При горении органических соединений образуется. Характеристика процесса горения

1.6. ПРОДУКТЫ ГОРЕНИЯ

Продукты горения – это газообразные, жидкие или твердые вещества, образующиеся в процессе горения. Состав продуктов сгорания зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO 2 , SO 2 , P 2 O 5 . Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение окиси углерода СО) гореть в дальнейшем больше не способны. Они образуются при полном сгорании, то есть при горении, которое протекает при доступе достаточного количества воздуха и при высокой температуре.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Углекислый газ

Углекислый газ или двуокись углерода (СО 2) – продукт полного горения углерода. Не имеет запаха и цвета. Плотность его по отношению к воздуху = 1.52. Плотность углекислого газа при температуре Т = 0 0 С и при нормальном давлении р = 760 миллиметров ртутного столба (мм Hg ) равна 1.96 кг/м 3 (плотность воздуха при этих же условиях равна ρ = 1.29 кг/м 3). Углекислый газ хорошо растворим в воде (при Т = 15 0 С в одном литре воды растворяется один литр газа). Углекислый газ не поддерживает горение веществ, за исключением щелочных и щелочно-земельных металлов. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

CO 2 +2 Mg = C + 2 MgO .

Токсичность углекислого газа незначительна. Концентрация углекислого газа в воздухе 1.5% безвредна для человека длительное время. При концентрации углекислого газа в воздухе, превышающей 3-4.5%, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни. При температуре Т = 0 0 С и давлении р = 3,6 МПа углекислый газ переходит в жидкое состояние. Температура кипения жидкой углекислоты составляет Т = –78 0 С. При быстром испарении жидкой углекислоты газ охлаждается и переходит в твердое состояние. Как в жидком, так и твердом состоянии, капли и порошки углекислоты применяются для тушения пожаров.

Оксид углерода

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен. Относительная плотность = 0.97. Плотность угарного газа при Т = 0 0 С и р = 760 мм Hg составляет 1.25 кг/м 3 . Этот газ легче воздуха и скапливается в верхней части помещения при пожарах. В воде оксид углерода почти не растворяется. Способен гореть и с воздухом образует взрывчатые смеси. Угарный газ при горении дает пламя синего цвета. Угарный газ является очень токсичным. Вдыхание воздуха с концентрацией угарного газа 0.4% смертельно для человека. Стандартные противогазы от угарного газа не защищают, поэтому при пожарах применяются специальные фильтры или кислородные изолирующие приборы.

Сернистый газ

Сернистый газ (SO 2 ) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом. Относительная плотность сернистого газа = 2.25. Плотность этого газа при Т = 0 0 С и р = 760 мм Hg составляет 2.9 кг/м 3 , то есть он намного тяжелее воздуха. Сернистый газ хорошо растворяется в воде, например, при температуре Т = 0 0 С в одном литре воды растворяется восемьдесят литров SO 2 , а при Т = 20 0 С – сорок литров. Сернистый газ горение не поддерживает. Действует раздражающим образом на слизистые оболочки дыхательных путей, вследствие чего является очень токсичным.

Дым

При горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе. Диаметр частиц дыма составляет 10 -4 –10 -6 см (от 1 до 0.01 мкм). Отметим, что 1 мкм (микрон) равен 10 -6 м или 10 -4 см. Более крупные твердые частицы, образующиеся при горении, быстро оседают в виде копоти и сажи. При горении органических веществ дым содержит твердые частицы сажи, взвешенные в CO 2 , CO , N 2 , SO 2 и других газах. В зависимости от состава и условий горения вещества получаются различные по составу и по цвету дымы. При горении дерева, например, образуется серовато-черный дым, ткани – бурый дым, нефтепродуктов – черный дым, фосфора – белый дым, бумаги, соломы – беловато-желтый дым.

Оглавление книги Следующая страница>>

§ 1. Общие сведения о горении

Горение — это сложный физико-химический процесс взаимодействия горючего вещества и окислителя, сопровождающийся выделением тепла и излучением света.

Обычным окислителем в процессах горения является газообразный кислород, находящийся в воздухе. Для возникновения и протекания горения необходимо наличие горючего вещества, кислорода (воздуха) и источника воспламенения. Горючее вещество и кислород являются реагирующими веществами, они составляют горючую систему.

