виду, что ее поведение характеризуется однозначной причинно-следственной связью. То есть, зная начальные условия и закон движения системы, можно точно предсказать ее будущее. Именно такое представление о движении во Вселенной характерно для классической, ньютоновской динамики. Хаос же, напротив, подразумевает беспорядочный, случайный процесс, когда ход событий нельзя ни предсказать, ни воспроизвести. Что же представляет собой детермини рованный хаос - казалось бы, невозможное объединение двух противоположных понятий?

Начнем с простого опыта. Шарик, подвешенный на нитке, отклоняют от вертикали и отпускают. Возникают колебания. Если шарик отклонили немного, то его движение описывается линейными уравнениями. Если отклонение сделать достаточно большим - уравнения будут уже нелинейными. Что при этом изменится? В первом случае частота колебаний (и, соответственно, период) не зависит от степени начального отклонения. Во втором - такая зависимость имеет место. Полный аналог механического маятника как колебательной системы - колебательный контур, или "электрический маятник". В простейшем случае он состоит из катушки индуктивности, конденсатора (емкости) и резистора (сопротивления). Если все три указанных элемента линейны, то колебания в контуре эквивалентны колебаниям линейного маятника. Но если, к примеру, емкость нелинейна, период колебаний будет зависеть от их амплитуды.

Динамика колебательного контура определяется двумя переменными, например током в контуре и напряжением на емкости. Если откладывать эти величины вдоль осей Х и Y, то каждому состоянию системы будет соответствовать определенная точка на полученной координатной плоскости. Такую плоскость называют фазовой . (Соответственно, если динамическая система определяется n переменными, то вместо двумерной фазовой плоскости ей можно поставить в соответствие n- мерное фазовое пространство.)

Теперь начнем воздействовать на наши маятники внешним периодическим сигналом. Реакция линейной и нелинейной систем будет различной. В первом случае постепенно установятся регулярные периодические колебания с той же частотой, что и частота вынуждающего сигнала. На фазовой плоскости такому движению соответствует замкнутая кривая, называемая аттрактором (от английского глагола to attract - притягивать), - множество траекторий, характеризующих установившийся процесс. В случае нелинейного маятника могут возникнуть сложные, непериодические колебания, когда траектория на фазовой плоскости не замкнется за сколь угодно долгое время. При этом поведение детерминирован ной системы будет внешне напоминать совершенно случайный процесс - это и есть явление динамического, или детерминированного, хаоса . Образ хаоса в фазовом пространстве - хаотический аттрактор - имеет очень сложную структуру: это фрактал. В силу необычности свойств его называют также странным аттрактором .

Почему же система, развивающаяся по вполне определенным законам, ведет себя хаотически? Влияние посторонних источников шума, а также квантовая вероятность в данном случае ни при чем. Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. Поясним, что это значит, на примере нелинейного колебательного контура, находящегося под воздействием внешнего периодического сигнала. Внесем в нашу систему небольшое возмущение - изменим немного начальный заряд конденсатора. Тогда колебания в возмущенном и невозмущенном контурах, первоначально практически синхронные, очень скоро станут совершенно разными. Поскольку в реальном физическом эксперименте задать начальные условия можно лишь с конечной точностью, предсказать поведение хаотических систем на длительное время невозможно.

Предсказание будущего

- Из-за такой малости! Из-за бабочки! - закричал Экельс.
Она упала на пол - изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино... большие костяшки... огромные костяшки, соединенные цепью неисчисли мых лет, составляющих Время.

Р. Бредбери. И грянул гром

Насколько упорядочена наша жизнь? Предопределены ли в ней те или иные события? Что предсказуемо на многие годы вперед, а что не подлежит сколько-нибудь надежному прогнозированию даже на небольшие интервалы времени?

Человеку постоянно приходится сталкиваться как с упорядоченными, так и с неупорядоченными процессами, порождаемыми различными динамическими системами. Мы знаем, что Солнце встает и заходит каждые 24 часа, и так будет продолжаться в течение всей нашей жизни. Вслед за зимой всегда наступает весна, и вряд ли когда-нибудь будет наоборот. Более или менее регулярно функционируют коммунальные службы, снабжающие нас светом и теплом, учреждения и магазины, а также транспортные системы (автобусы, троллейбусы, метро, самолеты, поезда). Нарушения ритмичной работы этих систем вызывают законное возмущение и негодование граждан. Если сбои возникают неоднократно - говорят о хаосе, выражая отрицательное отношение к подобным явлениям.

Но в то же время существуют процессы, хорошо известные своей непредсказуемость ю. Например, подбрасывая монету, мы никогда точно не знаем, что выпадет - "орел" или "решка". Такая непредсказуемость не вызывает тревоги. К гораздо более драматичным последствиям она может привести при игре в рулетку, однако любители испытывать судьбу сознательно идут на этот риск.

Почему одни процессы предсказуемы по своим результатам, а другие нет? Может быть, нам просто не хватает каких-то начальных данных для хорошего прогноза? Надо улучшить знания о начальных условиях - и все будет в порядке, и с монетой и с предсказанием погоды. Сказал же Лаплас: дайте мне начальные условия для всей Вселенной, и я вычислю ее будущее. Лаплас ошибался: ему и его современникам не были известны примеры детерминированных динамических систем, прогноз поведения которых на длительное время нельзя осуществить. Лишь в конце XIX столетия французский математик Анри Пуанкаре впервые почувствовал, что такое возможно. Однако прошло еще три четверти века, прежде чем началась эпоха бурного изучения детерминированного хаоса.

Динамические системы можно условно разделить на два типа. У первых траектории движения устойчивы и не могут быть значительно изменены малыми возмущениями. Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет. Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия. Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе.

К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро (в масштабе времени, характерном для этой системы) приводят к кардинальному изменению траектории. Как отметил Пуанкаре в своей работе "Наука и метод" (1908), в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть. (...) Предсказание становится невозможным, мы имеем перед собой явление случайное". Таким образом прогнозирование на длительные времена теряет всякий смысл.

Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах.

Реконструкция прошлого

Итак, прогноз будущего не всегда возможен. А как обстоит дело с прошлым? Всегда ли можно реконструировать ("предсказать", однозначно истолковать) прошлое? Казалось бы, здесь проблем быть не должно. Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад. Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько. При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой.

Прошлое "не предсказывается"? Бред какой-то! Ведь что-то уже произошло. Все известно... Но давайте подумаем. Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей? Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений. Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы. Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов (траекторий), отвечающих нынешнему состоянию системы. Только один из них соответствует реальному течению событий. Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории. На основании чего выбирается правильная траектория ("версия")? Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов. Траектории, несовместимые с ними, отбрасываются. В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории. Однако даже для недалекого прошлого траекторий может оказаться значительно больше, чем достоверных сведений, - тогда однозначная трактовка исторического процесса уже не может быть произведена. И все это при добросовестном и уважительном отношении к истории и к фактам. Теперь добавьте сюда пристрастия первичных источников, потерю части информации со временем, манипуляции с фактами на этапе интерпретации (замалчивание одних, выпячивание других, фальсификация и др.) - и заменить черное на белое окажется не такой уж сложной задачей. И что интереснее всего, при необходимости те же самые интерпретаторы через некоторое время могут без труда утверждать противоположное. Знакомая картина?

Итак, динамическая природа "непредсказуемости" прошлого сходна с природой непредсказуемости будущего: неустойчивость траекторий динамической системы и быстрое нарастание числа возможных вариантов по мере удаления от точки отсчета. Чтобы реконстру ировать прошлое, кроме самой динамической системы нужна достаточная по количеству и надежная по качеству информация из этого прошлого. Следует отметить, что на разных участках исторического процесса степень его хаотичности различна и может даже падать до нуля (ситуация, когда все существенное предопределено). Естественно, что чем менее хаотична система, тем проще реконструируется ее прошлое.

Управляем ли хаос?

Хаос часто порождает жизнь.
Г. Адамс

На первый взгляд природа хаоса исключает возможность управлять им. В действительности все наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению.

Пусть, например, требуется перевести систему из одного состояния в другое (переместить траекторию из одной точки фазового пространства в другую). Требуемый результат может быть получен в течение заданного времени путем одного или серии малозаметных, незначительных возмущений параметров системы. Каждое из них лишь слегка изменит траекторию, но через некоторое время накопление и экспоненциальное усиление малых возмущений приведут к существенной коррекции движения. При этом траектория останется на том же хаотическом аттракторе. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость, и удивительную пластичность: чутко реагируя на внешние воздействия, они сохраняют тип движения.

Как считают многие исследователи, именно комбинация этих двух свойств служит причиной того, что хаотическая динамика характерна для поведения многих систем живых организмов. Например, хаотический характер ритма сердца позволяет ему гибко реагировать на изменение физических и эмоциональных нагрузок, подстраиваясь под них. Известно, что регуляризация сердечного ритма приводит через некоторое время к летальному исходу. Одна из причин заключается в том, что сердцу может не хватить "механической прочности" для того, чтобы скомпенсировать внешние возмущения. На самом деле ситуация более сложная. Упорядочение работы сердца служит индикатором снижения хаотичности и в других, связанных с ним системах. Регулярность свидетель ствует об уменьшении сопротивляемости организма случайным воздействиям внешней среды, когда он уже не способен адекватно отследить изменения и достаточно гибко на них отреагировать.

Очевидно, что подобной пластичностью и управляемостью должны обладать любые сложные системы, функционирующие в изменчивой среде. В этом залог их сохранности и успешной эволюции.

От хаоса - к упорядоченности

Как же обеспечивается целостность и устойчивость живых организмов и других сложных систем, если отдельные их части ведут себя хаотически?

Оказывается, кроме хаоса в сложных нелинейных системах возможно и противоположное явление, которое можно было бы назвать антихаосом . В том случае, если хаотические подсистемы связаны друг с другом, может произойти их спонтанное упорядочение ("кристаллизация"), в результате чего они обретут черты единого целого. Простейший вариант такого упорядочения - хаотическая синхронизация , когда все связанные друг с другом подсистемы движутся хотя и хаотически, но одинаково, синхронно. Процессы хаотической синхронизации могут происходить не только в организме животных и человека, но и в более крупных структурах - биоценозах, общественных организациях, государствах, транспортных системах и др.

Чем определяется возможность синхронизации? Во-первых, поведением каждой отдельной подсистемы: чем она хаотичнее, "самостоятельнее" , тем труднее заставить ее "считаться" с другими элементами ансамбля. Во-вторых, суммарной силой связи между подсистемами: ее увеличение подавляет тенденцию к "самостоятельности" и может, в принципе, привести к упорядочению. При этом важно, чтобы связи были глобальными , то есть существовали не только между соседними, но и между отстоящими далеко друг от друга элементами.

В реальных системах, включающих большое число подсистем, связь осуществляется за счет материальных или информационных потоков. Чем они интенсивнее, тем больше шансов, что элементы будут вести себя согласованно, и наоборот. Например, в государстве роль связующих потоков играют транспорт, почта, телефонная связь и др. Поэтому повышение тарифов на эти услуги в том случае, когда оно приводит к уменьшению соответствующих потоков, ослабляет целостность государства и способствует его разрушению.

Из теории хаотической синхронизации следует, что согласованную работу отдельных частей сложной системы может обеспечивать один из ее элементов, называемый пейсмейке ром , или "ритмоводителем". Будучи связан односторонним образом со всеми компонентами системы, он "руководит" их движением, навязывая свой ритм. Если при этом сделать так, что отдельные подсистемы не будут связаны друг с другом, а только с пейсмейкером, - получим случай предельно централизованной системы. В государстве, например, роль "ритмоводителя" выполняет центральная власть и...средства массовой информации, действующие на всей или значительной части территории страны. Сегодня это в особенности относится к электронным средствам массовой информации, поскольку по мобильности и общему информационному потоку они значительно превосходят остальные. Интуитивно понимая это, центральная власть старается держать СМИ под контролем, а также ограничивает влияние каждого из них в отдельности. В противном случае управлять государством будет уже не она.

Здесь мы коснулись очень важного вопроса. Поскольку средняя сила связей является суммарным параметром, в который входят как материальные связи, так и информационные, то это значит, что ослабление одних из них может быть компенсировано усилением других. Простейший пример - замена реальных товаров на бумажные или даже электронные деньги. В этом случае поставщику, по сути, вместо материального продукта поступает информация об изменении на его счете - и такой обмен его вполне устраивает. Подобным же образом путем биржевых операций ежедневно приобретаются или теряются громадные суммы, которые, в конечном счете, кто-то должен компенсировать реальными продуктами или услугами.

Как может происходить разрушение синхронизованного состояния?

Об одной возможности мы уже упомянули. Это ослабление связей. Другая причина - неадекватное воздействие "ритмоводителя" на ансамбль. Действительно, если "ритм", диктуемый пейсмейкером, будет слишком противоречить естественному поведению компонент системы, то даже при достаточной силе связи ему не удастся навязать ансамблю свою линию поведения. Однако прежнее поведение также не сохранится. В результате синхронизация будет разрушена.

