Что такое морфология микроорганизмов? Принципы классификации микроорганизмов. Основные группы микроорганизмов

Прокариоты отличаются от эукариот по ряду основных признаков .

1.Отсутствие истинного дифференцированного ядра (ядерной мембраны).

2.Отсутствие развитой эндоплазматической сети, аппарата Гольджи.

3.Отсутствие митохондрий, хлоропластов, лизосом.

4.Неспособность к эндоцитозу (захвату частиц пищи).

5.Клеточное деление не связано с циклическими изменениями строения клетки.

6. Значительно меньшие размеры (как правило). Большая часть бактерий имеет размеры 0,5- 0,8 микрометров (мкм ) х 2- 3 мкм.

По форме выделяют следующие основные группы микроорганизмов.

1.Шаровидные или кокки (с греч.- зерно).

2.Палочковидные.

3.Извитые.

4.Нитевидные.

Кокковидные бактерии (кокки) по характеру взаиморасположения после деления подразделяются на ряд вариантов.

1.Микрококки . Клетки расположены в одиночку. Входят в состав нормальной микрофлоры, находятся во внешней среде. Заболеваний у людей не вызывают.

2.Диплококки. Деление этих микроорганизмов происходит в одной плоскости, образуются пары клеток. Среди диплококков много патогенных микроорганизмов- гонококк, менингококк, пневмококк.

3.Стрептококки. Деление осуществляется в одной плоскости, размножающиеся клетки сохраняют связь (не расходятся), образуя цепочки. Много патогенных микроорганизмов- возбудители ангин, скарлатины, гнойных воспалительных процессов.

4.Тетракокки . Деление в двух взаимоперпендикулярных плоскостях с образованием тетрад (т.е. по четыре клетки). Медицинского значения не имеют.

5.Сарцины . Деление в трех взаимоперпендикулярных плоскостях, образуя тюки (пакеты) из 8, 16 и большего количества клеток. Часто обнаруживают в воздухе.

6.Стафилококки (от лат.- гроздь винограда). Делятся беспорядочно в различных плоскостях, образуя скопления, напоминающие грозди винограда. Вызывают многочисленные болезни, прежде всего гнойно- воспалительные.

Палочковидные формы микроорганизмов.

1.Бактерии- палочки, не образующие спор.

2.Бациллы- аэробные спорообразующие микробы. Диаметр споры обычно не превышает размера (“ширины”) клетки (эндоспоры).

3.Клостридии- анаэробные спорообразующие микробы. Диаметр споры больше поперечника (диаметра) вегетативной клетки, в связи с чем клетка напоминает веретено или теннисную ракетку.

Необходимо иметь в виду, что термин “бактерия” часто используют для обозначения всех микробов- прокариот. В более узком (морфологическом) значении бактерии- палочковидные формы прокариот, не имеющих спор.

Извитые формы микроорганизмов.

1.Вибрионы и кампилобактерии- имеют один изгиб, могут быть в форме запятой, короткого завитка.

2.Спириллы- имеют 2- 3 завитка.

3.Спирохеты- имеют различное число завитков, аксостиль- совокупность фибрилл, специфический для различных представителей характер движения и особенности строения (особенно концевых участков). Из большого числа спирохет наибольшее медицинское значение имеют представители трех родов- Borrelia, Treponema, Leptospira.

Характеристика морфологии риккетсий, хламидий, микоплазм, более подробная характеристика вибрионов и спирохет будет дана в соответствующих разделах частной микробиологии.

Данный раздел завершаем краткой характеристикой (ключем) для характеристики основных родов микроорганизмов, имеющих медицинское значение, на основе критериев, применяемых в определителе бактерий по Берджи (Berge).

Таблица. Ключ к основным группам бактерий

Основные группы бактерий | Роды бактерий

1.Изгибающиеся бактерии с тонкими стенками, подвиж-

ность обеспечивается за счет скольжения- скользя-

щие бактерии

2.Изгибающиеся бактерии с тонкими стенками, подвижные - Treponema

ность связана с наличием осевой нити- спирохеты Borrelia, Leptospira

3.Ригидные бактерии с толстыми стенками, неподвиж-

ные или подвижные благодаря жгутикам- эубактерии

А. Мицелиальные формы Mycobacterium, Actino-

myces, Nocardia, Strep-

Б.Простые одноклеточные

2/свободноживущие

а. грамположительные:

кокки Streptococcus, Staphy-

неспорообразующие палочки Corynebacterium, Lis-

teria, Erysipelothrix

спорообразующие палочки

в т.ч. обязательные аэробы Bacillus

в т.ч. обязательные анаэробы Clostridium

б. грамотрицательные:

кокки Neisseria

некишечные палочки

в т.ч. спиральной формы Spirillum

в т.ч. прямые, очень мелкие палочки Pasteurella, Brucella,

Yersinia, Francisella,

Haemophilus, Borde-

кишечные палочки

в т.ч. факультативные анаэробы Escherichia, Salmone-

lla, Shigella, Klebsiel-

la, Proteus, Vibrio

в т.ч. облигатные аэробы Pseudomonas

в т.ч. облигатные анаэробы Bacteroides, Fuso-

4.Без клеточных стенок Mycoplasma, Urea-

ВВЕДЕНИЕ

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

ИСТОРИЯ РАЗВИТИЯ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

СИСТЕМАТИКА И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

Основы морфологии бактерий

БАКТЕРИИ

ВВЕДЕНИЕ

Наша планета населена огромным числом живых существ. Микроорганизмы наиболее древняя форма жизни на Земле, они появились 3-4 млрд. лет тому назад. Их можно обнаружить в почве, в пыли, в воде, в воздухе, на покровах животных и растений, внутри организмов и даже в горячих источниках, в космосе. Все живые организмы, населяющие нашу планету, относятся к макро- или микромиру.

К макромиру принадлежат организмы, видимые невооруженным глазом:

млекопитающие

пресмыкающиеся

птицы, рыбы и др.

К микромиру - представители живой природы, которых можно наблюдать с помощью микроскопа:

бактерии

простейшие

С точки зрения медицины все микробы можно разделить на 3 группы:

Ø Бактерии и грибы разрушают органическое вещество и участвуют в круговороте веществ в природе.

Ø Разлагая органические вещества, микроорганизмы являются причиной порчи продуктов.

Ø Некоторые микроорганизмы в результате своей жизнедеятельности разрушают человеческие строения, чем наносят огромный ущерб.

Ø Человек использует бактерии для очистки сточных вод.

Ø Человек получает с помощью микроорганизмов множество незаменимых продуктов (хлеб и сыр, вино и кумыс, льняная пряжа).

Ø Некоторые микроорганизмы являются причиной инфекционных заболеваний человека.

Ø В кишечнике человека и других животных живут многие бактерии-симбионты, которые приносят огромную пользу организму.

Ø Бактерии, живущие внутри организма, выделяют дополнительное тепло.

Ø Человек заставил микробы вырабатывать бактериальные удобрения, антибиотики, витамины, препараты для защиты растений. Такое техническое использование микроорганизмов называется биотехнологией.

Ø Методом генетической инженерии получают многие белковые биологические вещества, представляющие ценность для медицины.

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

Микробиология (греч.micros - малый, лат.bios - жизнь, logos- учение) - наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, - животными, растениями и человеком. Медицинская микробиология и иммунология тесно связаны со всеми медицинскими дисциплинами (инфектологией, терапией, педиатрией, хирургией, фтизиатрией, гигиеной, фармакологией и др.). Значительно возросла роль микробиологии, вирусологии и иммунологии в решении многих проблем здравоохранения.

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней. Микробиология изучает многообразный мир микробов. В своем развитии она разделилась на несколько самостоятельных дисциплин. В первую очередь её можно разделить на общую и частную микробиологию.

В зависимости от решаемых задач делится:

микробиология бактерия клетка морфология

ИСТОРИЯ РАЗВИТИЯ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

Медицинская микробиология развилась в результате изучения инфекционных болезней.

История развития медицинской микробиологии как самостоятельной научной дисциплины насчитывает несколько этапов, обусловленных не столько временными периодами, сколько уровнем развития науки и техники.

Эвристический этап - период догадок и случайных находок. О существовании микробов догадывались уже древние мыслители и врачи. «Отец медицины» Гиппократ считал, что некоторые болезни человека вызываются какими-то невидимыми частицами, которые он называл миазами. О живой природе миазм начали догадываться значительно позднее. Римский поэт Веррон уже определенно считал миазмы живыми существами. Итальянский врач Джироламо Фракасторо, живший в середине века, писал, что заболевания передаются от человека человеку «живыми контагиями». Он создал учение о живом «контагии» - «мельчайших и недоступных нашим чувствам частиц», которые, проникая в организм человека, вызывают болезнь.

Величайшее открытие эвристического периода в медицинской микробиологии было сделано в конце 18 в. Э.Дженнером, который предложил вакцинацию против черной оспы путем нанесения на кожу человека содержимого оспин (пустул) от больных коров. Вирус коровьей оспы, содержащийся в пустулах, предохранял человека от заражения черной оспы. Еще не была доказана роль микробов в патологии, еще не была разработана теория защитных прививок, но микробиология начала реально помогать людям.

Морфологический этап микробиологии начался в 17 в., когда голландский натуралист А. Левенгук впервые увидел микробы, находящиеся в воде, травяных настоях, пищевых продуктах, ротовой полости, кишечнике и т.д. Для своих наблюдений он использовал двояковыпуклые линзы (лупы), приготовленные им самим. Они давали увеличение в 160 - 200 раз. Увиденные микробы А. Левенгук назвал ничтожными «зверушками» и подробно описал их в письмах в Британское королевское научное общество. все его описания форм микробов (шарообразные, палочковидные, извитые и др.) были настолько точны, что до настоящего времени сохранили свое значение.

Прообраз микроскопа как систему двух линз (объектива и окуляра) создал в 1590г. голландец З. Янсен. В последующие годы этот прибор многократно усовершенствовался. В результате в середине ХIХ века появился микроскоп, который по техническим возможностям не уступал современным световым микроскопам. Он мог увеличивать рассматриваемые предметы в 1000 раз. Создание микроскопов стимулировало развитие микробиологии. Начался период «охотников за микробами».