Источник воспламенения вызывает в этой системе реакцию горения. Однако горение некоторых веществ может происходить и без кислорода. Окислителями в процессе горения могут быть хлор, бром и некоторые сложные вещества: азотная кислота, бертолетова соль, перекись натрия.

Горючие системы могут быть химически однородными и неоднородными.

К химически однородным относятся системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом; например, смеси горючих газов, паров или пылей с воздухом.

Скорость горения однородных горючих систем определяется скоростью химической реакции. Она может быть значительной при высокой температуре. В связи с этим горение таких однородных горючих систем представляет собой взрыв или детонацию и носит название кинетического горения.

К химически неоднородным горючим системам относятся такие, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела, например, твердые горючие материалы и жидкости, находящиеся на воздухе, струи горючих газов и паров, поступающие в воздух и т. д.

При горении химически неоднородных горючих систем кислород воздуха, непрерывно диффундируя (проникая) сквозь продукты сгорания к горючему веществу, вступает с ним в реакцию. Такое горение называют диффузионным. Его скорость определяется главным образом диффузией окислителя к горючему веществу.

Количество воздуха, необходимого для горения, может быть определено расчетным путем.

Продуктами сгорания называют газообразные, жидкие и твердые вещества, образующиеся в результате соединения горючего вещества с кислородом. Состав их зависит от состава горючего вещества и условий его горения. На пожарах в машиностроительных предприятиях чаще всего горят органические вещества: древесина, ткани, растворители, лакокрасочные материалы, резина и др. В их состав входят главным образом углерод, водород, кислород и азот. При горении их образуются продукты горения: СO 2 , СО, Н 2 O, N 2 , которые при высоких температурах находятся в газообразном состоянии.

При неполном сгорании органических веществ в продуктах сгорания содержатся твердые частицы сажи (углерод).

Дисперсная система, состоящая из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом, носит название дыма.

Продукты полного и неполного сгорания в определенных концентрациях представляют опасность для жизни человека. Так, концентрация CO 2 , равная 8—10%, вызывает быструю потерю сознания и смерть. Вдыхание воздуха, содержащего 0,4% окиси углерода, также может привести к смерти. Между тем на пожарах в помещениях с низкой интенсивностью газообмена (подвалы, сушилки, склады) концентрация окиси углерода в дыме может намного превышать указанную.

Вредные для дыхания вещества содержатся в продуктах горения пластмасс. Так, при горении линолеума может образовываться сероводород и сернистый газ, при горении пенополиуретана — цианистый водород и толуилендиизоцианат, при горении винипласта — хлористый водород и окись углерода, при горении капрона — цианистый водород.

Продукты неполного сгорания способны гореть, когда их концентрация в дыме становится достаточной. Смешиваясь с воздухом, они образуют взрывчатые смеси. Это следует учитывать при тушении пожаров в закрытых помещениях, где происходило тление. При открывании таких помещений возможны взрывы.

В процессе горения одновременно с образованием продуктов сгорания происходит выделение тепла. Количество выделившихся продуктов сгорания и тепла может быть рассчитано.

Многим известно, что смерть во время пожара наступает чаще из-за отравления продуктами горения, нежели от термического воздействия. Но отравиться можно не только во время пожара, но и в повседневной жизни. Возникает вопрос о том, какие существуют виды продуктов горения и при каких условиях они образуются? Давайте попробуем в этом разобраться.

Что такое горение и его продукт?

Бесконечно можно смотреть на три вещи: как течет вода, как работают другие люди и, конечно, как горит огонь...

Горение - это физико-химический процесс, основой которого является окислительно-восстановительная реакция. Сопровождается она, как правило, выбросом энергии в виде огня, тепла и света. В этом процессе принимают участие вещество или смесь веществ, которые горят, - восстановители, а также окислитель. Чаще всего эта роль принадлежит кислороду. Горение также можно назвать процессом окисления горящих веществ (важно помнить, что горение - подвид реакций окисления, а не наоборот).

