Мир современных материалов - электрохимический ряд напряжений металлов. Активные металлы Урок химические свойства металлов ряд напряжений металлов

Электрохимический ряд активности металлов (ряд напряжений , ряд стандартных электродных потенциалов ) - последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ 0 , отвечающих полуреакции восстановления катиона металла Me n+ : Me n+ + nē → Me

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

История

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам . Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений .

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым . Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов - тем, что называется химическим сродством » . Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова , или просто ряд Бекетова ).

Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl 2 и свинец - из кислого раствора PbCl 2 ; она же способна к растворению в концентрированной соляной кислоте с выделением водорода . Медь, олово и свинец находятся в ряду правее кадмия , однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl 2 .

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» - расположению металлов по значению стандартных электродных потенциалов . Таким образом, вместо качественной характеристики - «склонности» металла и его иона к тем или иным реакциям - Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов .

Теоретические основы

Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе . Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.

В самом общем виде ясно, что металлы, находящиеся в начале периодов, характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование щелочных и щёлочноземельных металлов отражает явление диагонального сходства . Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu 2+ /Eu [ ] до +1,691 В у пары Au + /Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий , а самым сильным окислителем - катионы золота Au + .

В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода .

Практическое использование ряда напряжений

Ряд напряжений используется на практике для сравнительной [относительной] оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе :

  • Металлы, стоящие левее водорода, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении.
  • Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) - и при взаимодействии с водой.
  • Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
  • При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

Таблица электрохимических потенциалов металлов

Металл Катион φ 0 , В Реакционная способность Электролиз (на катоде):
Li + -3,0401 реагирует с водой выделяется водород
Cs + -3,026
Rb + -2,98
K + -2,931
Fr + -2,92
Ra 2+ -2,912
Ba 2+ -2,905
Sr 2+ -2,899
Ca 2+ -2,868
Eu 2+ -2,812
Na + -2,71
Sm 2+ -2,68
Md 2+ -2,40 реагирует с водными растворами кислот
La 3+ -2,379
Y 3+ -2,372
Mg 2+ -2,372
Ce 3+ -2,336
Pr 3+ -2,353
Nd 3+ -2,323
Er 3+ -2,331
Ho 3+ -2,33
Tm 3+ -2,319
Sm 3+ -2,304
Pm 3+ -2,30
Fm 2+ -2,30
Dy 3+ -2,295
Lu 3+ -2,28
Tb 3+ -2,28
Gd 3+ -2,279
Es 2+ -2,23
Ac 3+ -2,20
Dy 2+ -2,2
Pm 2+ -2,2
Cf 2+ -2,12
Sc 3+ -2,077
Am 3+ -2,048
Cm 3+ -2,04
Pu 3+ -2,031
Er 2+ -2,0
Pr 2+ -2,0
Eu 3+ -1,991
Lr 3+ -1,96
Cf 3+ -1,94
Es 3+ -1,91
Th 4+ -1,899
Fm 3+ -1,89
Np 3+ -1,856
Be 2+ -1,847
U 3+ -1,798
Al 3+ -1,700
Md 3+ -1,65
Ti 2+ -1,63 конкурирующие реакции: и выделение водорода , и выделение металла в чистом виде
Hf 4+ -1,55
Zr 4+ -1,53
Pa 3+ -1,34
Ti 3+ -1,208
Yb 3+ -1,205
No 3+ -1,20
Ti 4+ -1,19
Mn 2+ -1,185
V 2+ -1,175
Nb 3+ -1,1
Nb 5+ -0,96
V 3+ -0,87
Cr 2+ -0,852
Zn 2+ -0,763
Cr 3+ -0,74
Ga 3+ -0,560

Металлы, легко вступающие в реакции, называются активными металлами. К ним относятся щелочные, щелочноземельные металлы и алюминий.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Наиболее активными считаются щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Свойства

Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

Основные химические свойства металлов представлены в таблице.

Реакция

Уравнение

Исключение

Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом

K + O 2 → KO 2

Литий реагирует с кислородом только при высокой температуре

Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются

2Ca + O 2 → 2CaO

Реагируют с простыми веществами, образуя соли

Ca + Br 2 → CaBr 2 ;
- 2Al + 3S → Al 2 S 3

Алюминий не вступает в реакцию с водородом

Бурно реагируют с водой, образуя щёлочи и водород


- Ca + 2H 2 O → Ca(OH) 2 + H 2

Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки

Реагируют с кислотами, образуя соли

Ca + 2HCl → CaCl 2 + H 2 ;

2K + 2HMnO 4 → 2KMnO 4 + H 2

Взаимодействуют с растворами солей, сначала реагируя с водой, а затем с солью

2Na + CuCl 2 + 2H 2 O:

2Na + 2H 2 O → 2NaOH + H 2 ;
- 2NaOH + CuCl 2 → Cu(OH) 2 ↓ + 2NaCl

Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей - минералов, горных пород.