Первыми были открыты возбудители заболеваний волос и кожи человека: парши (Шенлейн), стригущего лишая (Груби), отрубевидного лишая (Эйхштедт) и молочницы (Лагенбек, Груби). Так зародилась наука о патогенных грибах - микология.

Развитие микробиологии ускорилось после того, как Р.Кох в конце ХIХ века разработал твердые питательные среды для получения чистых культур микроорганизмов, а также предложил использовать красители для изучения морфологии микробных клеток.

Различные микробиологические методики, разработанные Р. Кохом, позволили изучить возбудителей почти всех инфекционных заболеваний. Р. Кох выделил чистую культуру возбудителя сибирской язвы, туберкулёза (палочка Коха) и холеры (запятая Коха).

Среди всех «охотников за микробами» самым знаменитым был французский ученый Л. Пастер. Он доказал патологическую роль микробов родильной горячки, абсцессов и остеомиелита.

В последующие годы Т. Эшерих открыл кишечную палочку, Э. Ру - дифтерийную палочку, Д. Сальмон - возбудителей кишечных инфекций. Вслед за ними последовали новые открытия. К. Шига описал возбудителей дизентерии и коклюша, Г. Ганзен - проказы, С. Китазато - столбняка и чумы, а Ф. Шаудин и Э. Гофман - сифилиса.

Важнейшим событием в микробиологии было обнаружение ядовитых веществ (токсинов), выделяемых микробами. Это было сделано учеником Л. Пастера - Э. Ру, которые доказал, что основные симптомы и тяжесть течения дифтерии обусловлены токсином, выделяемым дифтерийной палочкой. Им был предложен способ лечения дифтерии при помощи специфических белков сыворотки крови (антител), нейтрализующих микробный токсин. Все перечисленные «охотники за микробами» заложили основы медицинской микробиологии.

Еще в конце ХIХ века обнаружено, что болезни человека могут быть вызваны не только бактериями, но и простейшими. Русские ученые Ф.А. Леш и П.Ф. Боровский открыли возбудителей амёбной дизентерии и кожного лейшманиоза. В дальнейшем доказана патогенная роль малярийного плазмодия, трихомонад, токсоплазм, балантий и других простейших. Зародилось новое направление в медицинской микробиологии - протозоология.

Русский ученый И.И. Мечников, работавший в институте Л. Пастера, первым изучил мир собственной микрофлоры организма и других микробов, окружающих человека. Он первым указал на большое значение микрофлоры для жизнедеятельности человека в норме и при патологии. Болезнетворные свойства микробов аутофлоры и окружающей среды проявляются только при ухудшении здоровья человека (условно-патогенные микробы). Таким образом, И.И. Мечников является основоположником нового раздела микробиологии - экологической микробиологии.

Морфологический период развития микробиологии не окончен, так как ученые делают все новые и новые открытия. Всего к настоящему времени было выделено и изучено около 4000 видов бактерий.

Развитие микробиологической техники, создание мелкопористых фильтров с определенным размером пор, использование метода культуры клеток позволили открыть вирусы. Период «охотников за микробами» сменился периодом «охотников за вирусами». Первым из них был русский ученый Д.И. Ивановский, выделивший в чистом виде (1892) вирус табачной мозаики. Вслед за ним Ф. Леффлер и П. Фрош открыли вирус ящура, поражающего животных, Т. Смит - вирус желтой лихорадки, вызывающий поражение печени у людей, Ф. Дэрелль - бактериофаг (вирус, поражающий бактерии), В. Смит с соавторами - вирус гриппа, Л.А. Зильбер - вирус энцефалита и онкогенные вирусы. Возникла новая наука - вирусология.

Развитию вирусологии способствовало изобретение в 30-е годы ХХ века электронного микроскопа, в котором в качестве осветителя используется источник электронов, фокусируемых электростатическими линзами. Электронный микроскоп в 10 000 раз увеличивает изображение объекта. Его создание позволило увидеть «портреты» вирусов.

Изучение патогенных вирусов продолжается. В 1982 году Л. Монтанье и Р. Гало открыли вирус иммунодефицита человека (ВИЧ/СПИД). В 2003 году китайские ученые описали вирус, вызывающий острый респираторный синдром (SARS) - атипичную пневмонию.

В 1963 году американский ученый К. Гайдушек доказал существование принципиально нового инфекционного начала, названного прионом. В отличие от всех других микробов прионы не содержат нуклеиновых кислот и являются белками с низкой молекулярной массой (инфекционные белковые молекулы). Они поражают клетки ЦНС, вызывают их разрыв и губкообразное перерождение, что закономерно заканчивается гибелью организма. Вызываемые прионами болезни стали называть «медленными инфекциями», так как между заражением и гибелью организма проходило от 5 до 20 лет. До настоящего времени не разработано средств лечения этих заболеваний.

Обнаружение возбудителей болезней сопровождалось изучением их биологических свойств. За морфологическим периодом развития микробиологии последовал ФИЗИОЛОГИЧЕСКИЙ. В этот период изучены процессы обмена веществ и дыхания у микробов, их ферментативная активность, размножение и рост на питательных средах. Физиологический период развития микробиологии связан с именем Л. Пастера. Он открыл ферментативную природу брожения, вызываемого жизнедеятельностью микробов, и заложил основы промышленной микробиологии, основал принципы стерилизации питательных сред. Изучение особенностей жизнедеятельности микробов привело к появлению противобактериальных препаратов, способных убивать микробы в организме или препятствовать их размножению (сульфаниламиды и антибиотики). Основоположниками химиотерапии можно считать П. Эрлиха, синтезировавшего сульфаниламид - стрептоцид. Первый антибиотик пенициллин выделен в химически чистом виде английским ученым А. Флемингом и отечественным микробиологом З. В. Ермольевой. С каждым годом расширяется список противобактериальных препаратов. В настоящее время их количество исчисляется сотнями. Были получены препараты, обладающие противовирусной активностью (интерферон).

С именами Л. Пастера, И.И. Мечникова и П. Эрлиха связан иммунологический этап развития микробиологии. В медицинскую практику вошли профилактические вакцины, приготовленные из микробов против многих инфекционных заболеваний, а также лечебные сыворотки, содержащие специфические антитела против микробных токсинов.

В ХХ веке начался этап развития молекулярно-генетической микробиологии и иммунологии. В это время изучали основы молекулярного строения микробов, антител, генетического аппарата клеток и, наконец, генетического кода человека, обеспечивающего, в частности, иммунный ответ организма.

СИСТЕМАТИКА И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

М/о - это организмы, невидимые невооруженным глазом из-за их незначительных размеров.

Базовая категория (таксон) биологической классификации, отражающая определенную стадию эволюции отдельной популяции организмов - вид. Вид - эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, биохимическими и другими признаками. Принципы таксономии и номенклатуры микроорганизмов

Живые организмы (микроорганизмы) М/о относятся к 3 царствам:

Прокариоты PROCARIOTAE:

Эубактерии

Грациликуты (тонкая клеточная стенка)

Фирмикуты (толстая клеточная стенка)

Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты. Архебактерии

Мендосикуты

Эукариоты EUCARIOTAE: Животные Растения Грибы ПростейшиеНеклеточные формы жизни VIRA: Вирусы Прионы Плазмиды

Для микроорганизмов приняты следующие категории (таксоны) таксономической иерархии (по восходящей): Вид - Род - Семейство - Порядок - Класс - Отдел - Царство.

Названия видов биноминальны (бинарны), то есть обозначаются двумя словами. Первое слово обозначает Род и пишется с заглавной буквы, второе слово обозначает Вид и пишется со строчной буквы.

Схема формирования биноминального названия микроорганизмов.



Примеры конструирования биноминального названия бактерий.

Вид бактерий

Условное обозначение принадлежности к:


Bacillus anthracis

Bacillus (палочка)

anthracis (уголь - «антрацит»)

Clostridium tetanus

Clostridium (веретено)

tetanus (судороги)

Staphilococcus aureus

Staphilococcus (гроздья винограда, шар)

aureus (золотистый цвет колонии)

Shigella dysenteriae

dysenteriae (расстройство кишечника)

coli (кишка)

Salmonella typhi

typhus («туман» - бред)


ОСНОВЫ МОРФОЛОГИИ БАКТЕРИЙ

Специализированные термины:

Штамм - культура микроорганизмов, выделенная из определенного конкретного источника (организма или объекта окружающей среды).

Форма бактерий. Размер бактерий.

Строение бактериальной клетки.

Характеристика некоторых групп бактерий.

ФОРМА БАКТЕРИЙ. РАЗМЕР БАКТЕРИЙ

Отдельным видам бактерий с достаточным постоянством присущи определенные формы и размер.

Выделяют три основные формы бактерий - шаровидные, палочковидные и извитые.

Шаровидные бактерии, или кокки

Форма шаровидная или овальная.

Микрококки - отдельно расположенные клетки.

Диплококки - располагаются парами.

Стрептококки - клетки округлой или вытянутой формы, составляющие цепочку.

Сарцины - располагаются в виде «пакетов» из 8 и более кокков. Стафилококки - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

Рис. 1. Шаровидные бактерии (энтерококки). Электронная микрофотография (ЭМ).

Палочковидные бактерии. Форма палочковидная, концы клетки могут быть заостренными, закругленными, обрубленными, расщепленными, расширенными. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся, например у актиномицетов.

По характеру расположения клеток в мазках выделяют:

Монобактерии - расположены отдельными клетками.

Диплобактерии - расположены по две клетки.

Стрептобактериии - после деления образуют цепочки клеток.

Палочковидные бактерии могут образовывать споры: бациллы и клостридии.

Рис. 2. Палочковидные бактерии (кишечная палочка). ЭМ.

Извитые бактерии

Форма - изогнутое тело в один или несколько оборотов.

Вибрионы - изогнутость тела не превышает одного оборота.

Спирохеты - изгибы тела в один или несколько оборотов.