Фрактальность и устойчивость

Мы уже убедились, что теорию динамического хаоса можно применить ко многим системам, в том числе к государству и обществу в целом. А какую роль играет при этом фрактальная структура хаоса? Ведь образ хаоса в фазовом пространстве - странный аттрактор - геометрически представляет собой фрактал. Несмотря на то, что каждая отдельная хаотическая траектория чрезвычайно чувствительна к малейшим возмущениям, странный аттрактор (совокупность всех возможных траекторий) является очень устойчивой структурой. Таким образом, динамический хаос подобен двуликому Янусу: с одной стороны, он проявляет себя как модель беспорядка, а с другой - как стабильность и упорядоченность на разных масштабах.

Если задуматься, то легко увидеть, что в обществе, как и в природе, многие системы построены по принципу фракталов: из малых элементов образуются некоторые комплексы, они в свою очередь служат элементами для более крупных комплексов и т. д. Как, например, организованы жизнеспособные экономические и производственные структуры? Две крайние позиции: крупные транснациональные компании и "мелкий бизнес". Каждая из них в отдельности нежизнеспособна. Большие компании, обладая огромной экономической мощью, малоподвижны и не могут быстро реагировать на изменения в окружающей экономической среде. "Малый бизнес" не способен решать крупные задачи, обеспечивать развитие инфраструктуры. Где же золотая середина? В средних по размеру предприятиях? Отнюдь. Устойчивая экономическая инфраструктура обеспечивается (при необходимой подкачке нужных ресурсов) совокупностью разномасштабных (вот он фрактал!) экономических объектов, образующих пирамиду. У основания ее находится множество мелких компаний и фирм, выше по пирамиде размер предприятий постепенно увеличивается, а их число, соответственно, сокращается, и, наконец, наверху находятся самые крупные компании. Такая структура характерна, например, для экономики США. При этом мелкие предприятия наиболее мобильны: они часто рождаются и умирают, являясь основными поставщиками новых идей и технологий. Нововведения, получившие достаточное развитие, позволяют ряду предприятий вырасти до следующего уровня либо передать (продать) накопленные инновации более крупным компаниям. При достаточной восприимчивости среды такой механизм способен создать новые отрасли промышленности и экономики за несколько лет. Недаром в так называемой "новой экономике" основную массу даже крупных предприятий составляют компании, которые 15-20 лет назад либо вообще не существова ли, либо находились в разряде мелких.

Другой пример. Во времена перестройки много писалось и говорилось о "неправильном" устройстве СССР, в котором государство имело сложную иерархическую структуру, организованную по принципу матрешки. Что было предложено взамен? Каждому народу свою туземную армию, свой язык, свою "элиту", своих племенных вождей. Звучит неплохо. А теперь взгляните, чем обернулась эта идея для многих народов бывшего СССР и Югославии... С точки зрения теории устойчивости, идея однородного устройства российского государства - идея двоечника. Почему? Принцип матрешки - это, по сути, фрактальный принцип, благодаря которому хаотическая система обретает структуру и устойчивость. СССР и Российская империя были построены по принципу фрактальных систем, и это обеспечивало их стабильность как государств. На разных уровнях в общую систему были вкраплены естественные государственные, этнические, территориальные и другие образования с отлаженными механизмами внутреннего функциониро вания, со своими правами и обязанностями.

Хаос порождает информацию

Мы уже установили, что поведение хаотических систем не может быть предсказано на большие интервалы времени. По мере удаления от начальных условий положение траектории становится все более и более неопределенн ым. С точки зрения теории информации это означает, что система сама порождает информацию, причем скорость этого процесса тем выше, чем больше степень хаотичности. Отсюда, согласно теории хаотической синхрониза ции, рассмотренной ранее, следует интересный вывод: чем интенсивнее система генерирует информацию, тем труднее ее синхронизировать, заставить вести себя как-то иначе.

Это правило, видимо, справедливо для любых систем, производящих информацию. Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям. И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - иными словами, следует принципу "...тепло и сыро", - тогда его очень легко подчинить.

Хаотические компьютеры

Чего нам не хватает в современных компьютерах? Если живой организм для существования в изменчивой среде должен обладать элементами хаотического поведения, то можно предположить, что и искусственные системы, способные адекватно взаимодей ствовать с меняющимся окружением, должны быть в той или иной степени хаотичными. Современные компьютеры таковыми не являются. Они представляют собой замкнутые системы с очень большим, но конечным числом состояний. Возможно, в будущем на основе динамического хаоса создадут компьютеры нового типа - открытые с термодина мической точки зрения системы, способные адаптироваться к условиям внешней среды.

Однако уже сегодня хаотические алгоритмы могут успешно применять ся в компьютер ных технологиях для хранения, поиска и защиты информации. При решении некоторых задач они оказываются более эффективными по сравнению с традиционными методами. Это относится, в частности, к работе с мультимедийными данными. В отличие от текстов и программ мультимедийная информация требует иного способа организации памяти. Голубая мечта пользователей - возможность поиска мелодии, видеосюжета или нужных фотографий не по их атрибутам (названию директории и файла, дате создания и т. д.), а по содержанию или ассоциации, чтобы, например, по фрагменту мелодии можно было найти и воспроизвести музыкальное произведение. Оказывается, такой ассоциативный поиск можно осуществить с помощью технологий на основе детерминированного хаоса. Каким образом?

Мы уже обсуждалигенерацию информации хаотическими системами. Теперь зададимся вопросом: а нельзя ли поставить в соответствие траектории конкретные данные, записанные в виде определенной последовательностей символов? Тогда часть траекторий системы находилась бы во взаимно однозначном соответствии с нашими информаци онными последовательностями. А поскольку каждая траектория - это решение уравнений движения системы при определенных начальных условиях, то и любую последователь ность символов можно было бы восстановить путем решения этих уравнений, задав в качестве начальных условий небольшой ее фрагмент. Таким образом появилась бы возможность ассоциативного поиска информации, то есть поиска по содержанию.

Коллективом сотрудников нашего института были созданы математические модели записи, хранения и поиска информации с помощью траекторий динамических систем с хаосом. Хотя алгоритмы казались очень простыми, их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете. Развитие идеи привело к созданию технологии, позволяющей обрабатывать любые типы данных: изображения, текст, цифровую музыку, речь, сигналы и т. д. (Патент РФ 2050072, Патент США 5774587, Патент Канады 2164417).

Пример использования технологии - программный комплекс "Незабудка", предназначен ный для работы с архивами неструктурированной информации как на персональных компьютерах, так и на информационных серверах. "Незабудка" реализована в виде поисковой машины, работающей под стандартными Интернет-броузерами типа Netscape и Explorer. Вся информация в архиве записывается и хранится в виде траекторий хаотической системы. Для поиска необходимых документов пользователь составляет запрос путем набора в произволь ной форме нескольких строк текста, относящегося к содержанию требуемого документа. В ответ система выдаст искомый документ, если входной информации достаточно для его однозначного поиска, либо предложит набор вариантов. При необходимости можно получить и факсимильную копию найденного документа. Наличие ошибок в запросе не оказывает существенного влияния на качество поиска.

Дополнитель ную информацию по комплексу "Незабудка", а также демонстрационную версию программы можно получить по адресу http://www.cplire.ru .

Связь с помощью хаоса

В большинстве современных систем связи в качестве носителя информации используются гармонические колебания. Информационный сигнал в передатчике модулирует эти колебания по амплитуде, частоте или фазе, а в приемнике информация выделяется с помощью обратной операции - демодуляции. Наложение информации на носитель осуществляется либо за счет модуляции уже сформированных гармонических колебаний, либо путем управления параметрами генератора в процессе его работы.

Аналогичным образом можно производить модуляцию хаотического сигнала. Однако возможности здесь значительно шире. Гармонические сигналы имеют всего три управляемые характеристики (амплитуда, фаза и частота). В случае хаотических колебаний даже небольшие вариации в значении параметра одного из элементов источника хаоса приводят к изменениям характера колебаний, которые могут быть надежно зафиксированы приборами. Это означает, что у источников хаоса с изменяемыми параметрами элементов потенциально имеется большой набор схем ввода информационного сигнала в хаотический носитель (схем модуляции). Кроме того, хаос принципиально обладает широким спектром частот, то есть относится к широкополосным сигналам, интерес к которым в радиотехнике традиционно связан с их большей информационной емкостью по сравнению с узкополосными колебаниями. Широкая полоса частот несущей позволяет увеличить скорость передачи информации, а также повысить устойчивость системы к возмущающим факторам. Широкополосные и сверхширокополосные системы связи, основанные на хаосе, имеют потенциальные преимущества перед традиционными системами с широким спектром по таким определяющим параметрам, как простота аппаратной реализации, энергетическая эффективность и скорость передачи информации. Хаотические сигналы могут также служить для маскировки передаваемой по системе связи информации без использования расширения спектра, то есть при совпадении полосы частот информационного и передаваемого сигналов.

Совокупность перечисленных факторов стимулировала активные исследования хаотических коммуникационных систем. В настоящее время уже предложено несколько подходов к расширению спектра информационных сигналов, построению простых по архитекту ре передатчиков и приемников.

Одна из последних идей в этом направлении - так называемые прямохаотические схемы связи. В прямохаотической схеме связи информация вводится в хаотический сигнал, генерируемый непосредственно в радио- или СВЧ-диапазоне длин волн. Информацию вводят либо путем модуляции параметров передатчика, либо за счет ее наложения на хаотический носитель уже после его генерации. Соответственно, извлечение информационного сигнала из хаотического также осуществляют в области высоких или сверхвысоких частот. Оценки показывают, что широкополосные и сверхширокополосные прямохаотические системы связи способны обеспечить скорости передачи информации от десятков мегабит в секунду до нескольких гигабит в секунду. В Институте радиотехники и электроники Российской академии наук уже проведены эксперименты по прямохаотической передаче информации со скоростью до 70 Мбит/сек.

Хаос и компьютерные сети

В коммуникационных схемах хаос может использоваться как носитель информации, как динамический процесс, обеспечивающий преобразование информации к новому виду, и, наконец, как комбинация того и другого. Устройство, преобразующее с помощью хаоса сигнал в передатчике из одного вида в другой, называется хаотическим кодером . С его помощью можно изменять информацию таким образом, что она окажется недоступной стороннему наблюдателю, но в то же время будет легко возвращена к исходному виду специальной динамической системой - хаотическим декодером , находящимся на приемной стороне коммуникационной системы.

В каких процессах может использоваться хаотическое кодирование?

Во-первых, с его помощью можно принципиально по-новому организовать общее информационное пространство, создавая в нем большие открытые группы пользователей - подпространства. В рамках каждой группы вводится свой "язык" общения - единые для всех участников правила, протоколы и другие признаки данной "информационной субкультуры". Для желающих освоить этот "язык" и стать членом сообщества имеются относительно простые средства доступа. В то же время для сторонних наблюдателей участие в подобном обмене будет затруднено. Таким образом, хаотическое кодирование может служить средством структуризации "народонаселения" общего информационного пространства.

Во-вторых, подобным же образом можно организовать многопользовательский доступ к информации. Наличие глобальной сети Интернет и магистральных информационных потоков (Highways) предполагает существование общих протоколов, обеспечивающих прохождение информации по единым каналам. Однако в рамках определенных групп участников (например, в рамках корпоративных сетей) существует острая необходимость доставки информации конкретным потребителям, без разрешения доступа "чужим" участникам. Методы хаотического кодирования являются удобным средством организации таких виртуальных корпоративных сетей. Кроме того, они могут использоваться и непосредственно для обеспечения определенного уровня конфиденциальности информации, переходя в область традиционной криптографии.

Наконец, еще одна функция хаотического кодирования очень актуальна в связи с развитием электронной коммерции и обострением проблемы авторских прав в Интернете. В особенности это касается продажи через сеть мультимедийных товаров (музыки, видео, цифровой фотографии и др.). На основе детерминированного хаоса можно обеспечить такой способ защиты авторских прав и прав на интеллектуальную собственность, как снижение качества информационного продукта при общем доступе. Например, музыкальные треки, закодированные с помощью хаоса, будут распространяться в сети без каких-либо ограничений, так что каждый пользователь сможет воспользоваться ими. Однако при прослушивании без специального декодера качество звука будет низким. В чем смысл такого подхода? Распространяемая информация остается открытой и не подпадает под ограничения, накладываемые применением криптографических методов защиты. Кроме того, потенциальный покупатель имеет возможность ознакомиться с продуктом, а уже потом решить, стоит ли приобретать его высококачественную версию.

Следует отметить, что вышеперечисленные функции хаотического кодирования далеко не исчерпывают потенциальные возможности его применения в современных информационных технологиях. В ходе дальнейшего изучения и развития этой проблематики, по всей видимости, могут открыться новые грани и перспективные области использования.

Таким образом, использование динамического хаоса и фракталов в информационных технологиях не экзотика, как могло показаться еще несколько лет назад, а естествен ный путь для разработки новых подходов к созданию систем, эффективно работающих в изменчивой окружающей среде.

ФРАКТАЛЫ И ТЕОРИЯ ХАОСА

Иван Тугой

РАЗДЕЛ 1: ОБЩИЕ СВЕДЕНИЯ

ФРАКТАЛЫ И МИР ВОКРУГ НАС

Фракталы - уникальные объекты, порожденные непредсказуемыми движениями хаотического мира. Их находят в местах таких малых, как клеточная мембрана и таких огромных, как Солнечная система.

Разветвления трубочек трахей, листья на деревьях, вены в руке, река, бурлящая и изгибающаяся, рынок ценных бумаг - это все фракталы. От представителей древних цивилизаций до Майкла Джексона, ученые, математики и артисты, как и все остальные обитатели этой планеты, были зачарованы фракталами и применяли из в своей работе.