Продукты горения - это все то, что выделяется во время сжигания. Химики в таких случаях говорят: "Все, что находится в правой части уравнения реакции". Но это выражение неприменимо в нашем случае, так как, кроме окислительно-восстановительного процесса, происходят также и а некоторые вещества просто остаются неизменными. То есть продуктами горения являются дым, зола, копоть, выделяемые газы, в том числе и выхлопные. Но особым продуктом является, конечно, энергия, которая, как отмечено в прошлом абзаце, выбрасывается в виде тепла, света, огня.

Вещества, выделяемые во время горения: оксиды углерода

Существует два оксида углерода: CO 2 и CO. Первый носит название углекислый газ (углекислота, оксид углерода (IV)), так как представляет собой бесцветный газ, состоящий из углерода, полностью окисленного кислородом. То есть углерод в данном случае имеет максимальную степень окисления - четвертую (+4). Этот оксид является продуктом горения абсолютно всех органических веществ, если те во время горения находятся в избытке кислорода. Кроме того, углекислота выделяется живыми существами при дыхании. Сам по себе он не опасен, если его концентрация в воздухе не превышает 3 процентов.

Оксид углерода (II) (окись углерода) - CO - это ядовитый газ, в молекуле которого углерод находится в степени окисления +2. Именно поэтому это соединение может "догорать", то есть продолжать реакцию с кислородом: СО+О 2 =СО 2 . Главной опасной особенностью этого оксида является его невероятно большая, по сравнению с кислородом, способность присоединяться к эритроцитам. Эритроциты - красные клетки крови, задачей которых является транспортировка кислорода от легких к тканям и наоборот, углекислого газа к легким. Поэтому главная опасность окиси в том, что она мешает переносу кислорода к различным органам тела человека, тем самым вызывая кислородное голодание. Именно СО чаще всего вызывает отравление продуктами горения при пожаре.

Оба оксида углерода не имеют ни цвета, ни запаха.

Вода

Всем известная вода - Н 2 О - также выделяется во время горения. При температуре горения продукты выделяются в А вода как пар. Вода является продуктом горения газа метана - СН 4 . Вообще, вода и углекислота , опять все зависит от количества кислорода) в основном выделяются при полном сгорании всех органических веществ.

Сернистый газ, сероводород

Сернистый газ также является оксидом, но на этот раз серы - SO 2 . Он имеет большое количество названий: двуокись серы, диоксид серы, сернистый ангидрид, оксид серы (IV). Представляет собой этот продукт горения бесцветный газ, с резким запахом подожженной спички (он при ее возгорании и выделяется). Выделяется ангидрид при горении серы, серосодержащих органических и неорганических соединений, например, сероводорода (Н 2 S).

При попадании на слизистую глаз, носа или рта человека двуокись легко реагирует с водой, образуя сернистую кислоту, которая легко разлагается обратно, но при этом успевает раздражать рецепторы, спровоцировать воспалительные процессы дыхательных путей: H 2 O+SO 2 ⇆H 2 SO 3 . Этим обусловлена токсичность продукта горения серы. Сернистый газ, так же как и угарный, может гореть - окисляться до SO 3 . Но происходит это при очень высокой температуре. Данное свойство используется при производстве серной кислоты на заводе, так как SO 3 реагирует с водой, образует H 2 SO 4 .

А вот сероводород выделяется при термическом разложении некоторых соединений. Этот газ также ядовит, имеет характерный запах тухлых яиц.

Цианистый водород

Тогда Гиммлер сжал челюсти, раскусил ампулу с цианистым калием и через несколько секунд умер.

Цианистый калий - сильнейший яд - соль также известной как цианистый водород - HCN. Это бесцветная жидкость, но очень летучая (легко переходящая в газообразное состояние). То есть при горении она тоже будет выделяться в атмосферу в виде газа. Синильная кислота очень ядовита, даже небольшая - 0,01 процент - концентрация в воздухе приводит к летальному исходу. Отличительной чертой кислоты является характерный запах горького миндаля. Аппетитно, не правда ли?

Но синильной кислоте присуща одна "изюминка" - отравиться ей можно, не только вдыхая непосредственно органами дыхания, но и через кожу. Так что защититься только противогазом не получится.

