Третья промышленная революция. «анатомия глобальных технологических революций» в.в

Последний жестокий экономический кризис 2008 г. особенно ярко высветил аморальность и тупиковый характер экономики, основанной на бесконечном росте потребления и заимствований при бесконечном отравлении природной среды (как писал замечательный А. Межиров:

“Все долбим, долбим, долбим,
Сваи забиваем.
А бывал ли ты любим
И незабываем?”).

Экспертное сообщество всё отчетливее осознаёт, что дальнейшее развитие цивилизации по исторически сложившемуся пути невозможно, так как ныне появились новые глобальные проблемы, угрожающие существованию этой цивилизации. Впервые в истории человечества «поплыли», т.е. сдвинулись со стационарных уровней, важнейшие показатели состояния биосферы. К таким показателям можно отнести: резкое ухудшение качества воздуха и воды; глобальное потепление; истощение озонового слоя; уменьшение био-разнообразия; достижение предела пищевых, сырьевых и энергетических возможностей биосферы; утрату нравственных ориентиров значительной частью человеческого сообщества (так называемый «феномен аморального большинства»). Памятник нашему поколению будет выглядеть, видимо, так: посреди огромного шламового отвала стоит величественная бронзовая фигура в противогазе, а внизу на гранитном постаменте надпись: «Мы победили природу!» . Наиболее пессимистически настроенные экологи считают, что человечество в погоне за благами цивилизации частично утратило один из важнейших природных инстинктов - инстинкт самосохранения (вспомним известное высказывание Антуана де Сент-Экзюпери: «Мы вовсе не получили Землю в наследство от наших предков - мы всего лишь взяли её в долг у наших детей»).

А ведь есть все основания полагать, что сохранение природной среды есть в высшей степени богоугодное дело. Так, если обратиться к Библии («Бытие», 2-15), то мы прочтем там: «И взял Господь Бог человека, которого создал, и поселил его в саду Эдемском, чтобы возделывать его и хранить его». Разве не есть это Божий завет беречь природу?! Таким образом, сберегая природу, мы сохраняем Божье творение, бесценное уже хотя бы в силу того только факта, что оно - Божье. Нет ничего удивительного в том, что многие священнослужители прошлого и настоящего упоминали Природу в контексте богоискательства. Еще епископ Киевской Руси Кирилл Туровский (1150 г.) записывал: «Прекрасны солнце и месяц, звезды, озера и реки, источники, все горы и холмы, ветры и снеги, дожди, скоты и звери, и птицы, и гады, и всякое древо земное». Киевский князь Владимир Мономах в своем «Поучении» (ХII век) восклицал: «Кто не похваляет, не прославляет силы Твоея и Твоих великих чудес и доброт, устроенных на семь свете: како небо устроено, како ли солнце, како ли луна, како ли звезды, и там и свет, и земля на водах положена, Господи, Твоим промыслом! Зверье разноличнии, и птицы, и рыбы украшено Твоим промыслом, Господи!». Афонский монах ХIV века Исаак Сирин писал: «Чýдно, поистине, то, что до того еще, как я появился на свет, Ты сотворил для меня мир, для жизни моей, для того, чтобы я мог видеть Тебя в нем, знать, испытывать высшую духовную радость от созданных Тобою вещей. Ты сотворил мир такого величия красоты и славы, такой силы, такой творческой премудрости, мир, обильно украшенный столь разнообразными древами и тварями, без которых я не мог бы прожить и часу. Именно благодаря им, созерцая их в душе, я сознаю и в восхищении обозреваю океан Твоего провидения и Твоей любви».

Первая промышленная революция на базе угля и Вторая промышленная революция на базе нефти и газа фундаментально изменили жизнь и труд человечества и преобразили облик планеты. Однако эти две революции привели человечество к пределу развития. Среди главных вызовов, которые брошены человечеству - безработица (труд людей заменяют роботизированные системы), проблемы экологии (см. выше), истощение биоресурсов и традиционных источников энергии. И на эти вызовы человечество должно ответить ТРЕТЬЕЙ ПРОМЫШЛЕННОЙ РЕВОЛЮЦИЕЙ.