Программисты и специалисты в области компьютерной техники так же без ума от фракталов, так как фракталы бесконечной сложности и красоты могут быть сгенерированы простыми формулами на простых домашних компьютерах. Открытие фракталов было открытием новой эстетики искусства, науки и математики, а так же революцией в человеческом восприятии мира.

ЧТО ЖЕ ТАКОЕ ФРАКТАЛЫ НА САМОМ ДЕЛЕ?

Слово “Фрактал” - это что-то, о чем много людей говорит в наши дни, от физиков до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные картинки фракталов сегодня можно найти везде: от открыток до футболок. За последние два десятка лет количество производимых в месяц единиц продукции, связанной с фракталами, увеличилось от нескольких десятков до многих тысяч!

Итак, что это за цветные формы, которые мы видим повсюду вокруг? Говоря простым языком, фрактал - это геометрическая фигура, определенная часть которой повторяется снова и снова, изменяясь в размерах. Отсюда следует принцип самоподобия. Все фракталы подобны самим себе, то есть они похожи на всех уровнях. Существует много типов фракталов, причем здесь описываются довольно большое их количество.

Однако фракталы - не просто сложные фигуры, сгенерированные компьютерами. Все, что кажется случайным и неправильным может быть фракталом. Теоретически, можно сказать, что все что существует в реальном мире является фракталом, будь то облако или маленькая молекула кислорода.

НАСКОЛЬКО ХАОТИЧЕН ХАОС?

Фракталы всегда ассоциируются со словом хаос. Я лично, определил бы фракталы, как частички хаоса. Фракталы проявляют хаотическое поведение, благодаря которому они кажутся такими беспорядочными и случайными. Но если взглянуть достаточно близко, можно увидеть много аспектов самоподобия внутри фрактала. Например, посмотрите на дерево, затем выберите определенную ветку и изучите ее поближе. Теперь выберите связку из нескольких листьев. Для ученых, занимающихся фракталами (которых иногда называют хаологами), все эти три объекта представляются идентичными.

Слово хаос наводит большинство людей на мысли о чем-то беспорядочном и непредсказуемом. На самом деле, это не совсем так. Итак насколько хаотичен хаос? Ответ таков, что хаос, в действительности, достаточно упорядочен и подчиняется определенным законам. Проблема состоит в том, что отыскание этих законов может быть очень сложным. Цель изучения хаоса и фракталов - предсказать закономерность в системах, которые могут казаться непредсказуемыми и абсолютно хаотическими.

Система - это набор вещей, или область изучения, причем некоторые из обычных систем, которые хаологи любят изучать включают облачные образования, погода, движение водных потоков, миграции животных, и множество других аспектов из жизни матери природы. Так что, в конце концов, может быть, весь мир вокруг нас фрактален!

ГЕОМЕТРИЯ 21 ВЕКА

Для многих хаологов, изучение хаоса и фракталов не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии - это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной.

Пионером в этой новой области познания, которого многие называют отцом фракталов был Франко-Американский математик Профессор Бенуа Б. Мандельброт (Benoit B. Mandelbrot). В середине 1960х после десятилетий обучения и научной деятельности, Мандельброт разработал то, что он назвал фрактальная геометрия или геометрия природы (об этом он написал свой бестселлер - Фрактальная геометрия природы). Целью фрактальной геометрии был анализ сломанных, морщинистых и нечетких форм. Мандельброт использовал слово фрактал, потому что это предполагало осколочность и фракционность этих форм.

Сегодня Мандельброт и другие ученые, такие как Клиффорд А. Пикковер (Clifford A. Pickover), Джеймс Глейк (James Gleick) или Г. О. Пейтген (H.O. Peitgen) пытаются расширить область фрактальной геометрии так, чтобы она могла быть применена практически ко всему в мире, от предсказания цен на рынке ценных бумаг до совершения новых открытий в теоретической физике.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ФРАКТАЛОВ

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

КОМПЬЮТЕРНЫЕ СИСТЕМЫ

Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. В основе этого вида сжатия лежит тот факт, что реальный мир хорошо описывается фрактальной геометрией. При этом, картинки сжимаются гораздо лучше, чем это делается обычными методами (такими как jpeg или gif). Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном же сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

МЕХАНИКА ЖИДКОСТЕЙ

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к из фрактальному представлению, что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных потоков.

При помощи фракталов также можно смоделировать языки пламени.

Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке.

ТЕЛЕКОММУНИКАЦИИ

Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

ФИЗИКА ПОВЕРХНОСТЕЙ

Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

МЕДИЦИНА

Биосенсорные взаимодействия

Биения сердца

БИОЛОГИЯ

Моделирование хаотических процессов, в частности при описании моделей популяций.

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ: СПРЯТАННЫЕ ИЗМЕРЕНИЯ

Одной из идей, выросших из открытия фрактальной геометрии была идея нецелых значений для количества измерений в пространстве. Конечно, мы не можем осознать четырехмерные вещи, хотя Lucky Tesseract и активно работает в этом направлении. Мандельброт назвал нецелые измерения такие как 2.76 фрактальными измерениями. Обыкновенная евклидова геометрия утверждает, что пространство ровное и плоское. Свойства такого пространства такого пространства задают точки, линии, углы, треугольники, кубы, сферы, тетраэдры и т. д.

Мандельброт верил, что действительный ландшафт пространства не ровный и что в нашем мире нет ничего, что было бы совершенно плоским, круглым, то есть все фрактально. Следовательно объект, имеющий точно 3 измерения невозможен. Вот почему концепция фрактального измерения была нужна для измерения степени неровности вещей.

Например посмотрите на лист бумаги (предположим, что он двумерный), скомканный в шар. Разве он двумерный? Нет, так как у него есть длина, ширина и высота. Но он не может быть и трехмерным, потому что он сделан из одного бесконечно тонкого листа и, к тому же, он не полностью однородный. Итак, его фрактальная размерность приблизительно равна 2.5. Но его нормальная размерность, так же называемая Евклидовой размерностью будет равна 3. Все фракталы, особенно фрактальные кривые, имеют фрактальные размерности. Мандельброт часто использовал пример того, что береговая линия Англии имеет бесконечную длину.

Попытайтесь наложить нитку на береговую линии Англии на атласе. Затем сделайте то же самое с мореходной картой. Удивительно, но величина последнего измерения будет гораздо больше. Затем поезжайте в Англию и измерьте ее береговую линию метровой полкой. Эта длина будет еще длинней. Продолжайте этот процесс до тех пор, пока у вас в руках не окажется чертежная линейка, которой вы можете измерить береговую линию частичка за частичкой, атом за атомом. Конечно идея этого непрактичного эксперимента в том, что расстояния должны быть соизмеримы по масштабу, положению и деталям. Позже Мандельброт определил, что фрактальная размерность береговой линии Англии составляет 1.25.

Многие объекты в природе (например человеческое тело) состоят из множества фракталов, смешанных друг с другом, причем каждый фрактал имеет свою размерность отличную от размерности остальных. Например, двумерная поверхность человеческой сосудистой системы изгибается, ветвится, скручивается и сжимается так, что ее фрактальная размерность равна 3.0. Но если бы она была разделена на отдельные части, фрактальная размерность артерий была бы только 2.7, тогда как бронхиальные пути в легких имели бы фрактальную размерность 1.07.

РАЗДЕЛ 2: ДЕТЕРМИНИРОВАННЫЕ ФРАКТАЛЫ

ОБЩАЯ ХАРАКТЕРИСТИКА

Первыми открытыми фракталами были т.н. детерминированные фракталы. Их отличительной чертой является свойство самоподобия, обусловленное особенностями метода их генерации.

Некоторые предпочитают называть эти фракталы классическими, геометрическими фракталами или линейными фракталами. Эти фракталы обычно формируются начиная с инициатора - фигуры, к которой применяется определенный основной рисунок. Во всех детерминированных фракталах, само-подобие проявляется на всех уровнях. Это значит, что независимо от того насколько вы приближаете фрактал, вы увидите все тот же узор. Для сложных фракталов, которые будут рассмотрены позже, это не так. Детерминистские фракталы образуются в процессе, называемом итерацией, которая применяет основной рисунок к инициатору, после чего применяет его к результату и так далее. Большинство людей итерируют детерминированные фракталы 5-7 раз чтобы получить четкую красивую картинку. Эти фракталы линейны, так как при каждой итерации, что-то убирается либо прибавляется в форме прямых линий. Ниже находятся примеры некоторых обычных детерминированных фракталов, сгенерированных на обычном компьютере простыми программами на BASIC’е.

РЕШЕТКА СЕРПИНСКОГО

Это один из фракталов, с которыми экспериментировал Мандельброт, когда разрабатывал концепции фрактальных размерностей и итераций. Треугольники, сформированные соединением средних точек большего треугольника вырезаны из главного треугольника, образовывая треугольник, с большим количеством дырочек. В этом случае инициатор - большой треугольник а шаблон - операция вырезания треугольников, подобных большему. Так же можно получить и трехмерную версию треугольника, используя обыкновенный тетраэдр и вырезая маленькие тетраэдры. Размерность такого фрактала ln3/ln2 = 1.584962501.

Чтобы получить ковер Серпинского, возьмем квадрат, разделим его на девять квадратов, а средний вырежем. То же сделаем и с остальными, меньшими квадратами. В конце концов образуется плоская фрактальная сетка, не имеющая площади, но с бесконечными связями. В своей пространственной форме, губка Серпинского преобразуется в систему сквозных форм, в которой каждый сквозной элемент постоянно заменяется себе подобным. Эта структура очень похожа на разрез костной ткани. Когда-нибудь такие повторяющиеся структуры станут элементом строительных конструкций. Их статика и динамика, считает Мандельброт, заслуживает пристального изучения.

ФРАКТАЛ СЕРПИНСКОГО

Не перепутайте этот фрактал с решеткой Серпинского. Это два абсолютно разных объекта. В этом фрактале, инициатор и генератор одинаковы. При каждой итерации, добавляется уменьшенная копия инициатора к каждому углу генератора и так далее. Если при создании этого фрактала произвести бесконечное число итераций, он бы занял всю плоскость, не оставив ни одной дырочки. Поэтому его фрактальная размерность ln9/ln3 = 2.0

КРИВАЯ КОХА

Кривая Коха один из самых типичных детерминированных фракталов. Она была изобретена в девятнадцатом веке немецким математиком по имени Хельге фон Кох, который, изучая работы Георга Контора и Карла Вейерштрассе, натолкнулся на описания некоторых странных кривых с необычным поведением. Инициатор - прямая линия. Генератор - равносторонний треугольник, стороны которого равны трети длины большего отрезка. Эти треугольники добавляются к середине каждого сегмента снова и снова. В своем исследовании, Мандельброт много экспериментировал с кривыми Коха, и получил фигуры такие как Острова Коха, Кресты Коха, Снежинки Коха и даже трехмерные представления кривой Коха, используя тетраэдр и прибавляя меньшие по размерам тетраэдры к каждой его грани. Кривая Коха имеет размерность ln4/ln3 = 1.261859507.

Крест Коха - это один из вариантов кривой Коха, изобретенный Мандельбротом. Вместо отрезка прямой, он использовал в качестве инициатора квадрат или прямоугольник. Так как в этом фрактале использован та же самая идея что и в оригинальной кривой Коха, его фрактальная размерность такая же: ln4/ln3 = 1.261859507.

ФРАКТАЛ МАНДЕЛЬБРОТА

Это НЕ множество Мандельброта, которое можно достаточно часто видеть. Множество Мандельброта основано на нелинейных уравнениях и является комплексным фракталом. Это тоже вариант кривой Коха несмотря на то, что этот объект не похож на нее. Инициатор и генератор так же отличны от использованных для создания фракталов, основанных на принципе кривой Коха, но идея остается той же. Вместо того, чтобы присоединять равносторонние треугольники к отрезку кривой, квадраты присоединяются к квадрату. Благодаря тому, что этот фрактал занимает точно половину отведенного пространства при каждой итерации, он имеет простую фрактальную размерность 3/2 = 1.5

ФРАКТАЛЫ ЗВЕЗДА И СНЕЖИНКА

Оба эти объекта не являются классическими фракталами и они не были изобретены Мандельбротом или кем-либо из известных математиков. Я просто создал эти фракталы из интереса и чтобы поэкспериментировать в программировании. И инициатор и генератор здесь фигура, сформированная соединением средних точек сторон со средними точками противолежащих сторон в правильном шестиугольнике. Более того, я могу только подозревать о размерности этих фракталов.

КОЛБАСА МИНКОВСКОГО


Автор этого фрактала Герман Минковский, по имени которого он и был назван. Минковский не предлагал термин колбаса для названия этого объекта. Слово кривая или просто фрактал, возможно, понравилось бы больше. И инициатор и генератор довольно сложны и составлены из ряда прямых углов и сегментов различной длины. У самого инициатора 8 частей. Фрактальная размерность колбасы Минковского - ln8/ln4 = 1.5

ФРАКТАЛ ЛАБИРИНТ

Этот фрактал еще иногда называют H-деревом. И инициатор и генератор имеют вид буквы H. На приведенном здесь примере сама H не закрашена. Вместо этого заполнены области вне фрактала, что облегчает восприятие рисунка и шаблона. Фрактальная размерность этого конкретно фрактала весьма интересна. Так как толщина H в процессе итераций уменьшается, размерность кончиков буквы H точно 2.0, но элементы между кончиками имеют другую размерность, меняющуюся от 1.3333 до 1.6667.