Рис. 3. Извитые бактерии (холерный вибрион). ЭМ.

Размер бактерий

Микроорганизмы измеряются в микрометрах и нанометрах.

Средние размеры бактерий - 2 - 3 х 0,3 - 0,8 мкм.

Форма и размер - важный диагностический признак.

Способность бактерий изменять свою форму и величину называется полиморфизм.

БАКТЕРИИ

СТРОЕНИЕ БАКТЕРИАЛЬНОЙ КЛЕТКИ

Строение бактерий.

Тело бактерии состоит из цитоплазмы (с различными включениями) и цитоплазматической мембраны, окруженных клеточной стенкой.

Цитоплазма занимает основной объем бактериальной клетки. Важнейшим компонентом цитоплазмы является нуктеотид, который считается эквивалентом ядра и расположен в центральной зоне бактерии. Кроме нуклеотида, в цитоплазме находятся плазмиды, являющиеся факторами наследственности (их может быть от 1 до 200).

Цитоплазматическая мембрана ограничивает цитоплазму (участвует в транспорте питательных веществ).

Между клеточной стенкой и цитоплазматической мембраной находится пространство - периплазма, содержащая ферменты.

Клеточная стенка - прочная структура, придающая бактерии определенную форму. По типу строения клеточной стенки бактерии подразделяют на грамположительные с толстой стенкой и грамотрицательные с тонкой клеточной стенкой.

Основным компонентом клеточной стенки у грамположительных бактерий является пептидоглюкан, способный удерживать краску генцианвиолет в комплексе с йодом (сине-фиолетовый цвет) при обработке препарата спиртом.

Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы - капсулы и споры.

Капсула - внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека или животных. Капсула предохраняет м/о от защитных факторов организма (препятствуют захвату бактерий фагоцитами).

Спора - форма грамположительных бактерий, образующаяся при неблагоприятных условиях существования клетки (высушивание, дефицит питательных веществ, изменение температуры и др). Образование спор способствует сохранению вида и не имеет отношения к размножению бактерий.

Спорообразующие аэробные бактерии называются бациллами, а анаэробные - клостридиями.

Споры отличаются по форме, размерам и расположению в клетке. Они могут располагаться:


Жгутики обеспечивают подвижность микроба, их имеют только палочковидные бактерии, они берут начало от цитоплазматической мембраны.

По числу жгутиков различают:

Монотрих (один у холерного вибриона);

Перитрих (до сотен у кишечной палочки)

Амфитрихи - по одному или нескольку жгутиков на противоположных концах микробной клетки (спириллы)

Лофотрихи - имеют пучок жгутиков на одном из концов клетки.

Ворсинки, или пили, - нитевидные образования, более короткие, чем жгутики. Они отходят от поверхности бактерии, состоят из белка пилина и ответственны за прилипание микроба к поражаемой клетке. Среди пилей выделяют половые пили, присущие "мужским" клеткам-донорам, содержащим трансмиссивные плазмиды (F, R, Col). Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и так называемым нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Рис. 4. Строение бактериальной клетки (схема). Сapsule - капсула; Сell wall - клеточная стенка; Cytoplasmic membrane - цитоплазматическая мембрана; Mesosome - мезосома; Flagellum - жгутик; Pili - пили; Cytoplasma - цитоплазма; Nucleoid - нуклеоид; Ribosomes - рибосомы; Granular inclusion - включения.

Рис. 5. Определите форменные элементы бактериальной клетки.

Грамположительные бактерии имеют толстую (многослойную) клеточную стенку.

Окрашиваются по Граму в фиолетовый цвет.

Грамотрицательные бактерии имеют тонкую клеточную стенку, прикрытую снаружи тройным липидсодержащим слоем (внешняя мембрана).Окрашиваются по Граму в красный цвет.

Рис. 6. Строение клеточной стенки грамположительных (А) и грамотрицательных (Б) бактерий (схема).

У грамположительных бактерий (А) основной слой - пептидогликан - многослойный и пронизан тейхоевыми кислотами (толстая клеточная стенка); у грамотрицательных бактерий (Б) тонкий пептидогликан и над ним расположена внешняя мембрана, содержащая липиды (тонкая клеточная стенка).

Тинкториальные свойства - восприимчивость микроорганизмов к различным красителям.формы - бактерии, полностью лишенные клеточной стенки и способные размножаться.

Споры и спорообразование

Споры бактерий - своеобразная форма покоящихся бактерий, форма сохранения наследственной информации в неблагоприятных условиях внешней среды и не является способом размножения, как у грибов.

Процесс спорообразования: спорогенная зона - проспора - спора.

В благоприятных условиях споры прорастают за 4-5 часов. Образуют споры в течение 18-20 часов.

Рис. 7. Спора внутри бактериальной клетки (ЭМ).

Рис. 8. Споры сибиреязвенной палочки (светооптическая микроскопия, СМ).

Подавляющее большинство бактерий одноклеточны. По форме клеток они могут быть округлыми (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже - звёздчатыми, тетраэдрическими, кубическими, C- или O-образными. Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы, то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).

Из обязательных клеточных структур выделяют три:*нуклеоид *рибосомы *цитоплазматическая мембрана (ЦПМ)

С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки). ЦПМ и цитоплазму объединяют вместе в понятие протопласт.

2.Генетика вирусов. Патогенные для человека вирусы обладают двумя основными свойствами - наследственностью и изменчивостью , изучение которых составляет предмет особой научной дисциплины - генетики вирусов.Популяционную структуру вирусов и характер протекающих в них процессов определяют следующие факторы. Высокая численность популяции , что увеличивает вероятность мутаций, которые могут быть подхвачены естественным отбором при изменении условий существования вирусов. Быстрая смена поколений позволяет изучать изменчивость вирусов не только в эксперименте, по и наблюдать их естественную эволюцию в природе. Гаплоидностъ и бесполый способ размножения определяют: генетическую чистоту популяции (отсутствие гибридов); невозможность сохранения запасов изменчивости за счёт диплоидности; немедленное попадание мутантов под контроль отбора.

Малая ёмкость генома и отсутствие повторяющихся генов . Для реализации инфекционного цикла необходима функциональная целостность всех генов.

Незначительное изменение одного из них может вызвать летальный или условно-летальный эффект для вируса.

Непрерывность в динамике эпидемического процесса , так как обязательное условие сохранения в природе - передача новым чувствительным хозяевам. Вирусные популяции хорошо адаптированы к внешним условиям и не претерпевают существенных изменений в течение продолжительного времени. При изменении условий для выживания популяции становится необходимой перестройка наследственной структуры , обеспечивающая адаптацию к новой среде. Подобная перестройка возможна лишь при наличии в общем генофонде популяции изменённых генов. Генофонд вирусных популяций создаётся и пополняется из четырёх основных источников: внутренние факторы: мутации, рекомбинации. Внешние: включение в геном генетического материала клетки-хозяина (появление геномов, содержащих новый материал), Фенотипическая смешивание(обогащение генофонда за счёт поступления генов из других вирусных популяций).

3.Возбудители холеры. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение. Семейство Vibrionaceae, род Vibrio, вид V. cholerae.Холера - древний антропоноз; со времен Гиппократа известна как "magi mara" - "великий мор". Уносила миллионы жизней. Карантинная инфекция.

Морфология. Грам(-), слегка изогнутые палочки (вид запятой. спор и капсул (кроме штамма Бенгал) не образуют; штамм Бенгал образует капсулу в организме. Облигатные аэробы. Монотрихи, длина жгутика может в 2-3 раза превышать длину сомы, что обуславливает высокую подвижность. Культуральныесвойства. Хорошо растут на простых питательных средах с щелочной реакцией (pH 8,5 - 9,5). На 1% пептонной воде образует нежную пленку (аэроб). На щелочном агаре - чаще гладкие прозрачные колонии с голубоватым оттенком, реже (в процессе диссоциации) - шероховатые и складчатые колонии. Биохимические свойства. В лабораторной практике используется биохимическая классификация по Хейбергу (для всего рода Vibrio). Выделяют 8 групп, возбудители холеры относятся к 1й группе (манноза к, сахароза к, арабиноза -). Образуют индол. Антигенная структура: (1) общий видо специфический H-АГ - жгутиковый (2) типо специфический О-АГ - соматический По О-АГ выделяют 80 серогрупп; V. cholerae, el-tor - серогруппа 01 (02 вызывает энтериты, гастроэнтериты). О1-АГ состоит из фракций А, В и С, их сочетания образуют серовары. 3 серовара : Инаба (АС), Огава (АВ) (основные возбудители), Гикошима (АВС) (промежуточный вариант). Штамм bengal - серовар 0-139. Факторы патогенности: (1) жгутики - активное продвижение бактерий к энтероцитам в слое слизи; (2) адгезивность - пили; (3) капсула у штамма Бенгал; (4) токсины : 1 типа - эндотоксин (О-АГ), 2 типа – экзоэнтеротоксин - холероген, основной признак; идентичен у всех трех возбудителей. 2 субъединицы: В - нетоксична, способствует адгезии токсина к энтероцитам; А - собственно токсин, проникает в энтероциты, где активирует АЦ, что приводит к накоплению цАМФ, который усиливает секрецию воды, натрия и хлора из клеток и нарушает всасывание калия; 3 типа - термостабильный токсин , поражает натрий-калиевую АТФазу; в результате - диарея, резкое обезвоживание организма; (5) нейраминидаза - способствует адгезии вибрионов на энтероцитах и проникновению в клетку; Заболевание. Источник - больной, вибрионоситель. Резервуар - гидробионты. Путь заражения - алиментарный, при употреблении инфицированной воды (овощи, гидробионты etc.). Основные клинические формы - холерный энтерит, гастроэнтерит. Инкубационный период - несколько часов - 6 дней. Первый симптом - диарея, Второй симптом - обильная многократная рвота фонтаном, обезвоживания, обессоливания организма, мышечной слабости, головокружению, осиплости голоса, резкой потере тургора кожи. Микробиологическая диагностика : (1) экспресс-методы : для определения АГ возбудителей: РИФ, РНГА по Рыцаю, метод иммобилизации вибрионов с помощью О-холерной сыворотки; учет в темнополевом и фазово-контрастном микроскопе. (2) основной метод - бактериологический .(3) дополнительный - серологический: определение вибриоцидных АТ в сыворотке пациента с помощью реакции бактериолиза (для реконвалесцентов). (4) генетический - использование молекулярно-генетических зондов к генам tox+ возбудителей токсина. Лечение . В первую очередь - восстановление водно-солевого обмена, а затем - использование антибиотиков, химиотерапии. Восстановление водно-солевого обмена должно производиться путем введения солевых растворов per os или в/в: KCl, NaCl, NaHCO3, глюкоза etc. Объем вводимой и выводимой жидкости должен строго контролироваться.Профилактика. 6-месячный иммунитет, не профилактируют штамм Бенгал. 1) вакцина холерная корпускулярная инактивированная из V. cholerae, V. el-tor; 2) химическая холерная вакцина - моно (содержит холероген-анатоксин и О-АГ серовара Инаба); 3)химическая холерная вакцина - би (серовары Огава, Инаба).

