Интерполяционные многочлены ньютона. Интерполяционный многочлен в форме ньютона Практическая оценка погрешностей интерполяционных формул Ньютона

Пусть задана функция y=f(x) на отрезке , который разбит на n одинаковых отрезков (случай равноотстоящих значений аргумента). x=h=const. Для каждого узла x 0, x 1 =x 0 +h,..., x n =x 0 +n h определены значения функции в виде: f(x 0)=y 0, f(x 1)=y 1,..., f(x n)=y n.


Конечные разности первого порядка y 0 = y 1 – y 0 y 1 = y 2 – y y n-1 = y n – y n-1. Конечные разности второго порядка 2 y 0 = y 1 – y 0 2 y 1 = y 2 – y y n-2 = y n-1 – y n-2 Аналогично определяются конечные разности высших порядков: k y 0 = k-1 y 1 – k-1 y 0 k y 1 = k-1 y 2 – k-1 y k y i = k-1 y i+1 – k-1 y i, i = 0,1,...,n-k.






Пусть для функции y = f(x) заданы значения y i = f(x i) для равностоящих значений независимых переменных: x n = x 0 +nh, где h - шаг интерполяции. Необходимо найти полином P n (x) степени не выше n, принимающий в точках (узлах) x i значения: P n (x i) = y i, i=0,...,n. Запишем интерполирующий полином в виде:


Задача построения многочлена сводится к определению коэффициентов а i из условий: P n (x 0)=y 0 P n (x 1)=y P n (x n)=y n






Аналогично можно найти другие коэффициенты. Общая формула имеет вид. Подставляя эти выражения в формулу полинома, получаем: где x i,y i – узлы интерполяции; x – текущая переменная; h – разность между двумя узлами интерполяции h – величина постоянная, т.е. узлы интерполяции равноотстоят друг от друга.
































Особенностью интерполяции являлось то, что интерполирующая функция строго проходит через узловые точки таблицы, т. е. рассчитанные значения совпадали с табличными: y i =f(x i). Эта особенность обуславливалась тем, что количество коэффициентов в интерполирующей функции (m) было равно количеству табличных значений (n)














4. Интерполирующей функцией невозможно описать табличные данные, в которых есть несколько точек с одинаковым значением аргумента. Такая ситуация возможна, если один и тот же эксперимент проводится несколько раз при одних и тех же исходных данных. Однако это не является ограничением для использования аппроксимации, где не ставится условие прохождения графика функции через каждую точку.

Всем привет. Довольно недавно я столкнулся с проблемой на своем новом телефоне, для решения которой мне нужно было достать из прошивки некоторые APK файлы. Поискав в интернете способы решения этой проблемы, я наткнулся на на одну интересную утилиту, которая мне помогла решить эту проблему.

Для работы нам понадобятся: ext4_unpacker_exe.zip ext2explore-2.2.71.zip
Разбираем прошивку Android Распаковываем *.zip архив с прошивкой в любую папку.Запускаем утилиту ext4_unpacker.exe и выбираем файл system.img.

После открытия файла, нажимаем на кнопку сохранить как.

Пишем имя файла с расширением .ext4 (например system.ext4 ).

После завершения распаковки запустите утилиту ext2explore.exe от имени администратора (важно! ).В вкладке File выб…

Программа разделена на два потока в одном из которых выполняется сортировка, а в другом перерисовка графического интерфейса. После нажатия на кнопку «Сортировать», в программе вызывается метод «RunSorting», в котором определяется алгоритм сортировки и создается новый поток с запущенным в нем процессом сортировки.
private void RunSo…

Сегодня я хочу показать свой Качер, который я делал на прошлых зимних каникулах. Описывать весь процесс изготовления не буду, так как в интернете есть много статей. Напишу только об основных его параметрах.

Ниже несколько фото сделанных во время сборки устройства.

Катушка намотана проводом 0,08 мм примерно 2000 витков на ПВХ трубе диаметром 50 мм и высотой 200 мм.

В качестве терминала была использована пластина из старого жесткого диска. Все остальное собиралось по схеме которая находится в самом низу страницы.

Первый вариант питался от блока питания старого компьютера, напряжением 12 В. Затем же был сделан отдельный блок питания, напряжением в 30 В и со встроенным охлаждением.