Акролеин

Пропеналь, акролеин, акрилальдегид - все это названия одного вещества, ненасыщенного альдегида акриловой кислоты: СН2=СН-СНО. Этот альдегид тоже является сильно летучей жидкостью. Акролеин бесцветен, с резким запахом, очень ядовит. При попадании жидкости или ее паров на слизистые, особенно в глаза, вызывает сильное раздражение. Пропеналь является высокореакционным соединением, и это объясняет его высокую токсичность.

Формальдегид

Подобно акролеину, формальдегид принадлежит к классу альдегидов и является альдегидом муравьиной кислоты. Также это соединение известно как метаналь. бесцветный газ с резким запахом.

Чаще всего во время горения веществ, содержащих азот, выделяется чистый азот - N2. Этот газ и так содержится в атмосфере в большом количестве. Азот может быть примером продукта горения аминов. Но при термическом разложении, к примеру, солей аммония, а в некоторых случаях и при самом горении, в атмосферу выбрасываются и его оксиды, со степенью окисления азота в них плюс один, два, три, четыре, пять. Оксиды - газы, имеют бурый цвет и чрезвычайно токсичны.

Пепел, зола, копоть, сажа, уголь

Копоть, или сажа - остатки углерода, который не вступил в реакцию, по разным причинам. Сажу называют также амфотерным углеродом.

Зола, или пепел - мелкие частицы неорганических солей, не сгоревших или не разложившихся при температуре горения. При выгорании топлива эти микросоединения переходят во взвешенное состояние или скапливаются внизу.

А уголь - это продукт неполного сгорания дерева, то есть не сгоревшие его остатки, но при этом еще способные гореть.

Конечно, это далеко не все соединения, которые выделятся при сгорании тех или иных веществ. Перечислить их всех нереально, да и не нужно, потому что другие вещества выделяются в ничтожно малых количествах, и только при окислении определенных соединений.

Прочие смеси: дым

Звезды, лес, гитара... Что может быть романтичней? А не хватает одного из самых главных атрибутов - костра и струйки дыма над ним. А что такое дым?

Дым - это некая смесь, которая состоит из газа и взвешенных в нем частиц. В роли газа выступают пары воды, угарный и углекислый газ и другие. А твердыми частицами являются пепел и просто не сгоревшие остатки.

Выхлопные газы

Большинство современных машин работает на двигателе внутреннего сгорания, то есть для движения используется энергия, получающаяся при сгорании топлива. Чаще всего это бензин и другие нефтепродукты. Но при выгорании в атмосферу выбрасывается большое количество отходов. Это и есть выхлопные газы. Они высвобождаются в атмосферу в виде дыма из выхлопных труб автомобиля.

Большую часть от их объема занимает азот, а также вода, углекислота. Но также выбрасываются и токсичные соединения: угарный газ, оксиды азота, не сгоревшие углеводороды, а также сажа и бензпирен. Последние два являются канцерогенами, то есть повышают риск развития рака.

Особенности продуктов полного окисления (в данном случае горения) веществ и смесей: бумага, сухая трава

При сгорании бумаги выделяется в основном также углекислый газ и вода, а при недостатке кислорода - угарный газ. Кроме того, бумага в своем составе содержит склеивающие вещества, которые могут выделяться и концентрироваться, и смолы.

Та же ситуация происходит и при сгорании сена, только без склеивающих веществ и смолы. В обоих случаях дым белый с желтым оттенком, со специфическим запахом.

Древесина - дрова, доски

Древесина состоит из органических веществ (в том числе серо- и азотсодержащих) и небольшого количества минеральных солей. Поэтому при ее полном сгорании выделяются углекислота, вода, азот и сернистый газ; образуется серый, а иногда черный дым со смолистым запахом, пепел.

Сера и азотсодержащие вещества

Про токсичность, продукты горения этих веществ мы уже говорили. Стоит отметить еще, что при горении серы выделяется дым с серовато-серым цветом и резким запахом сернистого газа (так как именно двуокись серы и выделяется); а при горении азотистых и других азотсодержащих веществ желто-бурый, с раздражающим запахом (но дым появляется не всегда).

Металлы

При горении металлов образуются оксиды, пероксиды или надпероксиды этих металлов. Кроме того, если металл содержал какие-то органические или неорганические примеси, то образуются продукты горения этих примесей.

