Числовая последовательность. Как вычислить пределы последовательностей? Что такое окрестность

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Последовательность

Последовательность - это набор элементов некоторого множества:

  • для каждого натурального числа можно указать элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента (члена) последовательности можно указать следующий за ним элемент последовательности.

Таким образом, последовательность оказывается результатом последовательного выбора элементов заданного множества. И, если любой набор элементов является конечным, и говорят о выборке конечного объёма, то последовательность оказывается выборкой бесконечного объёма.

Последовательность по своей природе - отображение, поэтому его не следует смешивать с множеством, которое «пробегает» последовательность.

В математике рассматривается множество различных последовательностей:

  • временные ряды как числовой, так и не числовой природы;
  • последовательности элементов метрического пространства
  • последовательности элементов функционального пространства
  • последовательности состояний систем управления и автоматов.

Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.

Определение

Пусть задано некоторое множество элементов произвольной природы. | Всякое отображение множества натуральных чисел в заданное множество называется последовательностью (элементов множества ).

Образ натурального числа , а именно, элемент , называется -ым членом или элементом последовательности , а порядковый номер члена последовательности - её индексом.

Связанные определения

  • Если взять возрастающую последовательность натуральных чисел, то её можно рассматривать как последовательность индексов некоторой последовательности: если взять элементы исходной последовательности с соответствующими индексами (взятыми из возрастающей последовательности натуральных чисел), то можно снова получить последовательность, которая называется подпоследовательностью заданной последовательности.

Комментарии

  • В математическом анализе важным понятием является предел числовой последовательности .

Обозначения

Последовательности вида

принято компактно записывать при помощи круглых скобок:

или

иногда используются фигурные скобки:

Допуская некоторую вольность речи, можно рассматривать и конечные последовательности вида

,

которые представляют собой образ начального отрезка последовательности натуральных чисел.

См. также


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Последовательность" в других словарях:

    ПОСЛЕДОВАТЕЛЬНОСТЬ. У И. В. Киреевского в статье «Девятнадцатый век» (1830) читаем: «От самого падения Римской империи до наших времен просвещение Европы представляется нам в постепенном развитии и в беспрерывной последовательности» (т. 1, с.… … История слов

    ПОСЛЕДОВАТЕЛЬНОСТЬ, последовательности, мн. нет, жен. (книжн.). отвлеч. сущ. к последовательный. Последовательность каких нибудь явлений. Последовательность в смене приливов и отливов. Последовательность в рассуждениях. Толковый словарь Ушакова.… … Толковый словарь Ушакова

    Постоянство, преемственность, логичность; ряд, прогрессия, вывод, серия, вереница, череда, цепь, цепочка, каскад, эстафета; упорство, обоснованность, набор, методичность, расстановка, стройность, упорность, подпоследовательность, связь, очередь,… … Словарь синонимов

    ПОСЛЕДОВАТЕЛЬНОСТЬ, числа или элементы, расположенные в организованном порядке. Последовательности могут быть конечными (имеющие ограниченное число элементов) или бесконечными, как полная последовательность натуральных чисел 1, 2, 3, 4 ....… … Научно-технический энциклопедический словарь

    ПОСЛЕДОВАТЕЛЬНОСТЬ, совокупность чисел (математических выражений и т.п.; говорят: элементов любой природы), занумерованных натуральными числами. Последовательность записывается в виде x1, x2,..., xn,... или коротко {xi} … Современная энциклопедия

    Одно из основных понятий математики. Последовательность образуется элементами любой природы, занумерованными натуральными числами 1, 2, ..., n, ..., и записывается в виде x1, x2, ..., xn, ... или коротко {xn} … Большой Энциклопедический словарь

    Последовательность - ПОСЛЕДОВАТЕЛЬНОСТЬ, совокупность чисел (математических выражений и т.п.; говорят: элементов любой природы), занумерованных натуральными числами. Последовательность записывается в виде x1, x2, ..., xn, ... или коротко {xi}. … Иллюстрированный энциклопедический словарь

    ПОСЛЕДОВАТЕЛЬНОСТЬ, и, жен. 1. см. последовательный. 2. В математике: бесконечный упорядоченный набор чисел. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Англ. succession/sequence; нем. Konsequenz. 1. Порядок следования одного за другим. 2. Одно из основных понятий математики. 3. Качество правильного логического мышления, при к ром рассуждение свободно от внутренних противоречий по одному и тому… … Энциклопедия социологии