1.Принципы классификации бактерий. Для бактерий ре­комендованы следующие таксономические категории: класс, отдел, порядок, семейство, род, вид. Название вида соответствует бинар­ной номенклатуре, т. е. состоит из двух слов. Например, возбудитель сифилиса пишется как Treponema pallidum . Первое слово - название рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы. При повторном упоминании вида родовое название сокращается до на­чальной буквы, например: Т. pallidum . Бактерии относятся к прокариотам, т. е. доядерным организмам, поскольку у них имеется примитивное ядро без оболочки, ядрышка, гистонов, а в цитоплазме отсутс­твуют высокоорганизованные органеллы Бактерии делят на 2 домена: « Bacteria » и « Archaea ». В домене « Bacteria » можно выделить следующие бактерии:

1) бактерии с тонкой клеточной стенкой, грамм(-);

2) бактерии с толстой клеточной стенкой, грамм(+);

3) бакт. без КС (класс Mollicutes - микоплазмы)

Архебактерии не содержат пептидогликан в клеточной стенке. Они имеют особые рибосомы и рибосомные РНК (рРНК). Среди тонкостенных грамм(-) эубактерий различают:

Сферические формы, или кокки (гонококки, менингококки, вейлонеллы);

Извитые формы - спирохеты и спириллы;

Палочковидные формы, включая риккетсии.

К толстостенным грамм(+) эубактериям относят:

Сферические формы, или кокки (стафилококки, стрептококки, пневмококки);

Палочковидные формы, а также актиномицеты (ветвящиеся, нитевидные бактерии), коринебактерии (булавовидные бак­терии), микобактерии и бифидобактерии.

Тонкостенные грамм(-) бактерии: Менингококки, гонококки, Вейлонеллы, Палочки, Вибрионы, Кампилобактерии, Хеликобактерии, Спириллы, Спирохеты, Риккетсии, Хламидии.

Толстостенные грамм(+) бактерии: Пневмококки, Стрептококки, Стафилококки, Палочки, Бациллы, Клостридии, Коринебактерии, Микобактерии, Бифидобактерии, Актиномицеты.

2.Механизмы лекарственной устойчивости возбудителей инфекционных болезней. Пути ее преодоления. Антибиотикорезистентность - это устойчивость микробов к антимикробным химиопрепаратам. Бактерии следует считать резистентными, если они не обезвреживаются такими концентрациями препарата, которые реально создаются в макроорганизме. Резистентность может быть природной и приобретенной.

Природная устойчивость . Некоторые виды микробов природно устойчивы к определенным семействам антибиотиков или в результате отсутствия соответствующей мишени (например, микоплазмы не имеют клеточной стенки, поэтому не чувствительны ко всем препаратам, действующим на этом уровне), или в результате бактериальной непроницаемости для данного препарата (например, грамотрицательные микробы менее проницаемы для крупномолекулярных соединений, чем грамположительные бактерии, так как их наружная мембрана имеет «маленькие» поры).

Приобретенная устойчивость. Приобретение резистентности - это биологическая закономерность, связанная с адаптацией микроорганизмов к условиям внешней среды. Она, хотя и в разной степени, справедлива для всех бактерий и всех антибиотиков. К химиопрепаратам адаптируются не только бактерии, но и остальные микробы - от эукариотических форм (простейшие, грибы) до вирусов. Проблема формирования и распространения лекарственной резистентности микробов особенно значима для внутрибольничных инфекций, вызываемых так называемыми «госпитальными штаммами», у которых, как правило, наблюдается множественная устойчивость к антибиотикам (так называемая полирезистентность).

Генетические основы приобретенной резистентности. Устойчивость к антибиотикам определяется и поддерживается генами резистентности (r-генами) и условиями, способствующими их распространению в микробных популяциях. Приобретенная лекарственная устойчивость может возникать и распространяться в популяции бактерий в результате:

Мутаций в хромосоме бактериальной клетки с последующей селекцией (т. е. отбором) мутантов. Особенно легко селекция происходит в присутствии антибиотиков, так как в этих условиях мутанты получают преимущество перед остальными клетками популяции, которые чувствительны к препарату. Мутации возникают независимо от применения антибиотика, т. е. сам препарат не влияет на частоту мутаций и не является их причиной, но служит фактором отбора. Далее резистентные клетки дают потомство и могут передаваться в организм следующего хозяина (человека или животного), формируя и распространяя ре-зистентные штаммы. Мутации могут быть: 1) единичные (если мутация произошла в одной клетке, в результате чего в ней синтезируются измененные белки) и 2) множественные (се¬рия мутаций, в результате чего изменяется не один, а целый набор белков, например пени-циллинсвязывающих белков у пенициллин-резистентного пневмококка);

Переноса трансмиссивных плазмид резистентности (R-плазмид). Плазмиды резистентности (трансмиссивные) обычно кодируют перекрестную устойчивость к нескольким семействам антибиотиков. Впервые такая множественная резистентность была описана японскими исследователями в отношении кишечных бактерий. Сейчас показано, что она встречается и у других групп бактерий. Некоторые плазмиды могут передаваться между бактериями разных видов, поэтому один и тот же ген резистентности можно встретить у бактерий, таксономически далеких друг от друга. Например, бета-лактамаза, кодируемая плазмидой ТЕМ-1, широко распространена у грамотрицательных бактерий и встречается у кишечной палочки и других кишечных бактерий, а также у гонококка, резистентного к пенициллину, и гемофильной палочки, резистентной к ампициллину;

Переноса транспозонов, несущих r-гены (или мигрирующих генетических последовательностей). Транспозоны могут мигрировать с хромосомы на плазмиду и обратно, а также с плазмиды на другую плазмиду. Таким образом гены резистентности могут передаваться далее дочерним клеткам или при рекомбинации другим бактериям-реципиентам.

Реализация приобретенной устойчивости. Изменения в геноме бактерий приводят к тому, что меняются и некоторые свойства бактериальной клетки, в результате чего она становится устойчивой к антибактериальным препаратам. Обычно антимикробный эффект препарата осуществляется таким образом: агент должен связаться с бактерией и пройти сквозь ее оболочку, затем он должен быть доставлен к месту действия, после чего препарат взаимодействует с внутриклеточными мишенями. Реализация приобретенной лекарственной устойчивости возможна на каждом из следующих этапов:

модификация мишени . Фермент-мишень может быть так изменен, что его функции не нарушаются, но способность связываться с химиопрепаратом (аффинность) резко снижается или может быть включен «обходной путь» метаболизма, т. е. в клетке активируется другой фермент, который не подвержен действию данного препарата.

«недоступность» мишени за счет снижения проницаемости клеточной стенки и клеточных мембран или «эффлюко-механизма, когда клетка как бы «выталкивает» из себя антибиотик.

инактивация препарата бактериальными ферментами. Некоторые бактерии способны продуцировать особые ферменты, которые делают препараты неактивными (например, бета-лактамазы, аминогликозид-модифицирующие ферменты, хлорамфениколацетилтрансфераза). Бета-лактамазы - это ферменты, разрушающие бета-лактамное кольцо с образованием неактивных соединений. Гены, кодирующие эти ферменты, широко распространены среди бактерий и могут быть как в составе хромосомы, так и в составе плазмиды.

Для борьбы с инактивирующим действием бета-лактамаз используют вещества - ингибиторы (например, клавулановую кислоту, сульбактам, тазобактам). Эти вещества содержат в своем составе бета-лактамное кольцо и способны связываться с бета-лактамазами, предотвращая их разрушительное действие на бета-лактамы. При этом собственная антибактериальная активность таких ингибиторов низкая. Клавулановая кислота ингибирует большинство известныхбета-лактамаз. Ее комбинируют с пеницил-линами: амоксициллином, тикарциллином, пиперациллином.

Предупредить развитие антибиотикорезистентности у бактерий практически невозможно, но необходимо использовать антимикробные препараты таким образом, чтобы не способствовать развитию и рас-пространению устойчивости (в частности, применять антибиотики строго по показаниям, избегать их использования с профилактической целью, через 10-15 дней ан-тибиотикотерапии менять препарат, по воз-можности использовать препараты узкого спектра действия, ограниченно применять антибиотики в ветеринарии и не использвать их как фактор роста).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

МОРФОЛОГИЯ И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

Морфология микроорганизмов изучает их внешний вид, форму и особенности строения клеток, способность к движению, спорообразованию, а также способы размножения.

Все микроорганизмы были выделены в отдельное царство «Протиста». С конца XIX в, стали накапливаться данные о различии в строении клеток микроорганизмов, входящих в группу «Протиста». Эту группу организмов разделили на высшие и низшие протисты. Такое деление основано на типе клеточной организации, отражающей уровень эволюции.