ПЯТИУГОЛЬНИК ДАРЕРА

Фрактал выглядит как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Вариант этого фрактала можно получить при использовании в качестве инициатора шестиугольника. Этот фрактал называется Звезда Давида и он довольно похож на шестиугольную версию Снежинки Коха. Фрактальная размерность пятиугольника Дарера ln6/ln(1+g), где g - отношение длины большей стороны треугольника к длине меньшей. В данном случае, g - это Золотая Пропорция, так что фрактальная размерность приблизительно равна 1.86171596. Фрактальное измерение Звезды Давида ln6/ln3 или 1.630929754.

КРИВАЯ ДРАКОНА

Изобретенная итальянским математиком Джузеппе Пеано, Кривая Дракона или Взмах Дракона, как он назвал его, очень похож на колбасу Минковского. Использован более простой инициатор, а генератор тот же самый. Мандельброт назвал этот фрактал Река Двойного Дракона. Его фрактальная размерность приблизительно равна 1.5236.

КРИВАЯ ГИЛЬБЕРТА

Этот фрактал очень похож на Фрактал Лабиринт, кроме того факта что ширина буквы U, являющейся генератором не изменяется с каждой итерацией. Однако, в отличии от Фрактала Лабиринта, кривая Гильберта также называемая Отелем Гильберта, имеет одно единственное фрактальное измерение, которое точно равно 2.0, так как при бесконечном количестве итераций, он займет всю плоскость.

ФРАКТАЛ КОРОБКА

Это очень простой детерминированный фрактал, который образуется при прибавлении квадратов к вершинам других квадратов. И инициатор и генератор - квадраты. Его фрактальная размерность ln8/ln3 или 1.892789261.

РАЗДЕЛ 3: СЛОЖНЫЕ ФРАКТАЛЫ

ОБЩАЯ ХАРАКТЕРИСТИКА

Большая часть встречающихся сегодня фракталов не являются детерминированными. Они не линейны и не собранны из повторяющихся геометрических форм. Такие фракталы называются сложными.

Фактически, если вы увеличите маленькую область любого сложного фрактала а затем проделаете то же самое с маленькой областью этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.


Сравните, например приведенные здесь картинки множества Мандельброта, одна из которых получена при увеличении некоторой области другой. Как видно, они абсолютно не являются идентичными, хотя на обоих мы видим черный круг, от которого в разные стороны идут пылающие щупальца. Эти элементы повторяются бесконечно долго во множестве Мандельброта в уменьшающейся пропорции.

Детерминистские фракталы являются линейными, тогда как сложные фракталы таковыми не являются. Будучи нелинейными, эти фракталы генерируются тем, что Мандельброт назвал нелинейными алгебраическими уравнениями. Хороший пример - это процесс Zn+1=ZnІ + C, что является уравнением, используемым для построения множества Мандельброта и Жулии второй степени. Решение этих математических уравнений вовлекает комплексные и мнимые числа. Когда уравнение интерпретируется графически на комплексной плоскости, результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. При этом вся картина в целом является непредсказуемой и очень хаотичной.

Как можно увидеть, смотря на картинки, сложные фракталы действительно очень сложны и их невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. В отличии от детерминистских фракталов, сложные фракталы не вычисляются за 5-10 итераций. Практически каждая точка на экране компьютера как отдельный фрактал. Во время математической обработки, каждая точка рассматривается как отдельный рисунок. Каждой точке соответствует определенное значение. Уравнение встраивается, применительно к каждой точке и производится, к примеру 1000 итераций. Для получения сравнительно неискаженного изображения за приемлемый для домашних компьютеров промежуток времени, для одной точки возможно проводить 250 итерации.

Большинство фракталов, которые мы видим сегодня, красиво раскрашены. Возможно фрактальные изображения получили такое большое эстетическое значение именно благодаря своим цветовым схемам. После того, как уравнение посчитано, компьютер анализирует результаты. Если результаты остаются стабильными, или колеблются вокруг определенного значения, точка обычно принимает черный цвет. Если значение на том или ином шаге стремится к бесконечности, точку закрашивают в другой цвет, может быть в синий или красный. Во время этого процесса, компьютер назначает цвета для всех скоростей движения.

Обычно, быстро движущиеся точки закрашивают в красный цвет, тогда как более медленные в желтый и так далее. Темные точки, вероятно, самые стабильные.

Сложные фракталы отличаются от детерминистских в том смысле, что они бесконечно сложные, но, при этом, могут быть сгенерированы очень простой формулой. Детерминистским фракталам не нужны формулы или уравнения. Просто возьмите чертежную бумагу и вы можете построить решето Серпинского до 3 или 4 итерации без каких-либо затруднений. Попробуйте сделать это с множеством Жулиа! Легче пойти мерить длину береговой линии Англии!

МНОЖЕСТВО МАНДЕЛЬБРОТА

Множества Мандельброта и Жулиа, вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой формулой Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число.

Множество Мандельброта, которое чаще всего можно увидеть - это множество Мандельброта 2й степени, то есть а=2. Тот факт, что множество Мандельброта не только Zn+1=ZnІ+C, а фрактал, показатель в формуле которого может быть любым положительным числом ввел в заблуждение многих. На этой странице вы видите пример множества Мандельброта для различных значений показателя а.

Также популярен процесс Z=Z*tg(Z+C). Благодаря включению функции тангенса, получается множество Мандельброта, окруженное областью, напоминающей яблоко. При использовании функции косинуса, получаются эффекты воздушных пузырьков. Короче говоря, существует бесконечное количество способов настройки множества Мандельброта для получения различных красивых картинок.

МНОЖЕСТВО ЖУЛИА

Удивительно, но множества Жулиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жулиа было изобретено французским математиком Гастоном Жулиа, по имени которого и было названо множество. Первый вопрос, возникающий после визуального знакомства с множествами Мандельброта и Жулиа это “если оба фрактала сгенерированы по одной формуле, почему они такие разные?” Сначала посмотрите на картинки множества Жулиа. Достаточно странно, но существуют разные типы множеств Жулиа. При рисовании фрактала с использованием различных начальных точек (чтобы начать процесс итераций), генерируются различные изображения. Это применимо только ко множеству Жулиа:

Хотя это нельзя увидеть на картинке, фрактал Мандельброта - это, на самом деле, множество фракталов Жулиа, соединенных вместе. Каждая точка (или координата) множества Мандельброта соответствует фракталу Жулиа. Множества Жулиа можно сгенерировать используя эти точки в качестве начальных значений в уравнении Z=ZІ+C. Но это не значит, что если выбрать точку на фрактале Мандельброта и увеличить ее, можно получить фрактал Жулиа. Эти две точки идентичны, но только в математическом смысле. Если взять эту точку и просчитать ее по данной формуле, можно получить фрактал Жулиа, соответствующий определенной точке фрактала Мандельброта.

РАЗДЕЛ 4: ТЕОРИЯ ХАОСА

ЧТО ТАКОЕ ТЕОРИЯ ХАОСА?

Формально, теория хаоса определяется как учение о сложных нелинейных динамических системах. Под термином сложные это и понимается, а под термином нелинейные понимается рекурсия и алгоритмы из высшей математики, и, наконец, динамические - означает непостоянные и непериодические. Таким образом, теория хаоса – это учение о постоянно изменяющихся сложных системах, основанное не математических концепциях рекурсии, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему.

НЕПРАВИЛЬНЫЕ ПРЕДСТАВЛЕНИЯ О ТЕОРИИ ХАОСА

Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как Парк юрского периода, и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.

ТЕОРИЯ ХАОСА О БЕСПОРЯДКЕ

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса - это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок - и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы - наследственной непредсказуемости системы - а на унаследованном ей порядке - общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с колебаниями числа Авогадро (очень маленькое число порядка 10 24), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии. Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

Однако согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

ПРИМЕНЕНИЕ ТЕОРИИ ХАОСА В РЕАЛЬНОМ МИРЕ

При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса?

Первое и самое важное - теория хаоса - это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые - вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени - представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные - т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего - от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована - рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.

БРОУНОВСКОЕ ДВИЖЕНИЕ И ЕГО ПРИМЕНЕНИЯ

Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения.

Частотные диаграммы, созданные при построении графика на основе Броуновских чисел так же можно преобразовать в музыку. Конечно этот тип фрактальной музыки совсем не музыкален и может действительно утомить слушателя. Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера.

Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как например Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато. Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы. Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.

ДВИЖЕНИЕ БИЛЛИАРДНОГО ШАРИКА

Любой, кто когда либо брал в руки кий для бильярда, знает, что ключ к игре - точность. Малейшая ошибка в угле начального удара может быстро привести к огромной ошибке в положении шарика всего после нескольких столкновений. Эта чувствительность к начальным условиям называемая хаосом возникает непреодолимым барьером для любого, кто надеется предсказать или управлять траекторией движения шарика больше чем после шести или семи столкновений. И не стоит думать, что проблема заключается в пыли на столе или в нетвердой руке. Фактически, если вы используете ваш компьютер для построения модели, содержащей бильярдный стол, не обладающий ни каким трением, нечеловеческим контролем точности позиционирования кия, вам все равно не удастся предсказывать траекторию шарика достаточно долго!

Насколько долго? Это зависит частично от точности вашего компьютера, но в большей степени от формы стола. Для совершенно круглого стола, можно просчитать приблизительно до 500 положений столкновений с ошибкой около 0.1 процента. Но стоит изменить форму стола так, чтобы она стала хотя бы немножко неправильной (овальной), и непредсказуемость траектории может превышать 90 градусов уже после 10 столкновений! Единственный путь получить картинку общего поведения бильярдного шарика, отскакивающего от чистого стола - это изобразить угол отскока или длину дуги соответствующую каждому удару. Здесь приведены два последовательных увеличения такой фазово-пространственной картины.

Каждая отдельная петля или область разброса точек представляет поведение шарика, происходящее от одного набора начальных условий. Область картинки, на которой отображаются результаты какого-то одного конкретного эксперимента, называется аттракторной областью для данного набора начальных условий. Как можно видеть форма стола, использованного для этих экспериментов является основной частью аттракторных областей, которые повторяются последовательно в уменьшающемся масштабе. Теоретически, такое самоподобие должно продолжаться вечно и если мы будем увеличивать рисунок все больше и больше, мы бы получали все те же формы. Это называется очень популярным сегодня словом фрактал.

ИНТЕГРАЦИЯ ДЕТЕРМИНИРОВАННЫХ ФРАКТАЛОВ И ХАОС

Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц.

Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк.

Для начала нужно сгенерировать Дерево Пифагора. Результат напоминает те старые детсадовские рисунки. Так что давайте сделаем ствол толще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.

Но результат все еще выглядит слишком формальным и упорядоченным. Дерево еще не смотрится как живое. Попробуем применить некоторые из тех знаний в области детерминированных фракталов, которые мы только что приобрели.

Теперь можно использовать Броуновское движение для создания некоторой случайной беспорядочности, которая изменяет числа, округляя их до двух разрядов. В оригинале были использованы 39 разрядные десятичные числа. Результат (слева) не выглядит как дерево. Вместо этого, он выглядит как хитроумный рыболовный крючок!

Может быть округление до 2 разрядов было слишком много? Снова применяем Броуновское движение, округленное на этот раз до 7 разрядов. Результат по-прежнему выглядит как рыболовный крючок, но на этот раз в форме логарифмической спирали!

Так как левая сторона (содержащая все нечетные числа) не производит эффект крючка, случайные беспорядочности, произведенные Броуновским движением применяются дважды ко всем числам с левой стороны и только один раз к числам справа. Может быть этого будет достаточно чтобы исключить или уменьшить эффект логарифмической спирали. Итак, числа округляются до 24 разрядов. На этот раз, результат - приятно выглядящая компьютеризированная хаотическая эмуляция реального дерева.

РАЗДЕЛ 5: ДЕРЕВО ФЕЙГЕНБАУМА

ОБЩАЯ ИНФОРМАЦИЯ

Теория хаоса находит прямое применение в задаче моделирования роста популяций и рассматривается здесь на примере диаграммы Фейгенбаума, построенной с помощью программы LT Bifurcator.

БИФУРКАЦИИ В МОДЕЛЯХ ПОПУЛЯЦИЙ

Чудо фрактальной геометрии заключается в том, что чрезвычайно сложные формы могут получаться из таких простых процессов генерирования. Еще один сюрприз преподносит нам учение о динамических системах: такие простые, детерминированные уравнения могут порождать такое хаотическое поведение, при котором система никогда не возвращается в стабильное состояние и не проявляется никакой закономерности. Часто такие системы ведут себя вполне нормально до некоторого определенного значения ключевого параметра, потом испытывают переход и в котором существует две возможности дальнейшего развития, потом четыре, и, наконец, хаотический набор возможностей.