Но особенность горения имеет магний, так как горит он не только в кислороде, как другие металлы, но и в углекислом газе, образуя при этом углерод и оксид магния:2 Mg+CO 2 =C+2MgO. Дым образуется белый, без запаха.

Фосфор

При горении фосфора выделяется белый дым, пахнущий чесноком. При этом образуется оксид фосфора.

Резина

И, конечно, резина. Дым от горящей резины - черный, из-за большого количества сажи. Кроме того, выделяются продукты горения органических веществ и оксид серы, а благодаря ему дым приобретает сернистый запах. Также выделяются тяжелые металлы, фуран и другие токсичные соединения.

Классификация отравляющих веществ

Как вы, наверное, уже могли заметить, большинство продуктов горения являются отравляющими веществами. Поэтому, говоря об их классификации, будет правильным разобрать и классификацию отравляющих веществ.

В первую очередь, все отравляющие вещества - далее ОВ - делятся на смертельные, временно выводящие из строя и раздражающие. Первые делят на ОВ поражающие нервную систему (Ви-Икс), удушающие (угарный газ), кожно-нарывные (иприт) и обще-ядовитые (цианистый водород). К примерам временно выводящих из строя ОВ можно отнести Би-Зет, а раздражающим - адамсит.

Объем

Теперь поговорим про те вещи, про которые нельзя забывать, говоря о продуктах, выбрасываемых при сгорании.

Объем продуктов горения - важная и очень полезная информация, которая, например, поможет определить уровень опасности сгорания того или иного вещества. То есть, зная объем продуктов, можно определить количество вредных соединений, входящих в состав выделившихся газов (как вы помните, большинство продуктов - газы).

Чтобы рассчитать искомый объем, в первую очередь нужно знать, был ли избыток или недостаток окислителя. Если, допустим, кислород содержался в избытке, то вся работа сводится к тому, чтобы составить все уравнения реакции. Следует помнить, что топливо, в большинстве случаев, содержит примеси. После высчитывается по закону сохранения массы количество вещества всех продуктов горения и, учитывая температуру и давление, по формуле Менделеева-Клапейрона, находится сам объем. Конечно, для ничего не смыслящего в химии человека все выше перечисленное выглядит страшно, но на самом деле ничего трудного нет, надо только разобраться. Подробнее на этом останавливаться не стоит, так как статья не об этом. При недостатке кислорода увеличивается сложность расчета - меняются уравнения реакций и сами продукты горения. Кроме того, сейчас используются более сокращенные формулы, но для начала лучше считать представленным способом (если это требуется), чтобы понять смысл вычислений.

Отравление

Некоторые вещества, выбрасываемые в атмосферу при окислении горючего, токсичны. Отравление продуктами горения - вполне реальная угроза не только при пожаре, но и в автомобиле. Кроме того, вдыхание или другой способ попадания некоторых из них не приводит к мгновенному негативному результату, а напомнит об этом через некоторое время. К примеру, так ведут себя канцерогены.

Естественно, каждому нужно знать правила, предотвращающие негативные последствия. В первую очередь, это правила противопожарной безопасности, то есть то, что каждому ребенку рассказывают с самого раннего детства. Но, почему-то, часто бывает, что и взрослые, и дети просто забывают их.

Правила оказания первой помощи при отравлении многим тоже, скорее всего, знакомы. Но на всякий случай: самое главное, вынести отравившегося человека на свежий воздух, то есть отгородить от дальнейшего попадания токсинов в его организм. Но и нужно помнить, что существуют методы защиты от продуктов горения органов дыхания, поверхности тела. Это защитный костюм пожарных, противогазы, кислородные маски.

Защита от токсичных продуктов горения очень важна.

Использование в личных целях человека

Тот момент, когда люди научились использовать огонь в своих целях, стал, несомненно, переломным в процессе развития всего человечества. К примеру, одни из самых главных его продуктов - тепло и свет - использовались (и используются до сих пор) человеком при приготовлении пищи, освещении и согревании в холодное время. Уголь в древности использовался как чертежный инструмент, а сейчас, например, как лекарство (активированный уголь). То, что оксид серы используется при приготовлении кислоты, также отмечалось, таким же образом используется и оксид фосфора.

Вывод

Стоит отметить, что все рассказанное здесь - лишь общие сведения, представленные для ознакомления с вопросами о продуктах горения.