Высшие протисты имеют эукариотное строение клетки, низшие - прокариотное. Прокариоты отличаются от эукариот тем, что у них в клетке нет обособленного ядра, отделенного от цитоплазмы собственной мембраной. Второе отличие прокариот - отсутствие цитоплазматических органелл, окруженных элементарной мембраной;

У эукариотных клеток имеется хорошо развитая система клеточных мембран (эндоплазматическая сеть, аппарат Гольджи, митохондрии). Третья особенность прокариотной клетки состоит в том, что рибосомы имеют малые размеры и рассеяны в цитоплазме; в эукариотной клетке рибосомы крупнее и расположены преимущественно на поверхности мембран эндоплазматической сети.

В 1969 г. была предложена схема разделения живых организмов на пять царств. Эта схема классификации (разделения) живых организмов отражает три основных уровня клеточной организации живых систем:

Монера - прокариотные организмы;

Протиста - микроскопические, в большинстве одноклеточные формы жизни, возникшие в результате качественного скачка в процессе эволюции, приведшего к появлению эукариотных клеток; Эукариоты - многоклеточные, включающие три царства: растения, животные и грибы, различающиеся по способу питания. Отдельно существует шестое царство - вирусы - неклеточные формы жизни.

бактерия клетка дрожжи гриб

БАКТЕРИИ

Общая характеристика

Бактерии - это обширная группа микроорганизмов (около 1600 видов), большинство из которых одноклеточные.

Форма и размеры бактерий. Основными формами бактерий являются шаровидная, палочковидная и извитая (рис. 2).

Шаровидные бактерии (рис. 2, а) - кокки - имеют обычно форму шара, встречаются уплощенные, слабо овальной или бобовидной формы. Кокки могут быть в виде

· одиночных клеток - микрококки или соединенных в различных сочетаниях:

· попарно - диплококки,

· по четыре клетки - тетракокки,

· в виде более или менее длинных цепочек - стрептококки,

· в виде скоплений кубической формы (в виде пакетов) из восьми клеток, расположенных в два яруса один над другим,- сардины.

Встречаются скопления неправильной формы, напоминающие грозди винограда,- стафилококки.

Палочковидные бактерии (рис. 2, б) могут быть одиночными или соединенными попарно - диплобактерии, цепочками по три-четыре и более клеток - стрептобактерии.

Извитые или изогнутые бактерии (рис. 2, в) различаются по длине, толщине и степени изогнутости. Палочки , слегка изогнутые в виде запятой, называют вибрионами, палочки с одним или несколькими завитками в виде штопора - спириллами, а тонкие палочки с многочисленными завитками - спирохетами.

Размеры бактерий очень малы: от десятых долей микрометра 1 (мкм) до нескольких микрометров. В среднем диаметр тела большинства бактерий 0,5-1 мкм, а средняя длина палочковидных бактерий 2-5 мкм. Встречаются бактерии, размеры которых значительно превышают среднюю величину. Существуют и такие, величина которых находится на грани видимости в обычные оптические микроскопы (0,1 -0,2 мкм). Например, длина клетки спирохеты может достигать 500 мкм, а самые мелкие из известных бактерий - микоплазмы - имеют клетки длиной 0,15-0,2 мкм.

Масса бактериальной клетки очень мала, приблизительно 4 · 10 -13 г.

Строение бактериальной клетки. Клетка прокариотных организмов, к которым относят бактерии, обладает принципиальными особенностями ультраструктуры. На рис. 3 представлена схема строения бактериальной клетки.

Клеточная стенка (оболочка) - важный и обязательный структурный элемент большинства бактерий (рис. 3, 2). На долю клеточной стенки приходится от 5 до 20 % сухих веществ клетки. Она придает клетке определенную форму.

По методу окраски, предложенному Грамом, бактерии делят на две группы: грамположительные и грамотрицательные . Грамположительные клетки удерживают краску, а грамотрицательные клетки не удерживают. Установлено, что это обусловлено различиями в химическом составе и ультраструктуре их клеточных стенок.

Рис. 2. Формы бактерий:

а - шаровидные: / - микрококки; 2 - стрептококки; 3 - диплококки и тетракокки; 4 - стафилококки; 5 - сарцины; б - палочковидные: 6 - палочки без спор; 7 - палочки со спорами; в - извитые: 8 - вибрионы; 9 - спириллы; 10 - спирохеты; г - новые формы: // - тороиды; 12 - бактерии, образующие простеки; 13 - бактерии червеобразной формы; 14 - бактерии в форме шестиугольной звезды

Рис. 3. Схема строения бактериальной клетки:

1 - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - цитоплазма; 5 - мезосомы; 6 - рибосомы; 7 - нуклеоид; 8 - внутрицитоплазматические мембранные образования; 9 - жировые капли; 10 - полисахаридные гранулы; 11 - гранулы полифосфата; 12 - включения серы; 13 - жгутики; 14 - базальное тельце

Клеточная стенка бактерий часто бывает покрыта слизью. Слизистый слой может быть тонким, едва различимым, но может быть и значительным, образующим капсулу (рис. 3.1). При быстром размножении в жидких субстратах слизеобразующие бактерии могут превратить их в сплошную слизистую массу. Возбудителем этого процесса является бактерия лейконосток (Leuconostoc mesen-teroides). За короткое время сахарный сироп может превратиться в тягучую слизистую массу. Ослизнению подвергаются мясо, колбасы, творог; наблюдается тягучесть молока, рассолов, квашеных овощей, пива, вина.

Капсула защищает клетку от механических повреждений и высыхания, создает дополнительный осмотический барьер,.Иногда она является источником запасных питательных веществ.

Цитоплазматическая мембрана отделяет от клеточной стенки содержимое клетки. Это обязательная структура любой клетки..

Цитоплазма бактериальной. клетки представляет собой полужидкую, вязкую, коллоидную систему (рис. 3, 4). Цитоплазма неоднородна; исследования показали, что местами она пронизана мембранными структурами - мезосомами, которые произошли от цитоплазматической мембраны и сохранили с ней связь.

Мезосомы (рис. 3, 5) выполняют различные функции, в них и в связанной с ними цитоплазматической мембране расположены ферменты, участвующие в энергетических процессах - в снабжении клетки энергией.

В цитоплазме содержатся рибосомы, ядерный аппарат и различные включения.

Рибосомы рассеяны в цитоплазме в виде мелких гранул размером 20-30 нм; рибосомы состоят примерно наполовину из РНК и белка. Рибосомы ответственны за синтез белка клетки. В бактериальной клетке их может быть 5-50 тыс. (рис. 3, 6).

Ядерное образование бактериальной клетки называется нуклеоидом (рис. 3, 7) в отличие от названия «я д с о» у эукариотной клетки.

Цитоплазматические включения бактериальной клетки разнообразны, в основном - это запасные питательные вещества, которые откладываются в клетке, когда они развиваются в условиях избытка питательных веществ в среде, и потребляются, когда клетки попадают в условия голодания.

Подвижность бактерий. Шаровидные бактерии, как правило, неподвижны. Палочковидные бактерии бывают как подвижными, так и неподвижными. Изогнутые и спиралевидные бактерии подвижны. Движение бактерий осуществляется с помощью жгутиков. Жгутики - это тонкие, спирально закрученные нити белковой природы, которые могут осуществлять вращательные движения. Длина жгутиков различна, а толщина так мала (10- 20 нм), что в световой микроскоп их можно увидеть только после специальной обработки клетки. Наличие жгутиков, их расположение являются постоянными для вида признаками и имеют диагностическое значение.

Размножение бактерий. Для прокариотных клеток характерно простое деление клетки на две части. Деление клетки начинается, как правило, спустя некоторое время после деления нуклеоида. Характерной особенностью размножения бактерий является быстрота протекания процесса. Скорость деления зависит от вида бактерий и условий культивирования: некоторые виды делятся через каждые 15-20 мин, другие - через 5-10 ч. При таком быстром делении число клеток бактерий за сутки достигает огромного количества. Это часто наблюдается на пищевых продуктах: быстрое скисание молока за счет развития молочнокислых бактерий, быстрая порча мяса и рыбы за счет развития гнилостных бактерий и т. д.

Спорообразование. Споры у бактерий образуются обычно при неблагоприятных условиях развития: при недостатке питательных веществ, изменении температуры, рН, при накоплении продуктов обмена выше определенного уровня. Способностью образовывать споры обладают почти исключительно палочковидные бактерии. В каждой бактериальной клетке образуется" только одна спора (эндоспора).

Спорообразованию предшествует перестройка генетического аппарата клетки, изменяется морфология нуклеоида. В клетке прекращается синтез ДНК. Ядерная ДНК вытягивается в виде нити, затем концентрируется у одного из полюсов клетки. Эта часть клетки называется спорогенной зоной. Затем в спорогенной зоне происходит уплотнение цитоплазмы, этот участок обособляется от остального клеточного содержимого перегородкой (септой)

ВИРУСЫ И ФАГИ

Вирусы. Это особая группа организмов меньших размеров и более простой организации, чем бактерии. Вирусы не имеют клеточной структуры (отсутствуют ядро, цитоплазма), величина их измеряется нанометрами. Вирусы открыты Д. И. Ивановским в 1892 г. при изучении мозаичной болезни листьев табака, которая причиняла большой ущерб табачным плантациям Крыма. Открытие Д. И. Ивановского заложило основу новой науки - вирусологии.

Некоторые из вирусов состоят только из белка и одной нуклеиновой кислоты - ДНК или РНК. Вирусная частица называется вирионом. Нуклеиновая кислота (в виде спирали) находится внутри вириона, снаружи он покрыт белковой оболочкой (капсидом), состоящей из отдельных морфологических субъединиц - капсомеров (рис. 6, б).

Вирусы обладают разной устойчивостью к внешним воздействиям. Многие инактивируются при 60 °С в течение 30 мин, другие выдерживают температуру 90 °С до 10 мин. Вирусы довольно легко переносят высушивание и низкие температуры, но малоустойчивы ко многим антисептикам, ультрафиолетовым лучам, радиоактивным излучениям.

Фаги. Это вирусы микроорганизмов, вызывающие гибель - распад (лизис) их клеток. Вирусы бактерий называют бактериофагами или фагами, вирусы актиномицетов - актинофагами, вирусы грибов - микофагами, вирусы сине-зеленых водорослей (цианобактерий) - цианофагами.