В 1786 году Томас Мальтус разработал математическую модель роста популяций и оказалось, что эта и другие модели подобного типа обладают описанным выше свойством. Предположим, что у нас есть модель в которой скорость роста популяции это функция, в частности, от численности популяции:

Новая популяция = скорость роста * старая популяция (1 – старая популяция)

Где популяция нормализована так, что она принимает значения от 0 до 1. Естественно, такая модель является сильно упрощенной и не может достаточно точно описывать динамику развития популяций. При скорости роста меньше 200%, эта модель стабильна, т.к. для любого начального значения, после нескольких поколений, численность популяции устанавливается на стабильном уровне. Но если скорость роста превышает 200%, кривая, графически отображающая уравнение, разделяется или бифурцирует на два дискретных решения, затем на четыре, и вскоре становится хаотической.

ДЕРЕВО ФЕЙГЕНБАУМА

Логистическое уравнение - это формула, над которой, в основном, работал Митчел Фейгенбаум при создании своей теории о фракталах. Эта формула должна описывать динамику развития популяции:

f(x) = (1 – x)rx

Простейшая модель - это пропорциональное соотношение численности с прошлым годом. Допустим в прошлом году у нас было x животных. В этом году их должно быть rx животных. Но это не выполняется в реальных условиях. Лучшее соответствие с реальностью получится если добавить фактор, зависящий от того какой потенциал существует у популяции для дальнейшего развития, и пусть x - коэффициент полноты, который меняется от 0 до 1. Потом добавляется фактор 1 – x, так что территория почти полностью заполнена, популяция не возрастет выше верхнего предела.

Расширяя логистическое выражение, получаем:

f(x) = аx – ах 2

Формула, использующаяся в программе LT Bifurcator для объяснения сущности фрактала Фейгенбаума - (1 + r)x – rx 2 не сильно отличается от формулы, приведенной выше. В принципе, для изучения теории можно было использовать любую формулу, например самую простую из формул данного вида - xІ – r. Единственными различиями являются различия в координатах окон на картинке и несколько измененный внешний вид изображения.


ПОЧЕМУ СИСТЕМА СТАНОВИТСЯ НЕПРЕДСКАЗУЕМОЙ?

Объяснение этому явлению дать не просто. Для каждой точки параметра r (по оси абсцисс), для функции x возможны следующие варианты. У функции могут быть:

· периодическая орбита, т.е. она периодически принимает одно или несколько значений, что происходит с фракталом, приведенным здесь в качестве иллюстрации на сегменте 0 < r < 2.57

· хаотическая орбита, т.е. она принимает такое большое количество различных значений при итерационном процессе, что невозможно найти какой-либо закономерности, как это можно было сделать в первом случае

· значения, не ограниченные по абсолютной величине, причем это происходит с обоих сторон дерева. Поэтому здесь уже невозможно отображать точки.

В первом случае, мы видим функцию, периодически принимающую определенные значения. При этом у дерева наблюдается одна или несколько ветвей. Число значений, которые принимает функция называется периодом итераций. У функции может быть период от одного до бесконечности.

Когда параметр пробегает значения от 0 до 2, период функции равен единице. В этом случае, соответствующее значение функции называется фиксированной точкой. Эта фиксированная точка оказывается решением уравнения

x = (1 + r)x – rx 2

1 + r)x – rx 2 – x = 0

Решения этого уравнения:

Отображая эти решения графически, мы видим, что один из графиков (для случая сложения членов в числителе) точно соответствует стеблю дерева Фейгенбаума вплоть до параметра, равного 2. Решения уравнения называются фиксированными точками. Так как только одно из решений совпадает с деревом Фейгенбаума и является результатом итераций, вторая функция дает притягивающие фиксированные точки.

x=(1+r)x - rx 2 ; r=2.1; x0=0.8

1.136

0.8199

1.1291

0.8234

0.8115

1.1299

0.8229

1.1287

1.1327

0.8215

1.1289

0.8235

0.817

1.1294

0.8232

1.1287

1.1309

0.8224

1.288

0.8236

При r = 2, фиксированная точка (т.е. одно из решений приведенного выше уравнения) перестает быть притягивающей фиксированной точкой и становится отталкивающей. С этого момента, функция уже никогда не сходится к одной точке. Далее начинается периодический цикл для функции, причем вначале функция колеблется между двумя точками. Анализируя полученные результаты, можно понять, что эти значения можно расценивать, как решения, полученные при итерации функции два раза. Давайте посмотрим, что будет, если мы запишем x как следующую функцию

x = [(1 + r)x – rx 2 ] 2 + (1+r)x

В результате получается четыре решения, причем первые два из них являются решениями исходного выражения. Это достаточно очевидно, что они тоже появляются здесь. Но интерес представляют третье и четвертое выражения. Если мы подставим в них 2.1 (значение, использовавшееся при составлении таблицы), то получим соответственно 1,128746121 и 0,823648487, т.е. те же значения, что и в таблице. Чего, собственно говоря, и следовало ожидать. Графическое изображение функции также представляет интерес. Фактически, мы получаем начало фегенбаумова дерева. Установленные факты можно использовать для расчета точек бифуркаций. Третье и четвертое уравнения не определены при значении параметра меньше 2, т.е. там, где линия разветвляется.

ОКНА В ДЕРЕВЕ ФЕЙГЕНБАУМА

Трудно сказать почему появляются окна в фейгенбаумовом дереве. Легче ответить на вопрос как они появляются. Это те области, для которых итерационным орбитам соответствуют нули. Например, если результат первой итерации дает в ответе 0, у нас появляется окно. Фактически это означает решение уравнения: 0 2 – r = 0

АТТРАКТОР И КОНСТАНТА ФЕЙГЕНБАУМА

АТТРАКТОР ФЕЙГЕНБАУМА

В отличие от константы Фейгенбаума, это число не является универсальным. Значение этого аттрактора зависит от того, какая используется формула. Для формулы, используемой в Lt Bifurcator x = (1 + r)x – rxІ графически можно найти значение приблизительно равное 2.56.

Число представляет значение параметра, при котором график первый раз проходит бесконечное количество бифуркаций. Это означает, что аттрактор Фейгенбаума - это хаотический аттрактор, т.к. функция никогда не проходит повторяющейся орбиты.

Чтобы просчитать это значение, можно использовать константу Фейгенбаума, но т.к. эта константа появляется только при многих буфуркациях если вам необходима приемлемая точность, практически это трудно реализуется и мне пока не удалось использовать этот метод.

Также следует заметить, что для всех окон на диаграмме Фейгенбаума, существует свое значение постоянной, при котором функция бифурцирует бесконечное количество раз.

КОНСТАНТА ФЕЙГЕНБАУМА

Если бы от меня требовался короткий ответ, я бы сказал: Это приблизительно 4.669211660910299067185320382047...

Однако это бы никого не удовлетворило. Вероятно это число является самым фантастическим фактом этого фрактала. Существует много формул, результатом которых является это дерево, но число все время остается одним и тем же. Стало уже почти легендой то обстоятельство, что Митчел Фейгенбаум позвонил домой маме, когда открыл универсальность и сказал, что это сделает его известным.

Знаменитая постоянная появляется, когда вы сравниваете длину одной части дерева, т.е. частей между линией бифуркаций (смотри иллюстрацию). Первая часть от 0 до 2. Ее длина равна 2. Следующая часть - от 2 до 2.448 и ее длина 0,448. Отношение между двумя длинами - 2/0.448 = 4,4642. В общем-то это достаточно близко к значению константы Фейгенбаума, но, согласно теории, результат можно улучшить, если взять предел отношения n+1 длины отрезка к n при n стремящемся к бесконечности (конечно это стремление ограничено аттрактором Фейгенбаума).

№ бифуркации

Точка бифуркации

Длина отрезка

Отношение длин

4.4642

2.448

0.448

4.7157

2.543

0.095

4.5238

2.564

0.021

4.5652

2.5686

0.0046

4.1818

2.5697

0.0011

Конечно, данный пример является просто примером и не претендует на какую-либо точность, т.к. данные получены достаточно быстро чисто графическим методом.

Важно запомнить, что с каждой бифуркацией требуется просчитать все больше и больше значений, чтобы получить точный результат, т.к. функции требуется больше итераций для стабилизации. Если вы пытаетесь построить дерево Фейгенбаума лишь по нескольким точкам, бифуркации последуют раньше, чем это есть на самом деле. Это становится все более важно при все большем и большем приближении дерева. Я использовал около 1000 итераций для значений, приведенных в таблице.

ГЕНЕРАЦИЯ СЛУЧАЙНЫХ ЧИСЕЛ

Посмотрите на распределение точек где-нибудь на правом краю дерева Фейгенбаума (Свойства -> Интервал -> Отрезок Псевдохаоса в программе Lt Bifurcator) Видите, они кажутся очень случайными. Так что кажется вполне оправданной идея использования этого для генерации случайных чисел.

Все что для этого может потребоваться - это запустить формулу x = (1 + r)x – rx 2 или какую-либо ей подобную и использовать последнее вычисленное значение каждый раз, когда требуется случайное число. Да это сработает: вы получите орбиту, которая никогда не повторяется, так как там хаос, но, к несчастью, я проверил распределение точек и результат не оказался равномерным, т.е. возможно, не равный для всех интервалов.

Числа, вычисленные по формуле всегда лежат между –2 и 2. Это легко растянуть на интервал от 0 до 9 и сделать числа целыми. Я сделал это и посчитал сколько попаданий получилось для каждого числа при проведении многих тысяч итераций. Вот результат:

r=1.99999, 50000 итераций

10276

3281

3668

4474

3157

4622

3640

3317

10193

среднее x: 4.501

стандартное отклонение x: 3.430

Нетрудно увидеть, что это не дает желаемого распределения. Но может быть взять значения, лежащие ближе к 3? Новый тест:

r=1.99999999999999, 50000 итераций

10162

3127

3722

4575

3202

4412

3800

3395

10204

среднее x: 4.489

стандартное отклонение x: 3.425

К сожалению, это дает нам почти такую же кривую распределения.

Примечание

Чтобы дать некоторое представление о среднем и стандартном отклонении: Если бы у нас был результат, который мы хотели получить, частота каждого числа между 0 и 9 была бы равна 5000, среднее значение было бы 4.5 и стандартное отклонение - 2.872.

ДЕРЕВО ФЕЙГЕНБАУМА И МНОЖЕСТВО МАНДЕЛЬБРОТА

Если вы когда-либо видели формулу множетсва Мандельброта z=z 2 + x, вы могли бы заметить схожесть между этой формулой и самой простой из формул для построения дерева Фейгенбаума x 2 – r. И это действительно так. Сходство существует. Но фейгенбаумово дерево растет в другую сторону. Измените формулу Фейгенбаума на x 2 + r и вы увидите сходство. Что касается множества Мандельброта, вам нужно смотреть вдоль горизонтальной оси, так как это единственная позиция в которой комплексная часть числа Мандельброта равна нулю. Вы увидите, что основное тело фигуры Мандельброта находится там, где функция в дереве Фейгенбаума принимает лишь одно значение. Когда происходит первое разделение линии (бифуркация) появляется новое тело на фигуре Мандельброта и т.д. Обратите также внимание на то, что когда в дереве открывается главное окно, на фигуре Мандельброта появляется дочернее тело.

Введение

1. Возникновение и история теории хаоса

2. Порядок и беспорядок

3. Прикладной хаос

4. Основные принципы хаоса (аттракторы и фракталы)

6. Хаоса в других науках

7. Последствия хаоса


1.Начиная с рубежа 1980-х - 1990-х годов в дискуссиях историков-методологов появилось новое направление, связанное с «наукой о сложном» (complexity sciences). Так принято называть новую междисциплинарную область исследований, в центре внимания которой находятся проблемы исследования систем с нелинейной динамикой, неустойчивым поведением, эффектами самоорганизации, наличием хаотических режимов. Единая наука о поведении сложных систем, самоорганизации в Германии названа синергетикой (Г. Хакен), во франкоязычных странах - теорией диссипативных структур (И. Пригожин), в США - теорией динамического хаоса (М. Фейгенбаум). В отечественной литературе принят преимущественно первый термин, наиболее краткий и емкий.

ТЕОРИЯ ХАОСА - раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

История теории хаоса . Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта. Эдвард Лоренц в свое время рассматривал, в чем возникает трудность при прогнозировании погоды. До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что "…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем". Этот его подход был очень похож на известные слова Архимеда: «Дайте мне точку опоры, и я переверну весь мир».

Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас думал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего.

Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: " Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно.

Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем.

Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая".

В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму.

Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно.

В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны, когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации.

В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть

В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса.

То, что чувствительность к начальным данным ведет к хаосу, понял - и тоже в 1963 году - американский метеоролог Эдвард Лоренц . Он задался вопросом: почему стремительное совершенствование компьютеров не привело к воплощению в жизнь мечты метеорологов - достоверному среднесрочному (на 2-3 недели вперед) прогнозу погоды? Эдвард Лоренц предложил простейшую модель, описывающую конвекцию воздуха (она играет важную роль в динамике атмосферы), просчитал ее на компьютере и не побоялся всерьез отнестись к полученному результату. Этот результат - динамический хаос- есть непериодическое движение в детерминированных системах (то есть в таких, где будущее однозначно определяется прошлым), имеющее конечный горизонт прогноза.

С точки зрения математики можно считать, что любая динамическая система, что бы она ни моделировала, описывает движение точки в пространстве, называемом фазовым. Важнейшая характеристика этого пространства - его размерность, или, попросту говоря, количество чисел, которые необходимо задать для определения состояния системы. С математической и компьютерной точек зрения не так уж и важно, что это за числа - количество рысей и зайцев на определенной территории, переменные, описывающие солнечную активность или кардиограмму, или процент избирателей, до сих пор поддерживающих президента. Если считать, что точка, двигаясь в фазовом пространстве, оставляет за собой след, то динамическому хаосу будет соответствовать клубок траекторий. Здесь размерность фазового пространства всего 3. Замечательно, что такие удивительные объекты существуют даже в трехмерном пространстве.