Рис. 3. Минералы и чистые металлы.

Что мы узнали?

К активным металлам относятся элементы I и II групп - щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома - немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия - высокие температуры, разрушение оксидной плёнки.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 339.

Ряд напряжений металлов – это ряд металлов расположенных по возрастанию их стандартного электродного потенциала (). Положение металла в ряду напряжений свидетельствует о его окислительно-восстановительных способностях по отношению к другим металлам и их катионам для реакций, протекающих в растворах электролитах, т. е. в реакциях с солями и основаниями. А также с неметаллами, если эти реакции протекают в водных растворах в частности к таким процессам относятся процессы коррозии металлов ().

В ряду напряжений:

1) Уменьшается восстановительная способность металлов.

2) Увеличивается окислительная способность. Как следствие этого металлы, стоящие в ряду напряжений до водорода вытесняют его из растворов кислот (не окислителей).

3) Металлы, стоящие в ряду левее (имеющие меньший потенциал) вытесняют металлы стоящие правее (имеющие больший потенциал) из растворов их солей.

4) Металлы, стоящие в ряду напряжений до Mg (имеющие ) вытесняют водород из воды.

Таким образом значение электродного потенциала определяет окислительно-восстановительные способности металлов по отношению друг к другу и по отношению к H и содержащие его катионы электролитам.

Измерение электродных потенциалов. Ряд стандартных электродных потенциалов, водородный электрод.

Абсолютное значение электродного потенциала измерить практически невозможно. В связи с этим электродный потенциал измеряется путем измерения ЭДС гальванического элемента составленного из исследуемого электрода и электрода потенциал, которого известен. Стандартный электродный потенциал определяется величиной ЭДС гальванического элемента, составленного из исследуемого электрода и стандартного водородного электрода, потенциал которого условно принимается равным нулю.

Стандартный водородный электрод – Это система, находящаяся при нормальных условиях, состоящая из губчатой пластины, в поры которой нагнетают водород , помещённую в одномоляльный раствор серной кислоты H 2 SO 4 с C(H +)=1моль/кг

Стандартизировать условия и воспроизводить потенциал такого электрода является сложной задачей, поэтому данный электрод используется в метеорологических целях. В лабораторной практике для измерения электродных потенциалов используют вспомогательные электроды.

Пример: каломельный электрод - Hg,HgCl/Cl - ;

хлор серебряный – Ag, AgCl/Cl - и т.д.

Потенциал этих электродов устойчиво воспроизводится, то есть сохраняет свое значение при хранении и эксплуатации.

Металлы в химических реакциях всегда восстановители. Восстановительную активность металла отображает его положение в электрохимическом ряду напряжений.

На основании ряда можно сделать следующие выводы:

1. Чем левее стоит металл в этом ряду, тем более сильным восстановителем он является.

2. Каждый металл способен вытеснять из солей в растворе те металлы, которые стоят правее

2Fe + 3CuSO 4 → 3Cu + Fe 2 (SO 4) 3

3. Металлы, находящиеся в ряду напряжений левее водорода способны вытеснять его из кислот.

Zn + 2HCl → ZnCl 2 + H 2

4. Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные) в любых водных растворах прежде сего реагируют с водой.

Восстановительная способность металла, определённая по электрохимическому ряду не всегда соответствует его положению в периодической системе т.к в ряду напряжений учитывается не только радиус атома, но и энергия отрыва электронов.

Альдегиды, их строение и свойства. Получение, применение муравьиного и уксусного альдегидов.

Альдегиды – это органические соединения, в состав молекулы которых входит карбонильная группа, соединённая с водородом и углеводородным радикалом.

Метаналь (муравьиный альдегид)

Физические свойства

Метаналь – газообразное вещество, водный раствор – формалинь

Химические свойства


Реактивом на альдегиды является Cu(OH) 2

Применение

Наибольшее применение имеют метаналь и этаналь. Большое количество метаналя используется для получения фенолформальдегидной смолы, которую получают при взаимодействии метаналя с фенолом. Эта смола необходима для производства различных пластмасс. Пластмассы изготовлены для из фенолформальдегидной смолы в сочетании с различными наполнителями, называются фенопластами. При растворении фенолформальдегидной смолы в ацетоне или спирту получают различные лаки. При взаимодействии метаналя с карбамидом CO(NH 2) 2 получают карбидную смолу, а из нее – аминопласты. Из этих пластмасс изготавливают микропористые материалы для нужд электротехники.Метаналь идёт так же на производство некоторых лекарственных веществ и красителей. Широко применяется водный раствор, содержащий в массовых долях 40% метаналя. Он называетсяформалином. Его использование основано на свойстве свёртывать белок.