Фаги широко распространены в природе. Многие из них обладают специфичностью - могут воздействовать на определенный вид или группу родственных видов микроорганизмов.

Фаги применяют в медицине для лечения и профилактики некоторых заболеваний, например дизентерии, холеры.

ГРИБЫ (MYCOTA ИЛИ FUNGI )

Общая характеристика

Грибы - обширная и разнообразная группа растительных организмов, многие из которых называют плесенями.

В природе грибы обитают на разных субстратах: в воде, почве, на растениях и животных.

Многие грибы употребляют в пищу, используют в промышленных производствах для получения органических кислот, витаминов, ферментов, антибиотиков.

Многочисленны грибы, развивающиеся на пищевых продуктах, промышленных материалах и изделиях, вызывающие их порчу и разрушение. Некоторые из них способны вырабатывать токсические для человека вещества - микотоксины.

Существуют грибы, которые поражают культурные растения в процессе их вегетации, нанося большой урон сельскому хозяйству. Имеются грибы, патогенные для человека и животных. Строение тела гриба. Вегетативное тело большинства грибов представляет собой грибницу, или мицелий, состоящий из ветвящихся нитей - гиф.

Тело некоторых грибов представляет собой одиночные округлые или удлиненные клетки (дрожжи). Гифы отдельных грибов могут плотно переплетаться и даже срастаться между собой. У некоторых грибов гифы соединяются параллельно в тяжи, достигающие иногда нескольких метров в длину, по ним притекает вода и питательные вещества.

Из плотного сплетения гиф состоят так называемые плодовые тела грибов, в которых находятся органы размножения.

Грибы имеют эукариотный тип клетки.

Размножение грибов. Отличительной особенностью грибов является большое разнообразие у них способов и органов размножения. При этом гриб может настолько менять свою внешнюю форму, что в каждой из них его рассматривают как самостоятельный вид.

Грибы размножаются вегетативным, бесполым и половым путями.

Вегетативное размножение происходит без образования каких-либо специализированных органов: частями мицелия или отдельными клетками - о и д и я м и (артроспорами), образующимися в результате расчленения гиф (рис. 10, а), которые на питательном ^^^^^^^^^ субстрате разрастаются в грибницу. Размножение происходит и образующимися на гифах хламидоспорами - толстостенными клетками, устойчивыми к неблагоприятным условиям (рис. 9, а).

При бесполом и половом размножении образуются специализированные клетки - споры, с помощью которых и осуществляется размножение.

При бесполом способе размножения споры образуются на особых гифах воздушного мицелия, внешне отличающихся от других гиф.

У одних грибов споры образуются экзогенно (открыто) - на вершине гиф, снаружи их. Такие споры называют конидиями, а гифы, несущие их, - конидиеносцами (рис. 10,6).

Конидиеносцы развиваются на мицелии поодиночке или группами. При групповом развитии конидиеносцы одних грибов объединяются в пучки (коремии), у других - они располагаются тесным слоем в особых кувшиновидных (пикниды) или блюдцеобразных (ложе) образованиях из плотного сплетения гиф (рис. 11).

Конидии образуются непосредственно на конидиеносце или на специальных клетках, расположенных на его вершине. Эти клетки обычно имеют форму бутылочек и называются стеригмами или фиалидами. Конидии располагаются на конидиеносцах (или на стеригмах) поодиночке, группами, цепочками и т. д.

У других грибов споры образуются эндогенно - внутри особых клеток, развивающихся на концах гиф. Эти клетки - вместилища спор - называют спорангиями, находящиеся в них споры - спорангиоспорами, а гифы, несущие спорангии со спорами,- спор ангиеносц а м и (рис. 10, в). От несущей гифы спорангии отделены перегородкой (колонкой), врастающей внутрь спорангия.

Рис. 9. Хламидоспоры и склероции грибов:

а - хламидоспоры; б - склероции спорыньи

Рис. 10. Органы бесполого размножения грибов:

а - оидии; б - конидиеносец (1) со стеригмами (2) и конидиями (3); в - спорангиеносец со спорангием (4) и спорангиоспорами (5)

Рис. 11. Типы конидиального спороношения:

1 - коремия; 2 - пикнида; 3 - ложе

У некоторых грибов в спорангиях образуются подвижные споры, снабженные жгутиками,- зооспоры.

Спорангиоспоры и конидии бывают различной формы, размера и окраски, благодаря чему грибы в стадии спороношения имеют вид окрашенных налетов. Созревшие конидии осыпаются. При созревании спорангиоспор спорангии лопаются и из них высыпаются споры. Конидии и спорангиоспоры пассивно разносятся потоками воздуха на большие расстояния. Попав в благоприятные условия, споры прорастают в гифы. Спорангиеносцы, и особенно конидиеносцы грибов, имеют разнообразное строение и внешний вид, типичные для отдельных представителей.

При половом размножении грибов спорообразованию предшествует половой процесс - слияние половых клеток с последующим объединением их ядер. В результате образуются специализированные органы размножения. Развитие этих органов, формы полового процесса у грибов многообразны.

У грибов с клеточным мицелием в качестве органа полового размножения образуются базидии со спорами или сумки со спорами.

Базидия представляет собой мешковидно вытянутую клетку, на которой имеются выросты - стеригмы (обычно четыре), на каждом из которых находится по одной споре. Эти споры называются базидиоспорами (рис. 12,а). Базидии бывают и многоклеточными (рис. 12,2).

Сумка (аскус)" имеет вид цилиндрической клетки, внутри которой находятся споры (чаще восемь), называемые а с к о -спорами (рис. 12,6). Аскоспоры бывают различной формы, бесцветны или окрашены.

Базидии и сумки иногда располагаются на мицелии поодиночке, но большей частью они развиваются группами или слоями в особых образованиях из плотно переплетенных гиф - плодовых телах. По форме, строению и окраске плодовые тела очень разнообразны. Такими плодовыми телами являются, например, шляпка с ножкой белого гриба, сыроежки, опенка и др. У грибов с неклеточным мицелием в результате полового процесса образуется одна спора - зигоспора, или ооспора (рис. 12, в).

Органы полового спороношения:

а - базидии с базидиоспорами: / - одноклеточная базидия; 2 - многоклеточная базидия; б -сумка (аскус) с аскоспора-ми; в - зигоспора

При развитии зигоспоры происходит слияние двух внешне неразличимых клеток мицелия, а при развитии ооспоры - слияние двух различных половых клеток.

Ооспоры и зигоспоры имеют толстую оболочку, содержат много запасных питательных веществ и способны долго сохраняться в неблагоприятных условиях.

Большинство грибов может размножаться бесполым и половым путем; такие грибы называют совершенными. Некоторые грибы не способны к половому размножению; их называют несовершенными. Особенности способов размножения и строения органов размножения используют при распознавании грибов; эти особенности лежат и в основе их классификации.

Систематика грибов

Основными классами грибов являются:

хитридиомицеты

оомицеты

зигомицеты

аскомицеты

базидиомицеты

дейтеромицеты (несовершенные грибы).

Хитридиомицеты (Chitridiomycetes ). Мицелий у них развит слабо или отсутствует. Размножаются хитридиомицеты главным образом бесполым путем посредством подвижных спор с одним жгутиком - зооспор, развивающихся внутри зооспорангиев.

Оомицеты (Oomycetes ) . Мицелий у них хорошо развит, неклеточный, многоядерный. Бесполое размножение происходит с помощью развивающихся в зооспорангиях зооспор с двумя жгутиками. При половом процессе образуются ооспоры.

Наибольшее значение имеют фитофтора и плазмопара.

Фитофтора (Phytophthora infestans), или картофельный гриб, поражает клубни и ботву картофеля На коротких разветвленных спорангиеносцах развиваются яйцевидные или лимоновидные спорангии.

Во влажной среде в них образуется несколько подвижных зооспор, которые затем прорастают в гифы. В сухой среде зооспоры не образуются, спорангий непосредственно прорастает в гифу. Фитофтора поражает также помидоры и баклажаны.

Зигомицеты (Zygomycetes ) . Мицелий у них хорошо развит, неклеточный. Бесполое размножение происходит с помощью неподвижных спорангиоспор; половое размножение - зигоспорами. К этому классу относят мукоровые (Mucoraceae) грибы, широко распространенные в природе.

Многие мукоровые грибы являются возбудителями порчи различных пищевых продуктов. Они развиваются на продуктах в виде пушистой белой, серой массы. Наибольшее значение из мукоровых грибов мукор и ризопус.

Грибы рода ризопус (Rhizopus ) образуют неветвящиеся, окрашенные в темно-бурый цвет спорангиеносцы, растущие пучками (кустиками). У основания последних имеются корневидные образования - ризоиды (рис. 14, б), с помощью которых гриб прикрепляется к субстрату. Спорангии крупные с темноокрашенными спорами выглядят в виде черных «головок» на спорангиеносцах, за что ризопус получил название «головчатая плесень». Некоторые мукоровые грибы имеют положительное значение благодаря способности продуцировать органические кислоты, ферменты, сбраживать сахар в этиловый спирт.

Аскомицеты (Ascomycetes ) . Аскомицеты, или сумчатые грибы, различны по строению и свойствам.

Мицелий у большинства хорошо развит, клеточный, но к аскомицетам относятся и не имеющие мицелия организмы, представленные одиночными почкующимися клетками. Все они имеют, однако, общее происхождение и ряд общих черт в строении.

Бесполое размножение мицелиальных аскомицетов - с помощью конидий. Конидиальное спороношение разнообразно. Конидиеносцы образуются на мицелии одиночно или группами, образуя коремии, пикниды, ложе (см. с. 27). При половом процессе образуются аскоспоры в сумках (асках). Сумки развиваются у многих грибов в плодовых телах разнообразной формы и строения, характерных для отдельных представителей аскомицетов. Некоторые сумчатые грибы не имеют плодовых тел, и сумки у них развиваются непосредственно на мицелии. Грибы, образующие плодовые тела, называют плодосумчатыми, а грибы, не образующие такие тела,- голосумчатыми.