2. Порядок и беспорядок

Теория хаоса является достаточно общей, чтобы охватить широкий круг явлений нашего мира и при этом будоражит воображение читателей. Ведь оказалось, что порядок возникает именно из хаоса, а не откуда-нибудь еще! С другой стороны, в современных научных представлениях о хаосе есть много моментов, требующих пристального внимания и углубленного изучения. Пожалуй, вопросов тут больше, чем ответов.

Порядок и беспорядок

Из соображений, которые, возможно, станут ясны ниже, вначале мы обратимся к двум исключительно важным понятиям современной науки: «порядок» и «беспорядок». Обычно нам кажется, что здесь все с самого начала ясно и понятно, но на самом деле это далеко не так. И понятие хаоса, в известной мере, становится интересным и важным именно потому, что только порядком и беспорядком нам тут не обойтись.

Прежде всего – что такое порядок и что такое беспорядок? В каком отношении они находятся друг с другом? И как отличить одно от другого? Вопросы эти, оказывается, отнюдь не тривиальны, в чем мы скоро убедимся.

В повседневной жизни принято полагать, что беспорядок – это отсутствие порядка. Такие понятия встречаются довольно часто, например «холод». Мы употребляем его на каждом шагу и понимаем, что имеется в виду. Более того, мы даже «измеряем» его с помощью термометра. И, тем не менее, холода как такового не существует. Существует тепло, а холод на самом деле является его недостатком. Но мы говорим «холод» так, как будто бы он был чем-то реальным (или, как говорят философы, субстанциальным).

А вот с понятием «беспорядок» все, в известном смысле, обстоит наоборот. Мы используем это слово как обозначение отсутствия чего-то (порядка), что именно и существует само по себе. Но возникает вопрос: а так ли это?

Поясним суть дела на конкретном примере, для чего представим себе письменный стол некоего профессора. Глядя на него, мы, вероятно, решим что все, что находится на нем, свалено в беспорядочную кучу. Однако сам профессор, не глядя, протягивая руку, безошибочно находит нужный ему предмет. И напротив, если уборщица разложит все аккуратными стопками, то профессор не сможет работать так же, как не смогла готовить бабушка в романе Рэя Брэдбери «Вино из одуванчиков» после генеральной уборки, устроенной на кухне тетей.

Может быть, следует признать, что то, что мы привыкли называть беспорядком отнюдь не является отсутствием того, что обычно называют порядком? Впрочем, есть и другой путь: оставить за словом «беспорядок» его привычное значение, и ввести в оборот другой термин для обозначения того, что мы часто, не задумываясь, также называем беспорядком, хотя в действительности имеем в виду нечто совершенно иное.

В последнее время на роль такого понятия все чаще претендует слово «хаос».

Строго говоря, следовало бы различать просто «хаос» и «детерминированный хаос». Что это такое – мы увидим ниже, а пока отметим два момента.

Во-первых, по логике вещей детерминированный хаос должен быть частным случаем хаоса, и в этом смысле следовало бы ввести три термина: общее понятие хаоса и как два его частных случая детерминированный и недетерминированный хаос. Тогда недетерминированный хаос мог бы быть эквивалентом беспорядка, а детерминированный хаос обозначал нечто качественно от него отличное (именно то, о чем у нас пойдет речь).

Во-вторых, как выяснится при углубленном анализе, различие между детерминированным и недетерминированным хаосом в действительности не столь фундаментально, как принято считать, и является скорее методическим, нежели физическим. Поэтому в предлагаемых заметках будем просто говорить о хаосе, уточняя предмет обсуждения там, где это действительно нужно. К тому же простое, лаконичное и емкое слово «хаос» обладает определенной эстетической притягательностью, чего не скажешь о строгом, но длинном и скучном «детерминированный хаос». В конце концов, сказал же Пригожин «Порядок из хаоса», а не «Порядок из детерминированного хаоса».

В античном мире слово «хаос» означало неорганизованное состояние материи, в котором она пребывала до мироздания, и в этом смысле вполне может восприниматься как синонимом слова «беспорядок». Но, вместе с тем, такое понимание заключает в себе нечто, порождающее и другие смыслы. Вероятно, при желании хаос можно было бы назвать сверхпорядком, имея в виду, что он потенциально содержит множество различных порядков, каждый из которых при определенных условиях может актуализоваться, создав свой собственный мир.

Однако вернемся к порядку и беспорядку как таковым. Если мы непредубежденно посмотрим на положение вещей, то увидим, что под порядком часто подразумевают не что иное, как пространственную или пространственно-временную регулярность, в основе которой лежит та или иная симметрия. Именно поэтому, глядя на чужой стол, мы хотим увидеть там симметрично разложенные предметы (к своему собственному столу наше отношение обычно несколько иное).

Здесь необходимо отметить исключительно важный момент. Поведение системы, обладающей регулярной структурой, как правило, может быть предсказано (возможно, на вероятностном уровне), причем именно на основании присутствующих в ней элементов симметрии. Если мы знаем, что карандаши лежат в правом дальнем углу стола, то вряд ли мы обнаружим один из них в левом ближнем. Упорядоченность мира – это как раз то, что позволяет нам ориентироваться в нем. Под таким углом зрения главным общим свойством и беспорядочного, и хаотического состояний системы является то, что мы не можем предсказать ее поведение. В данном случае поведение может иметь как временное, так и пространственное истолкование. В первом случае имеется в виду невозможность сказать, в каком состоянии будет находиться система в заданный момент времени, а во втором, – какой окажется ее пространственная конфигурация.

Возможно, именно наше внутреннее (и не всегда осознаваемое) стремление жить в предсказуемом мире придает привлекательность упорядоченным системам. И то, что хаос, по всей видимости, в плане потенциальных возможностей несравненно богаче порядка, не меняет ситуацию. Вольно или невольно, но мы воспринимаем его как нечто пугающее и чуждое нашему обыденному сознанию.

На интеллектуальном уровне нам более или менее ясно, что упорядоченность системы, чем бы она ни был на самом деле, как-то связана с ее сложностью. Построить дом сложнее, чем разрушить его. Созидание предполагает упорядочение, тогда как разрушение – разупорядочение. Построенный дом обладает элементами, имеющими определенные функциональные роли, а груда обломков – нет.

Но всегда ли сложность является очевидной, и всегда ли она определяется симметрией? Снова вспомним стол профессора: расположение предметов на нем совершенно нерегулярно, но достаточно сложно. Если не верите, то попробуйте объяснить, как профессор находит нужный предмет.

Таким образом, следует признать, что существуют системы, обладающие высоким уровнем сложности, но при этом лишенные видимой регулярности. Нам кажется, что между их элементами отсутствуют связи, и они расположены случайным образом, тогда как на самом деле связи существуют, но слишком сложны для того, чтобы мы их увидели. Поэтому не будет ошибкой сказать, что порядок в обычном смысле – это нечто среднее между беспорядком и хаосом. При желании порядок можно определить как хаос с проявленной структурой, а беспорядок – как отсутствие структуры (как только мы начинаем видеть связи между элементами системы, она становится для нас упорядоченной). Именно поэтому хаос и является самостоятельным и самодостаточным понятием, ведь непроявленность чего-то не означает его отсутствия.

Беспорядок и хаос в системе похожи друг на друга тем, что мы не видим закономерностей в расположении ее элементов. Различие же заключается в том, что в случае беспорядка их действительно нет, а в случае хаоса они существуют, но не в актуальном расположении элементов в текущий момент времени, а в тех внутренних механизмах, которые генерируют это расположение. Причем (и это самое замечательное), такие механизмы физически могут быть реализованы вне системы, например в сознании профессора, знающего, где что лежит на его столе. Именно поэтому предметы на столе представляются беспорядочно лежащими всем, кроме самого профессора, поскольку он один знает принцип их размещения.


3. Прикладной хаос

Очень часто дискутируется вопрос: для чего нужен хаос?

Прежде всего, нельзя недооценивать колоссального мировоз­зренческого значения этой концепции. Окружающий нас мир по­лон нелинейных явлений и процессов, правильное представление о которых немыслимо без понимания возможности хаоса, а также связанных с этим принципиальных ограничений на предсказуе­мость поведения сложных систем. Например, становится вполне очевидной несостоятельность учения об однозначной определенно­сти исторического процесса.

Сказанное не мешает обсуждать возможность использования хаоса в системах различной природы для каких-либо конкретных практических целей или же учета тех последствий, к которым мо­жет привести возникновение сложной динамики.

Приведем простой пример - задачу о динамике судна или нефтяной платформы при наличии волнения. В известном приближении, это нелинейная динамическая система с внешним периодическим воздействием. Нормальное, ра­бочее расположение судна отвечает одному аттрактору системы, пе­ревернутое - другому. Можно задаться вопросом, как расположен и как устроен бассейн притяжения второго аттрактора. Как он за­висит от интенсивности волнения? Ясно, что попадание в бассейн притяжения второго аттрактора ведет к катастрофе! Подчеркнем, что только нелинейный анализ обеспечивает всестороннее понима­ние ситуации, выработку условий и рекомендаций по избежанию катастрофы.

Благодаря динамической природе хаотических режимов и их чувствительности по отношению к малым возмущениям они до­пускают эффективное управление посредством внешнего контро­лируемого воздействия. Целью такого воздействия может быть реализация в системе периодического режима вместо хаоса или попадание в заданную область фазового пространства. Эта идея, выдвинутая первоначально группой американских исследователей из университета штата Мериленд, представляется очень перспективной и плодотворной в приклад­ном плане. К настоящему времени по этому предмету имеется обширная литература, проведено множество международных на­учных конференций.

Успешные примеры управления хаосом реализованы в меха­нических системах, электронных устройствах, лазерах. В каче­стве примера можно привести работу, где рас­сматривается применение методики управления хаосом для того, чтобы направить космический аппарат на Луну. Оказывается, что с помощью малых контролируемых воздействий задачу удается решить с очень существенной экономией топлива, правда, ценой увеличения продолжительности полета.

Другое направление применения идей и методов нелинейной динамики связано с проблемой обработки сигналов. Представим себе, что исследуется удаленный и недоступный объект, так что наши возможности ограничиваются анализом поступающего от него сигнала. За последние годы были предложены методики, по­зволяющие выяснить, произведен ли сигнал динамической систе­мой, а также получить информацию о свойствах и характеристи­ках этой системы. Таким образом, аппарат нелинейной динамики превращается в инструмент исследования, позволяющий сделать заключение или предположение о структуре объекта, сконструиро­вать его динамическую модель и т. д. Разработку методов и ал­горитмов анализа сигналов можно считать важным направлением нелинейной динамики, непосредственно связанным с возможными приложениями.

Очень высоко оцениваются перспективы использования ана­лиза и обработки сигналов, конструирования моделей, а также ме­тодик управления хаосом применительно к проблемам медицины и биологии.

В радиотехнике и электронике известен целый ряд приложе­ний, где необходимы генераторы шумоподобных колебаний, в роли которых могут выступать различные устройства, функционирую­щие в режиме динамического хаоса. Примерами могут служить генераторы с запаздывающей связью на лампе бегущей волны.

Одно из возможных приложений хаоса состоит в использова­нии генерируемых динамическими системами хаотических сигна­лов в целях коммуникации. Благодаря хаотической природе сиг­налов открываются новые возможности кодирования информации, которая становится труднодоступной для перехвата. Предложен целый ряд схем, обеспечивающих связь на хаотических сигналах, проведены демонстрационные эксперименты.

Результаты, полученные в нелинейной динамике, открывают новые нетривиальные возможности для сжатия и хранения, а также обработки информации. Интересным примером такого рода может служить предложенная в Институте радиотехники и элек­троники РАН схема кодирования и обработки информации с ис­пользованием одномерных отображений. Эффективные методы сжатия информации разработаны на основании идей фрактальной геометрии. Прорабатывается вопрос о реализации вычислительных процессов в системах, отличных от традиционной компьютерной архитек­туры и опирающихся на феномены нелинейной динамики.


4.Основные принципы . Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию. Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация.

Основным понятием теории хаоса является аттракторы и фракталы.

Аттрактор

(от англ. to attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени. Здесь возникает необходимость определить понятие фазового пространства.

Четыре аттрактора формируют основную структуру внешнего мира, характер поведения и движения рынка. Теория хаоса находится в полном противоречии с аналитической теорией. Она даем нам новую метафизику. Она концентрируется на происходящем в данный момент, что значительно важнее при анализе рынка. Теория хаоса дает более полную картину, охватывая всю реку-рынок, в ее течении, со всеми неожиданными поворотами и сюрпризами. Умение замечать происходящие изменения в потоке является задачей действенного рыночного анализа и противоядием от догматизма, роковой «болезни» трейдеров. Рынок часто кажется таким же хаотичным, как и наш внутренний мир, наш поток сознания. Чтобы извлечь из этого хаоса какой-либо смысл, мы должны обнаружить базовую структуру для реальности и рынка - несущую структуру, которая вскрывает порядок, лежащий в основе хаоса.