Получение

Альдегиды получают окислением алканов и спиртов. Этаналь получают гидротациейэтина и окислением этена.

Билет №12

Высшие оксиды химических элементов третьего периода. Закономерности в измерении их свойств в связи с положением химических элементов в периодической системе. Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Оксиды – это сложные вещества, состоящие из двух химических элементов, один из которых является кислород со степенью окисления «-2»

К оксидам третьего периода относятся:
Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 .

С увеличением степени окисления элементов, увеличиваются кислотные свойства оксидов.

Na 2 O, MgO – основные оксиды

Al 2 O 3 – амфотерный оксид

SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 – кислотные оксиды.

Основные оксиды реагируют с кислотами с образованием соли и воды.

MgO + 2CH 3 COOH → (CH 3 COO) 2 Hg + H 2 O

Оксиды щелочных и щелочноземельных металлов реагируют с водой с образованием щёлочи.

Na 2 O + HOH → 2NaOH

Основные оксиды реагируют с кислотными оксидами с образованием соли.
Na 2 O + SO 2 → Na 2 SO 3
Кислотные оксиды реагируют со щелочами с образованием соли и воды

2NaOH + SO 3 → Na 2 SO 4 + H 2 O

Реагирует с водой, с образованием кислоты

SO 3 + H 2 O → H 2 SO 4

Амфотерные оксиды реагируют с кислотами и щелочами

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

Со щёлочью

Al 2 O 3 + 2NaOH → 2NaAlO 2 + H 2 O

Жиры, их свойства и состав. Жиры в природе, превращение жиров в организме. Продукты технической переработки жиров, понятие о синтетических моющих средствах. Защита природы от загрязнения СМС.

Жиры – это сложные эфиры глицерина и карбоновых кислот.

Общая формула жиров:

Твёрдые жиры образованы преимущественно высщими предельными карбоновыми кислотами – стеариновой C 17 H 35 COOH, пальмитиновой C 15 H 31 COOH и некоторыми другими. Жидкие жиры образованы главным образом высшими непредельными карбоновыми кислотами – олеиновойC 17 H 33 COOH , ленолевойC 17 H 31 COOH

Жиры наряду с углеводородами и белками входят в состав организмов животных и растений. Они являются важной составной частью пищи человека и животных. При окислении жиров в организме выделяется энергия. Когда в органы пищеварения поступают жиры, то под влиянием ферментов они гидролизуются на глицерин и соответствующие кислоты.

Продукты гидролиза всасываются ворсинками кишечника, а затем синтезируется жир, но уже свойственный организм. Потоком крови жиры переносятся в другие органы и ткани организма, где накапливаются или снова гидролизуются и постепенно окисляются до оксида углерода (IV) и воды.

Физические свойства.

Животные жиры в большинстве случаев твёрдые вещества, но встречаются и жидкие (рыбий жир). Растительные жиры чаше всего жидкие вещества – масла; известны и твёрдые растительные жиры – кокосовое масло.

Химические свойства.

Жиры в животных организмах в присутствии ферментов гидролизуются. Кроме реакций с водой, жиры взаимодействуют со щелочами.

В состав растительных масел входят сложные эфиры непредельных карбоновых кислот, то их можно подвергнуть гидрированию. Они превращаются в предельные соединения
Пример: Из растительного масла в промышленности получают маргарин.

Применение.
Жиры в основном применяют в качестве пищевого продукта. Раньше жиры использовали для получения мыла
Синтетические моющие средства.

Синтетические моющие средства оказывают вредное действие на окружающую среду, т.к. они устойчивы и с трудом подвергаются разрушению.

Если из всего ряда стандартных электродных потенциалов выделить только те электродные процессы, которые отвечают общему уравнению

то получим ряд напряжений металлов. В этот ряд всегда помешают, кроме металлов, также водород, что позволяет видеть, какие металлы способны вытеснять водород из водных растворов кислот.

Таблица 19. Ряд напряжений металлов

Ряд напряжений для важнейших металлов приведен в табл. 19. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы в виде простых веществ - восстановителями. При этом, чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы, и наоборот, чем ближе металл к началу ряда, тем более сильные восстановительные свойства проявляет простое вещество - металл.