Некоторые используются в промышленности как продуценты биологически активных веществ (ферментов, витаминов, антибиотиков, алкалоидов).

Важнейшими представителями немицелиальных голосумчатых грибов являются дрожжи (см. с. 38).

В группу плодосумчатых включены некоторые виды широко распространенных грибов родов аспергиллус и пенициллиум, способные к сумчатому спороношению. Плодовые тела у них в виде мелких шариков, образованных из плотно переплетенных гиф. Внутри этих шаровидных тел находятся сумки со спорами (см. рис. 15, в,г). Большинство видов аспергиллов и пенициллов встречаются только в конидиальной стадии и относятся к классу несовершенных грибов (см. с. 36).

Грибы рода аспергиллус (Aspergillus) имеют одноклеточные, неразветвленные конидиеносцы. У грибов рода пенициллиум (Penicillium) конидиеносцы многоклеточные, ветвящиеся. Аспергилловые и пеницилловые грибы являются распространенными возбудителями порчи (плесневения) пищевых продуктов, промышленных изделий и материалов. Некоторые представители используются в промышленности. Asp. niger, например, применяют в производстве лимонной кислоты; Asp. oryzae и Asp. awamori используют для получения ферментных препаратов.

Отдельные виды Penicillium применяют в производстве лечебного препарата пенициллина. Pen. roqueforti играет важную роль в созревании сыра Рокфора, Pen. camemberti-в производстве сыра Камамбера.

Базидиомицеты (Basidiomycetes ). Это высшие грибы с клеточным мицелием, у некоторых мицелий многолетний. Бесполое размножение (конидиями) наблюдается редко. Органами полового размножения служат «базидии с базидиоспорами. У одних грибов базидии одноклеточные, у других - многоклеточные (см. рис. 12, 1, 2). Одноклеточные базидии цилиндрической или булавовидной формы несут на четырех коротких выростах (стеригмах) по одной базидиоспоре. Многоклеточные базидии состоят из четырех клеток, на которых находится по одной базидиоспоре на стеригме. Базидии с базидиоспорами могут развиваться непосредственно на мицелии, но у многих базидиомицетов имеются плодовые тела.

Базидиальные грибы с одноклеточными базидиями широко распространены в природе. Большинство их живут в почве, на растительных остатках, некоторые - на деревьях. Базидии с базидиоспорами у большинства развиваются слоями на плодовых телах или внутри них. Строение, форма и консистенция плодовых тел разнообразны и характерны для разных видов грибов. В состав этой группы базидиомицетов входят шляпочные и трутовые грибы.

Дейтеромицеты, или несовершенные грибы (Deuteromycetes ). Это грибы с клеточным мицелием, у которых не обнаружено полового размножения. Большинство их размножается конидиями. Конидиеносцы у разных видов имеют различный внешний вид, располагаются одиночно или группами. Некоторые грибы образуют оидии (артроспоры), имеются формы и без специальных органов размножения. Конидии разнообразны по форме, строению, окраске; они могут быть одноклеточными и многоклеточными.

Наиболее распространенными и опасными возбудителями порчи продуктов являются следующие грибы.

Фузариум (Fusarium) имеет два типа конидий:. Некоторые виды Fusarium поражают клубни картофеля (см. с. 238).

Оидиум (Oidium ) образует разветвленный белый мицелий, гифы которого легко распадаются на оидии (см. рис. 10, а).

Один из видов этого рода - Oidium lactis (geotrichum candiclum) - молочная плесень, часто развивается в виде бархатистой пленки на поверхности квашеных овощей и кисломолочных продуктов при их хранении. Гриб использует находящуюся в этих продуктах молочную кислоту, что приводит к их порче. В молочных продуктах оидиум разлагает белки, жиры. Эта плесень встречается также на прессованных дрожжах, сливочном масле, сыре и других продуктах.

Монилия (Monilia)-гриб, не имеющий настоящих конидиеносцев. Конидии, соединенные в простые или ветвящиеся цепочки, располагаются на коротких отростках мицелия. Эти грибы являются активными возбудителями порчи плодов (см. рис. 44 и с. 233).

Кладоспориум (Cladosporium) имеет слабоветвящиеся конидиеносцы, несущие на концах цепочки конидий (рис. 16,г). Конидии бывают разнообразной формы (округлой, овальной, цилиндрической и др.) и размеров, нередко двухклеточными Мицелий, конидиеносцы и конидии окрашены в оливково-зеленый цвет. Эти грибы характерны тем, что выделяют в среду темный пигмент.

Кладоспориум нередко обнаруживается при холодильном хранении на различных пищевых продуктах в виде бархатистых темно-оливковых (до черного цвета) пятен;

ДРОЖЖИ

Общая характеристика

Дрожжи являются одноклеточными неподвижными организмами, широко распространенными в природе; они встречаются в почве, на растениях, в разнообразных субстратах, содержащих сахар.

Широкое использование дрожжей в промышленности основано на их способности вызывать спиртовое брожение - превращение сахара в этиловый спирт и углекислый газ.

С другой стороны, развитие дрожжей в пищевых продуктах вызывает их порчу (вспучивание, изменение запаха и вкуса).

Форма и строение дрожжевой клетки. Форма клеток дрожжей чаще округлая, овально-яйцевидная или эллиптическая, реже цилиндрическая и лимоновидная (рис. 17). Встречаются дрожжи особой формы - серповидные, стреловидные, треугольные. Размеры дрожжевых клеток обычно не превышают 10-15 мкм.

Дрожжи относятся к эукариотным организмам; строение их клетки сходно со строением клетки грибов.

У некоторых дрожжей оболочка может в той или иной степени ослизняться, вследствие чего клетки склеиваются друг с другом и при развитии в жидких средах образуют оседающие на дно сосуда хлопья. Такие дрожжи называют хлопьевидными в отличие от пылевидных, клеточные стенки которых не ослизняются; пылевидные дрожжи в жидкости находятся во взвешенном состоянии.

Размножение дрожжей . Наиболее характерным и широко распространенным у дрожжей вегетативным способом размножения является почкование, лишь немногие дрожжи размножаются делением.

Процесс почкования состоит в том, что на клетке появляется бугорок (иногда их несколько), который постепенно увеличивается в размерах, Этот бугорок называют почкой. Почкованию предшествует разделение ядра на две части, и одно вместе с частью цитоплазмы и другими клеточными элементами переходит в формирующуюся молодую клетку. По мере роста почки в месте соединения ее с материнской клеткой образуется перетяжка, отграничивающая молодую дочернюю клетку, которая затем либо отшнуровывается (отделяется) от материнской клетки, либо остается на ней. При благоприятных условиях этот процесс длится около двух часов.

Рис. 17. Дрожжи

Помимо почкования, многие дрожжи размножаются с помощью спор. Образование спор у дрожжей может происходить бесполым и половым путями. При бесполом образовании спор ядро клетки делится на столько частей, сколько образуется спор у данного вида дрожжей, после чего постепенно в клетке (как в сумке) образуются аскоспоры (см. рис. 17, внизу, справа). Образованию спор половым путем предшествует слияние (копуляция) клеток. У некоторых дрожжей копулируют прорастающие споры. Число спор в клетке разных видов дрожжей различно. Их может быть две, четыре, а иногда восемь и даже двенадцать.

Споры большинства дрожжей округлые или овальные, но у некоторых игловидные, шляповидные. У многих на поверхности спор имеются образования типа выростов, бородавок.

Споры дрожжей более устойчивы к неблагоприятным воздействиям, чем вегетативные клетки, но менее стойки, чем бактериальные споры.

В благоприятных условиях споры прорастают в клетки. У многих так называемых культурных дрожжей, т. е. культивируемых человеком для производственно-хозяйственных целей, способность к спорообразованию в значительной степени ослаблена, а иногда полностью утрачена. Такие дрожжи можно вернуть к спорообразованию только принудительным путем. Для этого молодую культуру дрожжей переводят из условий обильного питания в условия голодания. При благоприятной аэрации и температуре дрожжи образуют споры.

Размещено на Allbest.ru

...

Подобные документы

    История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.

    реферат , добавлен 05.12.2010

    Исследование морфологических признаков бактерий, микроскопических грибов и дрожжей. Изучение внешнего вида, формы, особенностей строения, способности к движению, спорообразованию, способов размножения микроорганизмов. Форма и строение дрожжевой клетки.

    реферат , добавлен 05.03.2016

    Систематика - распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Морфология бактерий, особенности строения бактериальной клетки. Морфологическая характеристика грибов, актиномицетов (лучистых грибов) и простейших.

    реферат , добавлен 21.01.2010

    Споры – форма бактерий с грамположительным типом строения клеточной стенки. Роль спорообразования бактерий и грибов для практики. Строение и особенности химического состава бактериальной споры. Микробиологическое обоснование пастеризации и стерилизации.

    контрольная работа , добавлен 02.10.2011

    Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.

    презентация , добавлен 13.09.2015

    Видоизменения мицелия в процессе приспособления к различным наземным условиям обитания. Размножение, питание и классификация грибов, их значение в биосфере и народном хозяйстве. Строение клетки гриба и бактериальной клетки, жизнедеятельность грибов.

    реферат , добавлен 05.06.2010

    Особенности питания и строения грибов как отдельной группы микроорганизмов. Рост гифов гриба и строение клеточной стенки гифа (липиды, хитин). Характеристика способов размножения грибов: вегетативное, почкообразование, спорообразование, деление клетки.

    презентация , добавлен 25.02.2015

    История открытия микроорганизмов. Клеточная стенка - структурный элемент бактериальной клетки, ее строение у грамотрицательных и грамположительных бактерий. Состав гомогенного слоя клеточной стенки. Функция пептидогликана; периплазматическое пространство.

    реферат , добавлен 15.05.2012

    Формы и размеры бактериальных организмов и их краткая характеристика. Строение бактериальной клетки, движение бактерий. Спорообразование и его биологическая роль, размножение бактерий. Передача признаков с помощью процессов трансдукции и трансформации.