Рынок, как явление реального мира, - основательно беспорядочен и свободен. Хаос правит над предсказуемостью. Простые линейные подходы к торговле на рынке не работают. Рынок бесконечно сложен. Из хаоса всегда рождается более высокий порядок, но этот порядок возникает спонтанно и непредсказуемо. Подобно погоде, фондовый и товарный рынки, а также и другие хаотичные системы, могут порождать непредсказуемые последствия при пренебрежимо малых изменениях в количествах, помноженных на реакцию на них. В настоящее время биржевые игроки используют нелинейные методы в инвестировании и торговле. Фракталы - это новые игрушки рынка. Фракталы это способ самоорганизации рынков. Специфическая фрактальная организация создается при помощи механизмов, которые в науке о хаосе называются аттракторами.

Чтобы использовать мышление для сортировки явлений и научиться понимать смысл происходящего, мы должны, прежде всего, найти основную структуру реальности. Структуру, вскрывающую порядок, который лежит в основе хаоса. Существует четыре нелинейные функции, которые помогают нам определить этот порядок в нашем собственном сознании. Ученые, исследующие хаос, обнаружили, что кажущиеся хаотичными, не подчиняющимися никаким законам процессы, в действительности, следуют скрытому порядку. Порядок, который они открыли, четырехкратный: все внешние явления действуют в соответствии с тем, что они называют четырьмя аттракторами - силами, которые извлекают порядок из беспорядка. Они называются точечным аттрактором, циклическим аттрактором, аттрактором Торас, и странным аттрактором.

Точечный аттрактор - это простейший способ привнести порядок в хаос. Он живет в первом измерении линии, которая составлена из бесконечного числа точек. Под воздействием этого аттрактора человек испытывает склонность к одной деятельности, и отвращение к другой. Это аттрактор первой размерности, и он может использоваться для торговли на рынках.

Характеристика циклического аттрактора - движение взад-вперед, подобно маятнику или циклическому магниту. Он притягивает, затем отталкивает, затем опять притягивает и т.д. Он живет во втором измерении плоскости, которая состоит из бесконечного числа линий. Им характеризуется рынок, заключенный в коридор, где цена движется вверх и вниз в определенном диапазоне в течение некоторого промежутка времени. Этот аттрактор более сложен, чем точечный, и является основной структурой для более сложного поведения. Одна деятельность автоматически ведет к другой в повторяющемся порядке. На рынке зерна это явление носит годичный характер.

Третий, более сложный, вид аттрактора известен как аттрактор Торас. Он начинает сложную циркуляцию, которая повторяет себя по мере движения вперед. Он живет в третьем измерении, которое состоит из бесконечного числа плоскостей. По сравнению с циклическим и точечным аттракторами, аттрактор Торас вводит большую степень беспорядочности, и его модели более сложны. На этом уровне, предсказания носят более точный характер, а модели имеют тенденцию казаться более законченными. Графически он выглядит как кольцо или рогалик. Он образует спиралевидные круги на ряде различных плоскостей, и иногда возвращается сам к себе, завершая полный оборот. Его основная характеристика - повторяющееся действие. Подобные явления можно также наблюдать в стремлении мировых активов к безопасности. Если ставка по государственным бумагам повышается, они привлекают больше инвесторов. Затем повышаются цены на них, что опускает процентную ставку, и делает их менее привлекательными и т. д.

Странный аттрактор из четвертого измерения - самоорганизующий. Это место рождения свободы и понимания, как в действительности работает рынок. То, что поверхностный взгляд воспринимает как абсолютный хаос, в котором не заметно никакого порядка, имеет определенный порядок, базирующийся на странном аттракторе, когда наблюдение ведется из четвертого измерения. Другая характеристика странного аттрактора -это чувствительность к начальным условиям, которая иногда называется «эффектом бабочки». Малейшее отклонение от изначальных условий может привести к огромным различиям в результате. Различия начальных условий при заключении сделок могут влиять на рентабельность торговой системы в пятикратном размере. Другими словами, заключение сделок при чувствительных начальных условиях может привести к увеличению прибыли на 500 процентов.

Фракталы

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов . Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature" . В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале.

Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому»

Фракталы:

Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триодной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триодную кривую Кох. Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1. В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3. Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n-го поколения при любом конечном n называется предфракталом . На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным объектом

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет , установившийся процесс , аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.

Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока не выйдет за пределы окружности радиуса 2, центр которой лежит в точке, (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых оставалась внутри окружности, можно установить цвет точки C (если остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).

Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).


5. Детерминированный хаос и информационные технологии

По аналогии явлению нерегулярного (хаотического) движения в нелинейных системах был присвоен терминдинамический , или детерминированный ,хаос. Наблюдаемое хаотическое поведение возникает не из-за внешних источников шума, не из-за большого числа степеней свободы и не из-за неопределенности, связанной с квантовой механикой. Оно порождается собственной динамикой нелинейной детерминированной системы. В фазовом пространстве системы такому поведению соответствует странный аттрактор. Аттрактор (attractor ) в переводе с английского означает «притягиватель»; в данном случае это множество траекторий в фазовом пространстве, к которым притягиваются все остальные траектории из некоторой окрестности аттрактора, называемой также бассейном притяжения . Термин «странный» используется, чтобы подчеркнуть необычность свойств аттрактора, соответствующего хаотическому поведению. Причиной нерегулярности поведения является свойство нелинейных систем экспоненциально быстро разводить первоначально близкие траектории в ограниченной области фазового пространства. Предсказать поведения траекторий хаотических систем на длительное время невозможно, поскольку чувствительность к начальным условиям высока, а начальные условия, как в физических экспериментах, так и при компьютерном моделировании, можно задать лишь с конечной точностью.

Управление хаосом

На первый взгляд, природа хаоса исключает возможность управлять им. В действительности же дело обстоит с точностью до наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению.

Пусть, например, имеется система со странным аттрактором, и требуется перевести фазовую траекторию из одной точки аттрактора в другую. Хаотические траектории обладают свойством с течением времени попадать в окрестность любой точки, принадлежащей аттрактору. Если нужно, чтобы это произошло через время, не большее, чем Т, требуемый результат может быть получен за счет одного или серии малозаметных, незначительных возмущений траектории. Каждое из этих возмущений лишь слегка меняет траекторию. Но через некоторое время накопление и экспоненциальное усиление малых возмущений приводит к достаточно сильной коррекции траектории. При правильном выборе возмущений это позволяет решить поставленную задачу, не уводя траекторию с хаотического аттрактора. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость и удивительную пластичность: система чутко реагирует на внешние воздействия, при этом сохраняя тип движения. Комбинация управляемости и пластичности, по мнению многих исследователей, является причиной того, что хаотическая динамика является характерным типом поведения для многих жизненно важных подсистем живых организмов. Например, хаотический характер сердечного ритма позволяет сердцу гибко реагировать на изменение физических и эмоциональных нагрузок, обеспечивая запас динамической прочности.

Хаос, как бы он ни был интересен, - это лишь часть сложного поведения нелинейных систем . Существует также не поддающееся интуитивному осознанию явление, которое можно было бы назвать антихаосом . Оно выражается в том, что некоторые весьма беспорядочные системы спонтанно «кристаллизуются», приобретая высокую степень упорядоченности. Предполагается, что антихаос играет важную роль в биологическом развитии и эволюции.

Есть ряд аргументов в пользу того, что наряду с хорошо изученными тремя типами поведения динамических систем - стационарными состояниями, периодическими и квазипериодическими колебаниями, а также хаосом, существует и четвертый, специфический тип поведения на границе между регулярным движением и хаосом. Было замечено, что на этой границе, которую называют «кромкой хаоса», могут иметь место процессы, подобные процессам эволюции и обработки информации.

Рис1. Пример применения ассоциативной памяти на основе хаотической динамики для целей ориентирования и навигации. Область для ориентирования общей площадью 576 км2 задается географической картой в масштабе М 1:20000. Она разбита на 16 фрагментов, каждый из которых представляет собой цветной графический образ размером 200х200 пикселов в 256-цветном алфавите. Каждый из образов представлен как предельный цикл в одном и том же двумерном кусочно-линейном отображении.

Для определения местоположения пользователю достаточно предъявить любой кусочек фрагмента карты. Если поиск по кусочку успешен (успех регистрировался при предъявлении программе кусочков вплоть до 1 км2 , то есть вплоть до 0,2 процента от первоначальной площади), соответствующий фрагмент карты появится на экране.

Программа демонстрирует также возможность идентификации по искаженным кусочкам. В нашем примере уровень искажений в кусочке, предъявляемом для идентификации, может составлять 70-80 процентов.

В противоположность динамическому хаосу, рассматриваемое явление, именуемое иногда комплексностью (complexity), возникает в системах, состоящих из многих взаимодействующих элементов. Такие системы часто не только демонстрируют четвертый тип поведения, но и обладают адаптивными свойствами, если под адаптацией понимать резкое упрощение динамики системы по сравнению с многомерной хаотической динамикой совокупности ее изолированных элементов . Приводимые ниже примеры отражают ряд общих свойств систем на кромке хаоса.

Игра «Жизнь» в клеточных автоматах

Совокупность правил этого клеточного автомата (то есть параметров системы) такова, что его поведение находится в узкой зоне между областями устойчивости и хаоса. В системе наблюдается поведение, похожее на «настоящие» жизненные процессы. Кроме того, при анализе таких объектов, как «глайдеры» и «катапульты», математически доказана эквивалентность игры «Жизнь» машине Тьюринга, и, тем самым, доказано наличие в ней процессов, эквивалентных универсальным вычислениям.

Биологическая эволюция

Со времен Дарвина биологи рассматривали эволюцию как процесс естественного отбора. Однако возможно, что биологический порядок отчасти отражает спонтанную упорядоченность, на фоне которой действовал механизм естественного отбора. Другими словами, в процессе эволюции в пространстве морфологических признаков могут быть реализованы не все комбинации, а только некоторое избранное множество «аттракторов». То есть трудно ожидать, что любые уродства возможны. Кроме того, такой механизм значительно ускоряет процесс эволюции. Он резко сужает множество допустимых траекторий движения и, тем самым, необходимое число «итераций» для появления того или иного биологического вида. Здесь уместна аналогия между скоростью сходимости случайного и градиентного методов поиска экстремума: в первом случае поиск ведется по всей области изменения переменных, а во втором - только вдоль определенной траектории.

С точки зрения биологии, не так важно, какие типы аттракторов в пространстве морфологических возможностей реализуются. Важно, что потоки траекторий «сваливаются» в некоторые ограниченные области, тем самым выделяя в пространстве морфологических признаков островки структурно устойчивых видов. А сами аттракторы могут быть стоками, циклами, странными аттракторами и т. д.

Самоорганизованная критичность

Система с большим числом взаимодействующих элементов естественным образом эволюционирует к критическому состоянию, в котором малое событие может привести к катастрофе. Хотя в составных системах происходит больше незначительных событий, чем катастроф, цепные реакции всех масштабов являются неотъемлемой частью динамики. Как следует из теории критичности, малые события вызывает тот же механизм, что и крупные. Более того, составные части системы никогда не достигают равновесия, а вместо этого эволюционируют от одного метастабильного состояния к другому.

Концепция самоорганизованной критичности предполагает, что глобальные характеристики, такие как относительное число больших и малых событий, не зависят от микроскопических механизмов. Именно поэтому глобальные характеристики системы нельзя понять, анализируя ее части по отдельности.

Как можно себе представить механизм адаптации в связанных динамических системах? Заманчиво выглядит модель эволюционного равновесия (кромки хаоса) как некоего вида хаотической синхронизации. Действительно, процесс синхронизации резко упрощает динамику системы, снижая размерность ее аттрактора. Он напрямую определяется степенью связности системы - «адаптивный механизм» движения к кромке хаоса включается только при наличии достаточно сильных связей.

Порождение информации хаотическими системами

Вернемся к свойствам хаоса в маломерных системах. Итак, поведение хаотических траекторий не может быть предсказано на большие интервалы времени. Прогноз движения вдоль траекторий становится все более и более неопределенным по мере удаления от начальных условий. С точки зрения теории информации это означает, что система сама порождает информацию и скорость создания информации тем выше, чем больше хаотичность системы. Поскольку система создает информацию, то ее содержат и траектории системы.

Рис. 2. Пример применения технологии для поиска информации в неструктурированных текстовых архивах. В качестве архива используется текст книжки «Винни-Пух и все-все-все». В ответ на вопрос Пуха «Зачем пчелы делают мед?» система предлагает фрагмент текста, содержащий фразу: «Единственная причина делать мед - та, чтобы я мог есть его».

Запись, хранение и поиск информации с помощью хаоса

Теперь зададимся вопросом: а нельзя ли сопоставить траектории системы информацию в виде интересующей нас последовательности символов? Если бы это удалось сделать, часть траекторий соответствовала бы нашим информационным последовательностям, и их можно было бы получать, решая уравнения, определяющие динамику системы. Если же взять любой (не слишком малый) фрагмент информационной последовательности, с его помощью можно восстановить всю информационную последовательность, соответствующую данной траектории. Разным траекториям соответствуют разные информационные последовательности, и возникает возможность восстановить любую из них по любому ее небольшому фрагменту. Тем самым реализуется ассоциативный доступ (доступ по содержанию) ко всей информации, записанной в системе. Итак, информация запоминается и хранится в виде траекторий динамической системы и обладает свойствами ассоциативности.