Потенциал электродного процесса

в нейтральной среде равен В (см. стр. 273). Активные металлы начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Магний вытесняет водород только из горячей воды. Металлы, расположенные между магнием и кадмием, обычно не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, обладающие защитным действием .

Металлы, расположенные между магнием и водородом, вытесняют водород из растворов кислот. При этом на поверхности некоторых металлов также образуются защитные пленки, тормозящие реакцию. Так, оксидная пленка на алюминии делает этот металл стойким не только в воде, но и в растворах некоторых кислот. Свинец не растворяется в серной кислоте при ее концентрации ниже , так как образующаяся при взаимодействии свинца с серной кислотой соль нерастворима и создает на поверхности металла защитную пленку. Явление глубокого торможения окисления металла, обусловленное наличием на его поверхности защитных оксидных или солевых пленок, называется пассивностью, а состояние металла при этом - пассивным состоянием.

Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Рассматривая конкретные случаи таких реакций, следует помнить, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей практически происходит лишь в случае металлов, расположенных в ряду после магния.

Вытеснение металлов из их соединений другими металлами впервые подробно изучал Бекетов. В результате своих работ он расположил металлы по их химической активности в вытеснительный ряд», являющийся прототипом ряда напряжений металлов.

Взаимное положение некоторых металлов в ряду напряжений и в периодической системе на первый взгляд не соответствует друг, другу. Например, согласно положению в периодической системе химическая активность калия должна быть больше, чем натрия, а натрия - больше, чем лития. В ряду же напряжений наиболее активным оказывается литий, а калий занимает среднее положение между литием и натрием. Цинк и медь по их положению в периодической системе должны иметь приблизительно равную химическую активность, но в ряду напряжений цинк расположен значительно раньше меди. Причина такого рода несоответствий состоит в следующем.

При сравнении металлов, занимающих то или иное положение в периодической системе, за меру их химической активности - восстановительной способности - принимается величина энергии ионизации свободных атомов. Действительно, при переходе, например, сверху вниз по главной подгруппе I группы периодической системы энергия ионизации атомов уменьшается, что связано с увеличением их радиусов (т. е. с большим удалением внешних электронов от ядра) и с возрастающим экранированием положительного заряда ядра промежуточными электронными слоями (см. § 31). Поэтому атомы калия проявляют большую химическую активность - обладают более сильными восстановительными свойствами, - чем атомы натрия, а атомы натрия - большую активность, чем атомы лития.

При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых: энергии атомизации - превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов - отрыва от них валентных электронов - непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса.

Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля. Поле, возникающее вблизи маленьких ионов лития, будет более сильным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ноны калия.

Таким образом, в ходе рассматриваемого превращения затрачивается энергия на атомизацию и ионизацию и выделяется энергия при гидратации. Чем меньше будет суммарная затрата энергии, тем легче будет осуществляться весь процесс и тем ближе к началу ряда напряжений будет располагаться данный металл. Но из трех слагаемых общего баланса энергии только одно - энергия ионизации-непосредственно определяется положением металла в периодической системе. Следовательно, нет оснований ожидать, что взаимное положение тех или иных металлов в ряду напряжений всегда будет соответствовать их положению в периодической системе. Так, для лития суммарная затрата энергии оказывается меньшей, чем для калия, в соответствии с чем литий стоит в ряду напряжений раньше калия.

Для меди и цинка затрата энергии на ионизацию свободных атомов и выигрыш ее при гидратации ионов близки. Но металлическая медь образует более прочную кристаллическую решетку, чем цинк, что видно из сопоставления температур плавления этих Металлов: цинк плавится при , а медь только при . Поэтому энергия, затрачиваемая на атомизацию этих металлов, существенно различна, вследствие чего суммарные энергетические затраты на весь процесс в случае меди гораздо больше, чем в случае цинка, что и объясняет взаимное положение этих металлов в ряду напряжений.

При переходе от воды к неводным растворителям взаимное положение металлов в ряду напряжений может изменяться. Причина этого лежит в том, что энергия сольватации ионов различных металлов по-разному изменяется при переходе от одного растворителя к другому.

В частности, ион меди весьма энергично сольватируется в некоторых органических растворителях; это приводит к тому, что в таких растворителях медь располагается в ряду напряжений до водорода и вытесняет его из растворов кислот.

Таким образом, в отличие от периодической системы элементов, ряд напряжений металлов не является отражением общей Закономерности, на основе которой можно давать разностороннюю Характеристику химических свойств металлов. Ряд напряжений Характеризует лишь окислительно-восстановительную способность Электрохимической системы «металл - ион металла» в строго определенных условиях: приведенные в нем величины относятся к водному раствору, температуре и единичной концентрации (активности) ионов металла.