    лекция , добавлен 25.03.2013

    Группа микроскопических одноклеточных организмов-прокариотов. Микроскопические методы исследования микроорганизмов. Формы, строение и химический состав бактериальной клетки. Функции поверхностных структур. Дыхание, питание, рост и размножение бактерий.

Микробиология изучает строение, жизнедеятельность, условия жизни и развития мельчайших организмов, называемых микробами, или микроорганизмами.

«Невидимые, они постоянно сопровождают человека, вторгаясь в его жизнь то как друзья, то как враги», — сказал академик В. Л. Омельянский. Действительно, микробы есть везде: в воздухе, в воде и в почве, в организме человека и животных. Они могут быть полезны, и их используют в производстве многих пищевых продуктов. Они могут быть вредны, вызывать заболевания людей, порчу продуктов и др.

Микробы были открыты голландцем А. Левенгуком (1632-1723) в конце XVII в., когда он изготовил первые линзы, дававшие увеличение в 200 и более раз. Увиденный микромир поразил его, Левенгук описал и зарисовал микроорганизмы, обнаруженные им на различных объектах. Он положил начало описательному характеру новой науки. Открытия Луи Пастера (1822-1895) доказали, что микроорганизмы отличаются не только формой и строением, но и особенностями жизнедеятельности. Пастер установил, что дрожжи вызывают спиртовое брожение, а некоторые микробы способны вызывать заразные болезни людей и животных. Пастер вошел в историю как изобретатель метода вакцинации против бешенства и сибирской язвы. Всемирно известен вклад в микробиологию Р. Коха (1843-1910) — открыл возбудителей туберкулеза и холеры, И. И. Мечникова (1845-1916) — разработал фагоцитарную теорию иммунитета, основоположника вирусологии Д. И. Ивановского (1864-1920), Н. Ф. Гамалея (1859-1940) и многих других ученых.

Классификация и морфология микроорганизмов

Микробы - это мельчайшие, преимущественно одноклеточные живые организмы, видимые только в микроскоп. Размер микроорганизмов измеряется в микрометрах — мкм (1/1000 мм) и нанометрах — нм (1/1000 мкм).

Микробы характеризуются огромным разнообразием видов, отличающихся строением, свойствами, способностью существовать в различных условиях среды. Они могут быть одноклеточными, многоклеточными и неклеточными.

Микробы подразделяют на бактерии, вирусы и фаги, грибы, дрожжи. Отдельно выделяют разновидности бактерий — риккетсии, микоплазмы, особую группу составляют простейшие (протозои).

Бактерии

Бактерии — преимущественно одноклеточные микроорганизмы размером от десятых долей микрометра, например микоплазмы, до нескольких микрометров, а у спирохет — до 500 мкм.

Различают три основные формы бактерий — шаровидные (кокки), палочковидные (бациллы и др.), извитые (вибрионы, спирохеты, спириллы) (рис. 1).

Шаровидные бактерии (кокки) имеют обычно форму шара, но могут быть немного овальной или бобовидной формы. Кокки могут располагаться поодиночке (микрококки); попарно (диплококки); в виде цепочек (стрептококки) или виноградных гроздьев (стафилококки), пакетом (сарцины). Стрептококки могут вызывать ангину и рожистое воспаление, стафилококки — различные воспалительные и гнойные процессы.

Рис. 1. Формы бактерий: 1 — микрококки; 2 — стрептококки; 3 — сардины; 4 — палочки без спор; 5 — палочки со спорами (бациллы); 6 — вибрионы; 7- спирохеты; 8 — спириллы (с жгутиками); стафилококки

Палочковидные бактерии самые распространенные. Палочки могут быть одиночными, соединяться попарно (диплобактерии) или в цепочки (стрептобактерии). К палочковидным относятся кишечная палочка, возбудители сальмонеллеза, дизентерии, брюшного тифа, туберкулеза и др. Некоторые палочковидные бактерии обладают способностью при неблагоприятных условиях образовывать споры. Спорообразующие палочки называют бациллами. Бациллы, напоминающие по форме веретено, называют клостридиями.

Спорообразование представляет собой сложный процесс. Споры существенно отличаются от обычной бактериальной клетки. Они имеют плотную оболочку и очень малое количество воды, им не требуются питательные вещества, а размножение полностью прекращается. Споры способны длительно выдерживать высушивание, высокие и низкие температуры и могут находиться в жизнеспособном состоянии десятки и сотни лет (споры сибирской язвы, ботулизма, столбняка и др.). Попав в благоприятную среду, споры прорастают, т. е. превращаются в обычную вегетативную размножающуюся форму.

Извитые бактерии могут быть в виде запятой — вибрионы, с несколькими завитками — спириллы, в виде тонкой извитой палочки — спирохеты. К вибрионам относится возбудитель холеры, а возбудитель сифилиса — спирохета.

Бактериальная клетка имеет клеточную стенку (оболочку), часто покрытую слизью. Нередко слизь образует капсулу. Содержимое клетки (цитоплазму) отделяет от оболочки клеточная мембрана. Цитоплазма представляет собой прозрачную белковую массу, находящуюся в коллоидном состоянии. В цитоплазме находятся рибосомы, ядерный аппарат с молекулами ДНК, различные включения запасных питательных веществ (гликогена, жира и др.).

Микоплазмы - бактерии, лишенные клеточной стенки, нуждающиеся для своего развития в ростовых факторах, содержащихся в дрожжах.

Некоторые бактерии могут двигаться. Движение осуществляется с помощью жгутиков — тонких нитей разной длины, совершающих вращательные движения. Жгутики могут быть в виде одиночной длинной нити или в виде пучка, могут располагаться по всей поверхности бактерии. Жгутики есть у многих палочковидных бактерий и почти у всех изогнутых бактерий. Шаровидные бактерии, как правило, не имеют жгутиков, они неподвижны.

Размножаются бактерии делением на две части. Скорость деления может быть очень высокой (каждые 15-20 мин), при этом количество бактерий быстро возрастает. Такое быстрое деление наблюдается на пищевых продуктах и других субстратах, богатых питательными веществами.

Вирусы

Вирусы — особая группа микроорганизмов, не имеющих клеточного строения. Размеры вирусов измеряются нанометрами (8-150 нм), поэтому их можно увидеть только с помощью электронного микроскопа. Некоторые вирусы состоят только из белка и одной из нуклеиновых кислот (ДНК или РНК).

Вирусы вызывают такие распространенные болезни человека, как грипп, вирусный гепатит, корь, а также болезни животных — ящур, чуму животных и многие другие.

Вирусы бактерий называют бактериофагами , вирусы грибов - микофагами и т. п. Бактериофаги встречаются повсюду, где есть микроорганизмы. Фаги вызывают гибель микробной клетки и могут использоваться для лечения и профилактики некоторых инфекционных заболеваний.

Грибы являются особыми растительными организмами, которые не имеют хлорофилла и не синтезируют органические вещества, а нуждаются в готовых органических веществах. Поэтому грибы развиваются на различных субстратах, содержащих питательные вещества. Некоторые грибы способны вызывать болезни растений (рак и фитофтора картофеля и др.), насекомых, животных и человека.

Клетки грибов отличаются от бактериальных наличием ядер и вакуолей и похожи на растительные клетки. Чаще всего они имеют форму длинных и ветвящихся или переплетающихся нитей - гифов. Из гифов образуется мицелий, или грибница. Мицелий может состоять из клеток с одним или несколькими ядрами или быть неклеточным, представляя собой одну гигантскую многоядерную клетку. На мицелии развиваются плодовые тела. Тело некоторых грибов может состоять из одиночных клеток, без образования мицелия (дрожжи и др.).

Грибы могут размножаться разными путями, в том числе вегетативным путем в результате деления гиф. Большинство грибов размножаются бесполым и половым путями при помощи образования специальных клеток размножения - спор. Споры, как правило, способны длительно сохраняться во внешней среде. Созревшие споры могут переноситься на значительные расстояния. Попадая в питательную среду, споры быстро развиваются в гифы.

Обширную группу грибов представляют плесневые грибы (рис. 2). Широко распространенные в природе, они могут расти на пищевых продуктах, образуя хорошо видные налеты разной окраски. Причиной порчи продуктов часто являются мукоровые грибы, образующие пушистую белую или серую массу. Мукоровый гриб ризопус вызывает «мягкую гниль» овощей и ягод, а гриб ботритис покрывает налетом и размягчает яблоки, груши и ягоды. Возбудителями плесневения продуктов могут быть грибы из рода пениииллиум.

Отдельные виды грибов способны не только приводить к порче продуктов, но и вырабатывать токсические для человека вещества — микотоксины. К ним относятся некоторые виды грибов рода аспергиллус, рода фузариум и др.

Полезные свойства отдельных видов грибов используют в пищевой и фармацевтической промышленности и других производствах. Например, грибы рода пениииллиум применяются для получения антибиотика пенициллина и в производстве сыров (рокфора и камамбера), грибы рода аспергиллус — в производстве лимонной кислоты и многих ферментных препаратов.

Актиномицеты — микроорганизмы, имеющие признаки и бактерий, и грибов. По строению и биохимическим свойствам актиномицеты аналогичны бактериям, а по характеру размножения, способности образовывать гифы и мицелий похожи на грибы.

Рис. 2. Виды плесневых грибов: 1 — пениииллиум; 2- аспергиллус; 3 — мукор.

Дрожжи

Дрожжи — одноклеточные неподвижные микроорганизмы размером не более 10-15 мкм. Форма клетки дрожжей бывает чаще круглой или овальной, реже палочковидной, серповидной или похожей на лимон. Клетки дрожжей своим строением похожи на грибы, они также имеют ядро и вакуоли. Размножение дрожжей происходит почкованием, делением или спорами.

Дрожжи широко распространены в природе, их можно обнаружить в почве и на растениях, на пищевых продуктах и различных отходах производства, содержащих сахара. Развитие дрожжей в пищевых продуктах может приводить к их порче, вызывая брожение или закисание. Некоторые виды дрожжей обладают способностью превращать сахар в этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением и широко используется в пищевой промышленности и виноделии.

Некоторые виды дрожжей кандида вызывают заболевание человека — кандидоз.