    Последовательность - «функция, определенная на множестве натуральных чисел, множество значений которой может состоять из элементов любой природы: чисел, точек, функций, векторов, множеств, случайных величин и др., занумерованных натуральными числами … Экономико-математический словарь

Книги

  • Выстраиваем последовательность. Котята. 2-3 года , . Игра "Котята" . Выстраиваем последовательность. 1 уровень. Серия" Дошкольное образование" . Весёлые котята решили позагорать на пляже! Но никак не могут поделить места. Помоги им разобраться!…

Если функция определена на множестве натуральных чисел N, то такая функция называется бесконечной числовой последовательностью. Обычно числовые последовательность обозначают как(Xn), где n принадлежит множеству натуральных чисел N.

Числовая последовательность может быть задана формулой. Например, Xn=1/(2*n). Таким образом мы ставим в соответствие каждому натуральному числу n некоторый определенный элемент последовательности (Xn).

Если теперь последовательно брать n равными 1,2,3, …., мы получим последовательность (Xn): ½, ¼, 1/6, …, 1/(2*n), …

Виды последовательности

Последовательность может быть ограниченной или неограниченной, возрастающей или убывающей.

Последовательность (Xn) называет ограниченной, если существуют два числа m и M такие, что для любого n принадлежащего множеству натуральных чисел, будет выполняться равенство m<=Xn

Последовательность (Xn), не являющаяся ограниченной, называется неограниченной последовательностью.

возрастающей, если для всех натуральных n выполняется следующее равенство X(n+1) > Xn. Другими словами, каждый член последовательности, начиная со второго, должен быть больше предыдущего члена.

Последовательность (Xn) называется убывающей, если для всех натуральных n выполняется следующее равенство X(n+1) < Xn. Иначе говоря, каждый член последовательности, начиная со второго, должен быть меньше предыдущего члена.

Пример последовательности

Проверим, являются ли последовательности 1/n и (n-1)/n убывающими.

Если последовательность убывающая, то X(n+1) < Xn. Следовательно X(n+1) - Xn < 0.

X(n+1) - Xn = 1/(n+1) - 1/n = -1/(n*(n+1)) < 0. Значит последовательность 1/n убывающая.

(n-1)/n:

X(n+1) - Xn =n/(n+1) - (n-1)/n = 1/(n*(n+1)) > 0. Значит последовательность (n-1)/n возрастающая.

Пусть X {\displaystyle X} - это либо множество вещественных чисел R {\displaystyle \mathbb {R} } , либо множество комплексных чисел C {\displaystyle \mathbb {C} } . Тогда последовательность { x n } n = 1 ∞ {\displaystyle \{x_{n}\}_{n=1}^{\infty }} элементов множества X {\displaystyle X} называется числовой последовательностью .

Примеры

Операции над последовательностями

Подпоследовательности

Подпоследовательность последовательности (x n) {\displaystyle (x_{n})} - это последовательность (x n k) {\displaystyle (x_{n_{k}})} , где (n k) {\displaystyle (n_{k})} - возрастающая последовательность элементов множества натуральных чисел.

Иными словами, подпоследовательность получается из последовательности удалением конечного или счётного числа элементов.

Примеры

  • Последовательность простых чисел является подпоследовательностью последовательности натуральных чисел.
  • Последовательность натуральных чисел, кратных , является подпоследовательностью последовательности чётных натуральных чисел.

Свойства

Предельная точка последовательности - это точка, в любой окрестности которой содержится бесконечно много элементов этой последовательности. Для сходящихся числовых последовательностей предельная точка совпадает с пределом .

Предел последовательности

Предел последовательности - это объект, к которому члены последовательности приближаются с ростом номера. Так в произвольном топологическом пространстве пределом последовательности называется элемент, в любой окрестности которого лежат все члены последовательности, начиная с некоторого. В частности, для числовых последовательностей предел - это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Фундаментальные последовательности

Фундаментальная последовательность (сходящаяся в себе последовательность , последовательность Коши ) - это последовательность элементов метрического пространства , в которой для любого наперёд заданного расстояния найдётся такой элемент, расстояние от которого до любого из следующих за ним элементов не превышает заданного. Для числовых последовательностей понятия фундаментальной и сходящейся последовательностей эквивалентны, однако в общем случае это не так.