Схема устройства:

Совместное использование ресурсов (CORS) — это спецификация W3C, которая позволяет осуществлять междоменную связь в браузере. Создавая поверх объекта XMLHttpRequest, CORS позволяет разработчикам работать с одинаковыми идиомами как запросы с одним доменом. Вариант использования для CORS прост. Представьте, что на сайте alice.com есть некоторые данные, которые сайт bob.com хочет получить. Этот тип запроса традиционно не допускается в соответствии с той же политикой происхождения браузера. Однако, поддерживая запросы CORS, alice.com может добавить несколько специальных заголовков ответов, которые позволяют bob.com получать доступ к данным. Как видно из этого примера, поддержка CORS требует координации между сервером и клиентом. К счастью, если вы являетесь разработчиком на стороне клиента, вы защищены от большинства этих деталей. В остальной части этой статьи показано, как клиенты могут выполнять запросы с кросс-началом и как серверы могут настраивать себя для поддержки CORS. Продолжени…

При получении интерполяционных формул Ньютона, которые используются для тех же целей, что и формула Лагранжа, сделаем дополнительное предположение, что рассматриваются равноотстоящие значения аргумента. Итак, пусть значения функции у = f (x ) заданы для равноотстоящих значений x 0 , x 1 = x 0 + h, …, x n = x 0 + nh. Этим значениям аргументов будут соответствоватьзначенияфункции: у 0 = f(x 0),у 1 = f(x 1), …, y n = f(x n).

Запишем искомый многочлен в виде

F(x ) = a 0 + a 1 (x - x 0) + a 2 (x - x 0)(x - x 1) + a 3 (x - x 0)(x - x 1)(x - x 2) + …

…+ a n (x - x 0)(x - x 1)…(x - x n -1) (3.9)

Для определения коэффициентов a 0 , a 1 ,..., а n положим в (3.9) х = х 0 . Тогда у 0 = F (x 0) 0 . Далее, полагая x=x 1 , получим у 1 = F (x 1) = a 0 + а 1 h , откуда

a 1 =

Продолжая вычисления коэффициентов, положим х = х 2 . Тогда

y 2 = y 0 + 2h + a 2 2hh , y 2 – 2Δy 0 = a 2 2h 2 ;

y 2 – 2y 1 + 2y 0 – y 0 = y 2 – 2y 1 + y 0 = a 2 2h 2 .

Исходя из (3.8), получаем y 2 – 2y 1 + y 0 = Δ 2 y 0.

Точно так же получим

Аналогичные дальнейшие вычисления позволяют записать общую формулу для любого коэффициента а k:

Подставим найденные выражения коэффициентов в формулу (3.9), получим

Полученная формула и называется первой интерполяционной формулой Ньютона.

Для практического использования формулу Ньютона (3.10) обычно записывают в преобразованном виде. Для этого введем обозначение

отсюда х = х 0 + ht .

Выразим через t множители, входящие в формулу (3.10):

………………………..

Подставив полученные выражения в формулу (3.10), окончательно получаем

Выражение (3.11) представляет окончательный вид первой интерполяционной формулы Ньютона.

Пример . Приняв шаг h = 0,05,построить на отрезке интерполяционный полином Ньютона для функции y = e x ,заданной табл. 3.3.

Таблица 3.3

Заметим, что в столбцах разностей, следуя обычной практике, мы не отделяем запятой десятичные разряды, которые ясны из столбца значений функций.

Так как разности третьего порядка практически постоянны, то в формуле (3.11) полагаем n = 3. Приняв х 0 = 3,50 и у 0 = 33,115, будем иметь:

Первая интерполяционная формула Ньютона неудобна для интерполирования функции в конце таблицы, где число значений разностей мало. В этом случае применяется вторая интерполяционная формула Ньютона, которую мы сейчас и рассмотрим.

Напишем искомый интерполяционный многочлен в виде

Как и ранее, коэффициенты а 0 , а 1 ,… а n определяются из условия F (x i) = y i . Положим в (3.12) х = х n . Тогда a 0 = y n .

Точно так же, полагая x = x n -1 , получим y n -1 = y n +a 1 (x n -1 - x n) ,

а так как x n -1 – x n = - h , то

Числитель последнего выражения можно представить так:

y n – y n -1 – (y n -1 - y n -2 )= Δy n -1 - Δy n -2 = Δ 2 y n -2 .

Продолжая аналогичные вычисления, получим общую формулу для коэффициентов

После подстановки в (3.12) всех значений коэффициентов эта формула примет вид

Это и есть вторая интерполяционная формула Ньютона. Для удобства применения ее, как и первую, преобразуют, введя обозначения

= t или x = x n + th .

Выразим теперь через t множители в формуле (3.13):

……………………………………………..

Произведя такую замену, окончательно получим:

Пример . По табл. 3.5 значений семизначных логарифмов для чисел от 1000 с шагом 10 найти lg 1044.