Хочется сказать, что соблюдение правил безопасности и разумное обращение как с самим процессом горения, так и с его продуктами, позволит использовать их с пользой.

Продуктами сгорания называют газообразные, жидкие и твердые вещества, образующиеся в результате соединения горючего вещества с кислородом в процессе горения. Состав их зависит от состава горящего вещества и условий его горения. В условиях пожара чаще всего горят органические вещества (древесина, ткани, бензин, керосин, резина и др.), в состав которых входят главным образом углерод, водород, кислород и азот. При горении их в достаточном количестве воздуха и при высокой температуре образуются продукты полного сгорания: СО 2 , Н 2 О, N 2 . При горении в недостаточном количестве воздуха или при низкой температуре кроме продуктов полного сгорания образуются продукты неполного сгорания: СО, С (сажа).

Продукты сгорания называют влажными , если при расчете их состава учитывают содержание паров воды, и сухими , если содержание паров воды не входит в расчетные формулы.

Реже во время пожара горят неорганические вещества, такие как сера, фосфор, натрий, калий, кальций, алюминий, титан, магний и др. Продуктами сгорания их в большинстве случаев являются твердые вещества, например Р 2 О 5 , Na 2 O 2 , CaO, MgO. Образуются они в дисперсном состоянии, поэтому поднимаются в воздух в виде плотного дыма. Продукты сгорания алюминия, титана и других металлов в процессе горения находятся в расплавленном состоянии.

Дым представляет собой дисперсную систему, состоящую из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом. Диаметр частиц дыма колеблется от 1 до 0,01 мкм. Объем дыма, образующегося при горении единицы массы (кг)

или объема (м 3) горючего вещества в теоретически необходимом объеме воздуха (L=1) приведен в табл. 1.2.

Таблица 1.2

Объем дыма при горении горючих веществ

Наименование

горючего вещества

Объем дыма, м 3 /кг

Наименование

горючего газа

Объем дыма, м 3 / м 3

Ацетилен

Древесина (сосна) (W = 20 %)

Природный газ

В составе дыма, образующегося на пожарах при горении органических веществ, кроме продуктов полного и неполного сгорания, содержатся продукты термоокислительного разложения горючих веществ. Образуются они при нагреве еще негорящих горючих веществ, находящихся в среде воздуха или дыма, содержащего кислород. Обычно это происходит перед факелом пламени или в верхних частях помещений, где находятся нагретые продукты сгорания.

Состав продуктов термоокислительного разложения зависит от природы горючих веществ, температуры и условий контакта с окислителем. Так, исследования показывают, что при термоокислительном разложении горючих веществ, в молекулах которых содержатся гидроксильные группы, всегда образуется вода. Если в составе горючих веществ находятся углерод, водород и кислород, продуктами термоокислительного разложения чаще всего являются углеводороды, спирты, альдегиды, кетоны и органические кислоты. Если в составе горючих веществ, кроме перечисленных элементов, есть хлор или азот, то в дыме находятся также хлористый и цианистый водород, оксиды азота и другие соединения. Так, в дыме при горении капрона содержится цианистый водород, при горении линолеума «Релин» – сероводород, диоксид серы, при горении органического стекла – оксиды азота. Продукты неполного сгорания и термоокислительного разложения в большинстве случаев являются токсичными веществами, поэтому тушение пожаров в помещениях производят только в кислородных изолирующих противогазах.

Вид формулы для расчета объема продуктов полного сгорания при теоретически необходимом количестве воздуха зависит от состава горючего вещества.

Горючее вещество – индивидуальное химическое соединение. В этом случае расчет ведут, исходя из уравнения реакции горения. Объем влажных продуктов сгорания единицы массы (кг) горючего вещества при нормальных условиях рассчитывают по формуле

где - объем влажных продуктов сгорания, м 3 /кг; , , , — число киломолей диоксида углерода, паров воды, азота и горючего вещества в уравне- нии реакции горения; М – масса горючего вещества, численно равная молекулярной массе, кг.