Эта идея возникла и получила развитие при попытках понять, чем может быть полезен хаос в обработке информации живыми системами. Были построены математические модели, которые демонстрировали принципиальную возможность записи, хранения и извлечения информации с помощью траекторий динамических систем с хаосом. Эти модели казались очень простыми, и эксперт одного уважаемого международного журнала написал в своей рецензии: «Это просто игрушечные модели, и на их основе не может быть создана никакая технология ни на Востоке, ни на Западе». Однако вскоре за исследования в этом направлении был присужден Главный приз на конкурсе компании «Хьюлетт-Паккард» по распознаванию образов. Развитие «игрушек» привело к тому, что их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете (патент РФ 2050072, патент США US 5774587). И даже на скромных «писишках» стало возможным синтезировать динамические системы с объемом записанной информации, эквивалентной среднему собранию сочинений.

Рис. 3. Источник хаоса, состоящий из нелинейной и линейной систем, замкнутых в кольцо обратной связи. Справа: внешний вид платы электронной схемы (вверху) и фазовый портрет хаотического аттрактора (внизу). Даже небольшие изменения параметров элементов электронной схемы приводят к существенному изменению характера хаотических колебаний.

Разработанная технология позволяет записывать, хранить и извлекать любые типы данных: изображения, тексты, цифровую музыку и речь, сигналы и т. д. Примером использования технологии является персональная система управления факсимильными документами с ассоциативным доступом FacsData Wizard, которая обеспечивает возможность создания архивов неструктурированной информации с полным автоматическим индексированием всей хранимой информации.

Для поиска необходимых документов пользователь составляет запрос путем набора в произвольной форме нескольких строк текста, относящегося к содержанию требуемого документа. В ответ система выдаст искомый документ, если входной информации достаточно для его однозначного поиска, либо предложит набор вариантов. При необходимости можно получить и факсимильную копию найденного документа. Наличие ошибок в запросе и при преобразовании исходной информации в текстовую не сказывается существенным образом на качестве поиска. Создание электронного архива не требует дополнительного дискового пространства. Объем, необходимый для хранения записанных документов, может даже уменьшиться.

Передача и защита информации

В большинстве современных систем связи в качестве носителя информации используются гармонические колебания. Информационный сигнал в передатчике модулирует эти колебания по амплитуде, частоте или фазе, а в приемнике информация выделяется с помощью обратной операции - демодуляции. Модуляция носителя может осуществляться либо за счет модуляции уже сформированных гармонических колебаний, либо путем управления параметрами генератора в процессе формирования колебаний.

Аналогичным образом можно производить модуляцию хаотического сигнала информационным сигналом. Однако возможности здесь значительно шире. Действительно, если в случае гармонических сигналов управляемых характеристик - всего три (амплитуда, фаза и частота), то в случае хаотических колебаний даже небольшое изменение параметра дает надежно фиксируемое изменение характера колебаний. Это означает, что у источников хаоса с изменяемыми параметрами имеется широкий набор схем ввода информационного сигнала в хаотический (то есть модуляции хаотического сигнала информационным ). Кроме того, хаотические сигналы принципиально являются широкополосными, интерес к которым в радиотехнике традиционен и связан с большей информационной емкостью. В системах связи широкая полоса частот несущих сигналов используется как для увеличения скорости передачи информации, так и для повышения устойчивости работы систем при наличии возмущений.

В последнее время в связи с развитием спутниковых, мобильных, сотовых и волоконно-оптических многопользовательских коммуникационных систем большое внимание привлекают сигналы с расширением спектра , где полоса частот передаваемого сигнала может быть значительно шире полосы частот информационного сигнала.

Шумоподобность и самосинхронизируемость систем, основанных на хаосе, дают им потенциальные преимущества над традиционными системами с расширением спектра, базирующимися на псевдослучайных последовательностях. Кроме того, они допускают возможность более простой аппаратной реализации с большей энергетической эффективностью и более высокой скоростью операций.

Рис. 4. Пример схемы связи с использованием хаоса. Передатчик и приемник включают в себя такие же нелинейные и линейные системы, как источник. Дополнительно в передатчик включен сумматор, а в приемник - вычитатель. В сумматоре производится сложение хаотического сигнала источника и информационного сигнала, а вычитатель приемника предназначен для выделения информационного сигнала. Сигнал в канале хаосоподобный и не содержит видимых признаков передаваемой информации, что позволяет передавать конфиденциальную информацию. Сигналы в точках А иА", Б и Б" попарно равны. Поэтому при наличии входного информационного сигнала S на входе сумматора передатчика такой же сигнал будет выделяться на выходе вычитателя приемника.

Сфера применения хаотических сигналов не ограничивается системами с расширением спектра. Они могут быть использованы для маскировки передаваемой информации и без расширения спектра, то есть при совпадении полосы частот информационного и передаваемого сигналов.

Все это стимулировало активные исследования хаотических коммуникационных систем. К настоящему времени на основе хаоса предложено несколько подходов для расширения спектра информационных сигналов, построения самосинхронизующихся приемников и развития простых архитектур передатчиков и приемников. Идея большинства предложенных решений базируется на синхронизации «ведомой системой» (приемником) исходного невозмущенного хаотического сигнала, генерируемого «ведущей системой» (передатчиком). С помощью таких схем связи может передаваться как аналоговая, так и цифровая информация с различными скоростями информационных потоков и разной степенью конфиденциальности. Еще одним потенциальным достоинством схем связи с использованием хаоса является возможность реализации новых методов разделения каналов, что особенно важно в многопользовательских коммуникационных системах.

Если до недавнего времени проблема конфиденциальности передачи информации и более широкая проблема защиты информации относились в основном к военным и специальным применениям, то теперь все важнее становится рынок гражданских приложений. Примерами могут служить защита коммерческой информации в компьютерах и компьютерных сетях, безопасность электронных платежей, защита от пиратского копирования CD-ROM, музыкальных и видеодисков, защита от копирования музыкальной, видео- и другой информации, распространяемой по компьютерным сетям, Интернет-телефония и пр.

К защите коммерческой информации предъявляются требования, существенно отличающиеся от «классических». В частности, типичным требованием становится возможность массового применения и низкая себестоимость на единицу «информационной» продукции. Кроме того, могут меняться и подходы к защите. Так, для защиты музыкальной и видеоинформации на компакт-дисках от пиратского копирования нет необходимости в том, чтобы записанная информация была полностью недоступна для «злоумышленника»: вполне достаточно просто снизить качество воспроизведения до неприемлемого для потребителя уровня.

При решении таких «бытовых» проблем защиты информации в перспективе могут успешно применяться средства, основанные на детерминированном хаосе.

Безусловно, конкретные примеры применения хаоса в информационных и коммуникационных технологиях, приведенные в статье, отражают в первую очередь научные интересы и взгляды автора и коллектива, в котором он работает. Вместе с тем они дают представление о том, как с помощью хаоса можно решать созидательные задачи.


6. Хаоса в других науках

Теория хаоса находит приложения в широком спектре наук. Одним из самых ранних стало ее применение к анализу турбулентности в жидкости. Движение жидкости бывает либо ламинарным (гладким и регулярным), либо турбулентным (сложным и нерегулярным). До появления теории хаоса существовали две конкурирующие теории турбулентности. Первая из них представляла турбулентность как накопление все новых и новых периодических движений; вторая объясняла неприменимость стандартной физической модели невозможностью описания жидкости как сплошной среды в молекулярных масштабах. В 1970 математики Д.Рюэль и Ф.Такенс предложили третью версию: турбулентность – это хаос в жидкости. Их предположение поначалу считалось весьма спорным, но с тех пор оно было подтверждено для нескольких случаев, в частности, для ранних стадий развития турбулентности в течении между двумя вращающимися цилиндрами. Развитая турбулентность по-прежнему остается загадочным явлением, но хаоса вряд ли удается избежать в любом возможном ее объяснении. (гидроаэромеханика)

Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами. Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном. Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки).

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера. Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива. Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.

Британские физики создали систему, которая приводит хаос в порядок

Британские физики из Уорикского университета разработали метод, который позволяет предсказывать возникновение порядка из хаоса в сложных системах, состоящих из множества случайно изменяющихся элементов.

Ученые под руководством Роберта Уикса во время своего исследования пытались понять, как сложные системы вроде плазмы, толпы людей или стаи птиц неожиданно переходят от хаоса к порядку без внешнего вмешательства.

Специалисты предположили, что закономерности самоорганизации могут быть одинаковыми для разных сложных систем. Поэтому, взяв за основу известные данные о поведении больших групп животных и насекомых, они разработали новый математический способ анализа, названный методом взаимной информации.

Этот новый метод позволяет определять закономерности и корреляции на основании очень небольшого количества данных. Для проверки своего метода исследователи использовали несложную модель, разработанную в 90-е годы известным венгерским биофизиком Тамашем Вичеком для описания поведения колоний бактерий, стай скворцов или саранчи.

В результате оказалось, что новый метод взаимной информации в четыре раза точнее при поиске упорядоченного состояния, чем традиционные статистические методы.

Ученые предполагают, что новый метод будет полезен и при изучении фондовой биржи. Вероятно, с его помощью удастся объяснить возникающие порой неожиданные корреляции, когда акции компаний, не имеющих никаких видимых связей, испытывают одинаковые колебания цен.

Математики рассчитали оптимальную стратегию борьбы с эпидемией

Американские и израильские математики рассчитали оптимальную стратегию борьбы с эпидемией при помощи вакцинации.

Традиционно считается, что лучший способ борьбы с заболеванием - вакцинация как можно большего числа людей. В рамках нового исследования ученые установили, что это не так. Если эпидемию рассматривать как динамический процесс, то время вакцинации оказывается не менее важным, чем количество привитых индивидуумов.

Используя вероятностную модель для описания процессов заражения, повторного заражения и распространения заболевания, ученые смогли установить, что при фиксированном количестве доступной вакцины лучшая стратегия - проведение серии интенсивных мероприятий по прививанию. Оказалось, что подобная серия работает эффективнее отдельно взятой массивной вакцинации.

По словам ученых, эффективность стратегии обусловлена тем, что в течение длительного времени количество зараженных в коллективе может оставаться достаточно стабильным. Последовательная вакцинация позволяет уменьшить стабильное количество больных и приводит к экспоненциальному уменьшению количества болеющих.

Ученые подчеркивают, что их модель не привязана к какому-либо конкретному заболеванию и может применяться в самом общем случае. Главной трудностью при этом остается вычисление периодов, с которыми необходимо проводить вакцинацию.

Муравьиные алгоритмы в действии

В компании Pacific Northwest National Laboratory нашли новый подход к анализу безопасности компьютерных сетей. Для борьбы с вредоносным ПО предложено использовать «муравьиные алгоритмы».

При помощи программы, алгоритмы которой копируют механизмы поведения муравьев, в лаборатории пытаются найти «сетевые аномалии».

«Сами по себе муравьи не умны, - утверждает Гленн Финк, возглавляющий необычные исследования, - однако их колония может продемонстрировать удивительно разумное поведение».

По словам ученых, их программа использует распределенные по компьютерным сетям сенсоры, непрерывно собирающие данные. Словно муравьи, передающие своим сородичам информацию о еде или опасности при помощи запахов, эти сенсоры делятся собранной информацией друг с другом. Таким образом, программа может определить своеобразные сетевые аномалии, сигнализирующие о возможной опасности, например о масштабном заражении сети.

Сенсоры бывают различной направленности – по словам Финка, одни могут собирать данные о чрезмерной загрузке центрального процессора компьютеров, а другие – проверять сетевой трафик. Также есть «часовые» - специальные блоки программы, анализирующие информацию, полученную от всех сенсоров-муравьев.

Хотя инновационный антивирусный комплекс находится на ранней стадии разработки, уже сейчас он способен обнаруживать некоторых компьютерных червей. Однако, по словам создателей, искусственному интеллекту их программы еще есть чему научиться.


Первое и самое важное - теория хаоса - это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые - вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени - представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные - т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего - от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована - рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики. Сегодня поиски исследователей – главным образом математиков – направлены на то, чтобы выявить все типы нелинейных уравнений, решение которых приводит к детерминированному хаосу. Активный интерес к нему вызван тем, что одни и те же его закономерности могут проявляться в самых разных природных явлениях и технических процессах: при турбулентности в потоках, неустойчивости электронных и электрических сетей, при взаимодействии видов в живой природе, при химических реакциях и даже, по-видимому, в человеческом обществе. Отсюда следует фундаментальная значимость хаоса – его изучение может привести к созданию мощного математического аппарата, обладающего большой общностью и обширными возможностями для приложений. Теория хаоса идет своим, особым путем от самых основ. Возможно, это новый, независимый путь к пониманию универсальности мира!

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.


Список литературы

1. Пайтген Х. О., Рихтер П. Х. «Красота фракталов».

2. В. И. Кувшинов, А. В. Кузьмин «Калибровочные поля и теория детерминированного хаоса»

3. Шустер Г. «Детерминированный хаос: введение».

4. Рюэль Д. «Случайность и хаос». – Ижевск: НИЦ, 2001, 192стр.

5. Кроновер Р.М. «Фракталы и хаос в динамических системах. Основы теории».

6. Магницкий Н. А., Сидоров С. В. «Новые методы хаотической динамики». - М.: Едиториал УРСС, 2004, 320 с.