Таблица 3.5

x y Δy Δ 2 y Δ 3 y
3,0000000 3,0043214 3,0086002 3,0128372 3,0170333 3,0211893 -426 -418 -409 -401

Примем x n = 1050,y n = 3,0211893;Δ y n-1 = 0,0041560;

Δ 2 y n -2 = - 0,0000401;Δ 3 y n -3 = 0,0000008.Тогда для x = 1044 получаем

Как первая, так и вторая интерполяционные формул Ньютона могут быть использованы для экстраполирования функций, т. е. для нахождения значений функций для значений аргументов х , лежащих вне пределов таблицы. Еслизначение x < x 0 и значение x близко к x 0 , то выгодно применять первую интерполяционную формулу Ньютона, причем

Еслиже x > x 0 и x близко кх п , то удобнее пользоваться второй интерполяционной формулой Ньютона, причем

Таким образом, первая интерполяционная формула Ньютона обычно используется для интерполирования вперед и экстраполирования назад, а вторая интерполяционная формула Ньютона, наоборот, – используется для интерполирования назад и экстраполирования вперед.

Пример . Имея табл. 3.6 значений и разностей,у= sin х : в пределах отх = 15° дох = 55° с шагом h = 5° , найти sin 14° и sin 56° .

Таблица 3.6

x (0 C) y Δy Δ 2 y Δ 3 y
0,2588 0,3420 0,4226 0,5000 0,5736 0,6428 0,7071 0,7660 0,8192 832 532 -26 -32 -38 -44 -49 -54 -57 -6 -6 -6 -5 -5 -3

Решение . Для вычисления sin14 0 примем x 0 = 15 0 и x = 14 0 , отсюда t = (14–15)/5 = – 0,2.

Здесь следует выполнить экстраполирование назад, поэтому применим первую интерполяционную формулу Ньютона и подчеркнутые одной чертой конечные разности:

sin14 0 = 0,2588 + (– 0,2)0,0832+ (– 0,0026) +

+ (–0,0006) = 0,242.

Для отыскания sin56 0 примем x n = 55 0 и x = 56 0 , отсюда t = .

Применяя вторую интерполяционную формулу Ньютона (3.14) и, используя дважды подчеркнутые разности, будем иметь:

sin56 0 = 0,8192+ 0,2·0,0532+ (- 0,0057)+ (- 0,0003)= 0,83.

Первая интерполяционная формула Ньютона практически неудобна для интерполирования функции вблизи узлов таблицы. В этом случае обычно применяется .

Описание задачи. Пусть имеем последовательность значений функции

для равноотстоящих значений аргумента, где - шаг интерполяции. Построим полином следующего вида:

или, используя обобщённую степень, получаем:

Тогда, при выполнении равенства, получим

Подставим эти значения в формулу (1). Тогда, окончательно, вторая интерполяционная формула Ньютона имеет вид:

Введём более удобную запись формулы (2). Пусть, тогда

Подставив эти значения в формулу (2), получим:

Это и есть обычный вид второй интерполяционной формулы Ньютона . Для приближённого вычисления значений функции полагают:

Как первая, так и вторая интерполяционные формулы Ньютона могут быть использованы для экстраполирования функции, т. е. для нахождения значений функции для значений аргументов, лежащих вне пределов таблицы.

Если и близко к, то выгодно применять первую интерполяционную формулу Ньютона, причём тогда. Если же и близко к, то удобнее пользоваться второй интерполяционной формулой Ньютона, причём.

Таким образом, первая интерполяционная формула Ньютона обычно используется для интерполирования вперёд и экстраполирования назад , а вторая интерполяционная формула Ньютона, наоборот, - для интерполирования назад и экстраполирования вперёд .

Заметим, что операция экстраполирования, вообще говоря, менее точна, чем операция интерполирования в узком смысле слова.

Пример. Приняв шаг, построить интерполяционный полином Ньютона для функции, заданной таблицей

Решение . Составляем таблицу разностей (таблица 1). Так как разности третьего порядка практически постоянны, то в формуле (3) полагаем. Приняв, будем иметь:

Это и есть искомый интерполяционный полином Ньютона.

Таблица 1

  • 0,875
  • 0,7088
  • 0,5361
  • 0,3572
  • 0,173
  • -0,0156
  • -0,20
  • -0,1662
  • -0,1727
  • -0,1789
  • -0,1842
  • -0,1886
  • -0,1925
  • -0,0065
  • -0,0062
  • -0,0053
  • -0,0044
  • -0,0039
  • 0,0003
  • 0,0009
  • 0,0009
  • 0,0005