Пример 1.2. Определить объем сухих продуктов сгорания 1 кг ацетона при нормальных условиях. Составляем уравнение реакции горения ацетона в воздухе

Определяем объем сухих продуктов сгорания ацетона

Объем влажных продуктов сгорания 1 м 3 горючего вещества (газа) можно рассчитать по формуле

, (1.10)

где - объем влажных продуктов сгорания 1 м 3 горючего газа, м 3 /м 3 ; , , , — число молей диоксида углерода, паров воды, азота и горючего вещества (газа).

Горючее вещество – сложная смесь химических соединений. Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения имеет вид

С + О 2 + 3,76N 2 = СО 2 + 3,76N 2 .

При сгорании 1 кг углерода получается 22,4/12 = 1,86 м 3 СО 2 и 22,4×3,76/12 =7,0 м 3 N 2 .

Аналогично определяют объем (в м 3) продуктов сгорания 1 кг серы и водорода. Полученные данные приведены ниже:

Углерод ………..

Водород ………..

Сера ……………

При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.

В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для их учета необходимо знать объем 1 кг азота и паров воды при нормальных условиях.


Объем 1 кг азота равен 0,8 м 3 , а паров воды 1,24 м 3 . В воздухе при 0 0 С и давлении 101 325 Па на 1 кг кислорода приходится 3,76×22,4/32=2,63 м 3 азота.

На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества.

Пример 1.3. Определить объем и состав влажных продуктов сгорания 1 кг каменного угля, состоящего из 75,8 % С, 3,8 % Н, 2,8 % О, 1,1 % N , 2,5 % S , W = 3,8 %, A =11,0 %.

Объем продуктов сгорания будет следующий, м 3 (табл. 1.3).

Объем продуктов сгорания каменного угля

Состав продуктов сгорания

Углерод

1,86 × 0,758 = 1,4

Водород

11,2 × 0,038 = 0,425

Сера

Азот в горючем веществе

Влага в горючем веществе

1,24 × 0,03 = 0,037

Сумма

Продолжение табл. 1.3

Состав продуктов сгорания

N 2

Углерод

7 × 0,758 = 5,306

Водород

21 × 0,038 = 0,798

Сера

2,63 × 0,025 = 0,658

0,7 × 0,025 = 0,017

Азот в горючем веществе

0,8 × 0,011 = 0,0088

Влага в горючем веществе

Сумма

6,7708 - 0,0736 = 6,6972

Из общего объема азота вычитают объем азота, приходящийся на кислород в составе каменного угля 0,028 × 2,63 = 0,0736 м 3 . Итог табл. 1.3 указывает состав продуктов сгорания каменного угля. Объем влажных продуктов сгорания 1 кг каменного угля равен

=1,4 + 0,462 + 6,6972 + 0,017 = 8,576 м 3 /кг.

Горючее вещество – смесь газов. Количество и состав продуктов сгорания для смеси газов определяют по уравнению реакции горения компонентов, составляющих смесь. Например, горение метана протекает по следующему уравнению:

СН 4 + 2О 2 + 2×3,76N 2 = СО 2 + 2Н 2 О + 7,52N 2 .

Согласно этому уравнению, при сгорании 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 паров воды и 7,52 м 3 азота. Аналогично определяют объем (в м 3) продуктов сгорания 1 м 3 различных газов:

Водород ……………….

Окись углерода ……….

Сероводород ………….

Метан …………………

Ацетилен ………………

Этилен …………………

На основании приведенных цифр определяют состав и количество продуктов сгорания смеси газов.

Анализ продуктов сгорания, взятых на пожарах в различных помещениях, показывает, что в них всегда содержится значительное количество кислорода. Если пожар возникает в помещении с закрытыми оконными и дверными проемами, то пожар при наличии горючего может продолжаться до тех пор, пока содержание кислорода в смеси воздуха с продуктами сгорания в помещении не снизится до 14 – 16 % (об.). Следовательно, на пожарах в закрытых помещениях содержание кислорода в продуктах сгорания может быть в пределах от 21 до 14 % (об.). Состав продуктов сгорания во время пожаров в помещениях с открытыми проемами (подвал, чердак) показывает, что содержание в них кислорода может быть ниже 14 % (об.):

В подвалах ………

На чердаках …….

Пример 1.4. Определить коэффициент избытка воздуха при пожаре в помещении, если во взятом на анализе дыме содержалось 19 % (об.) О 2 . Коэффициент избытка воздуха находим, пользуясь формулой (1.8).

.

После изучения вопроса о продуктах сгорания решите самостоятельную задачу.

Задача 1.3. Определить объем влажных продуктов сгорания 1 м 3 доменного газа, состоящего из 10,5 % СО 2 , 28 % СО, 0,3 % СН 4 , 2,7 % Н 2 и 58,5 % N 2 .

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

Ответ: V n.c = 1,604 м 3 /м 3 .

  • Опыт 3. Обнаружение углерода и водорода в органических соединениях (видео)
  • Опыт 4. Обнаружение галогена в органическом веществе (проба Ф.Ф. Бейльштейна)
  • Ход опыта

    В сухую пробирку с газоотводной трубкой помещают парафин в виде стружки (до 0,3 г) и 1- 2 г оксида меди (II). Содержимое пробирки тщательно перемешивают, засыпают сверху слоем (1 г) оксида меди (II). В верхнюю часть пробирки помещают комочек ваты, на которую насыпают немного б/в сульфата меди (II). Пробирку закрывают пробкой с газоотводной трубкой и закрепляют ее в штативе с небольшим наклоном в сторону пробирки. Свободный конец газоотводной трубки опускают в пробирку с известковой водой, чтобы трубка почти касалась поверхности жидкости (позднее можно опустить ее непосредственно в жидкость).

    Сначала прогревают всю пробирку, затем сильно нагревают ту часть, где находится реакционная смесь, и постепенно продвигают спиртовку к отверстию для вытеснения газов.

    На удаленных от реакционной смеси стенках пробирки наблюдают появление капелек жидкости, а в сульфате меди (II) образуются синие участки. Выделяющийся газ вызывает помутнение известковой воды. Наблюдения и ответы на вопросы после опыта запишите в рабочую тетрадь.

    Вопросы и задания:

    1. Чем обусловлен синий цвет кусочков сульфата меди (II)?
    2. Что является причиной помутнения известковой воды, а при стоянии – появления осадка?
    3. Опишите происходящие изменения с помощью уравнений реакций.

    Опыт 4. Обнаружение галогена в органическом веществе

    Опыт 4. Обнаружение галогена в органическом веществе (проба Ф.Ф. Бейльштейна, 1872 г.)

    Проба Ф.Ф. Бейльштейна используется в органической химии для доказательства наличия в составе молекулы галогена. При сгорании вещества на медной проволочке пламя спиртовки окрашивается в зеленый цвет за счет образования летучих при высоких температурах галогенидов меди (кроме фторидов).

    Оборудование и реактивы: спиртовка, спички; органическое вещество, содержащее гало­ген (четыреххлористый углерод, кусочки полихлор­ви­ни­ла), медная проволочка, закрученная в спираль на одном конце и вдетая в корковую пробку (держатель) – на другом.

    Ход опыта

    Внесите в пламя спиртовки медную проволочку с петлей на конце и прогрейте ее до красного каления. Убедитесь, что при прокаливании проволочки пламя спиртовки не окрашивается.

    После охлаждения почерневшей проволочки опустите на мгновение ее петлю в исследуемую жидкость и внесите смоченную в жидкости проволочку в нижнюю часть пламени, затем перенесите ее в самую горячую верхнюю часть пламени спиртовки. Наблюдайте за изменением окраски пламени.

    Если исследуемое вещество твердое, опустите в него на мгновение конец раскаленной проволочки, а затем внесите проволочку с веществом в пламя спиртовки. Наблюдения и ответы на вопросы после опыта запишите в рабочую тетрадь.

    Вопросы и задания:

    1. Почему происходит почернение проволочки на воздухе?
    2. Как изменяется цвет пламени спиртовки при внесении медной проволочки со следами бромэтана, хлороформа, ПВХ, фторопласта?
    3. Можно ли отличить хлорид натрия от органического вещества, содержащего галоген?


    Рекомендуется прокаливание кристаллического сульфата меди (II) выполнить непосредственно перед использованием. В фарфоровую чашку насыпают сульфат меди (II) и прокаливают в пламени спиртовки, периодически перемешивая содержимое и не допуская перекаливания. При изменении окраски прокаливание прекращают. Сравнивают окраску сульфата до и после прокаливания.