«Третья промышленная революция» (Third Industrial Revolution - TIR) - это концепт развития человечества, автором которого является американский ученый - экономист и эколог - Джереми Рифкин (Jeremy Rifkin). Вот основные положения концепции TIR :

1. Переход на возобновляемые источники энергии (солнце, ветер, водные потоки, геотермальные источники).

2. Превращение существующих и новых зданий (как промышленных, так и жилых) в минизаводы по производству энергии (за счет оборудования их солнечными батареями, мини-ветряками, теплонасосами). Например, в Евросоюзе имеется 190 млн. зданий. Каждое из них может стать маленькой электростанцией, черпающей энергию из крыш, стен, теплых вентиляционных и канализационных потоков, мусора. Необходимо постепенно распрощаться с крупными поставщиками энергии, порожденными Второй промышленной революцией - основанных на угле, газе, нефти, уране. Третья промреволюция - это мириады малых источников энергии от ветра, солнца, воды, геотермии, тепловых насосов, биомассы, включая твердые бытовые и «канализационные» городские отходы и др.

3. Развитие и внедрение технологий энерго-ресурсо-сбережения (как производственного, так и «домашнего») - полная утилизация остаточных потоков электроэнергии, пара, воды, любого тепла, полная утилизация промышленных и бытовых отходов и др.

4. Перевод всего автомобильного (легкового и грузового) и всего общественного транспорта на электротягу на основе водородной энергетики; развитие новых экономичных видов грузового транспорта таких как дирижабли, подземный пневмотранспорт и др.

5. Переход от металлургии к композитным материалам (особенно нано-материалам) на основе углерода.

6. Переход от промышленного к локальному и даже «домашнему» производству большинства бытовых товаров благодаря развитию технологии 3D-принтеров.

7. Отказ от животноводства, переход к производству «искусственного мяса» из животных клеток;

8. Перевод части сельского хозяйства в города на базе технологии «вертикальных ферм».

Откуда взять на это деньги, коль скоро и Европа, и Америка тонут в долгах? Но ведь везде ежегодно закладывается бюджет развития - каждая страна и почти каждый город планируют его. Важно делать капиталовложения в то, у чего есть будущее, а не в поддержание жизни таких инфраструктур, технологий, отраслей или систем, которые обречены на вымирание . Уверяю вас: TIR - это вовсе не утопия, это уже начавшаяся реальность, и я даже могу назвать страну, где TIR произойдет первой. Это Германия. Почему? - Да потому, что г-н Рифкин ныне является личным советником канцлера Германии Ангелы Меркель.

Хочется выразить надежду, что «всемирная» TIR случится гораздо раньше того момента, когда человечество исчерпает все имеющиеся в природе запасы угля, нефти, газа и урана, а заодно окончательно загубит окружающую природную среду.

В конце концов, каменный век закончился вовсе не потому, что на Земле закончились камни…

Михаил КРАСНЯНСКИЙ, PhD, г. Филадельфия

Приоритетной задачей Европейского союза в первой половине XXI века, по словам Джереми Рифкина, «должно стать лидерство в третьей промышленной революции». Сокращение выбросов углекислого газа – всего лишь часть проблемы: настало время перехода к низкоуглеродной экономике.

Это не утопия, здесь нет ничего футуристического: через четверть века каждый дом будет «мини-электростанцией», обеспечивающей чистой энергией внутренние потребности и отдающей ее избыток другим.

У третьей промышленной революции три фундаментальных источника, три столпа, которые Джереми Рифкин описывает так ярко и убедительно: широкая эксплуатация возобновляемых источников энергии, строительство зданий, которые сами вырабатывают энергию, и переход к использованию водорода в качестве аккумулятора энергии.

На карту поставлено будущее Европейского союза, и о «будущем» нельзя думать как о том, что будет после нас!

Мы не имеем права упустить такую возможность: третья промышленная революция – это шанс перевести европейскую экономику на перспективную и устойчивую основу и, таким образом, обеспечить ее долгосрочную конкурентоспособность.

Ханс Герт Пёттеринг, председатель Европарламента, выступление на втором форуме ЕС «Агора граждан», 12 июня 2008 г.

Благодарности

Прежде всего я должен поблагодарить Николаса Изли, возглавляющего направление глобальных операций, за тщательный контроль соблюдения общего замысла «Третьей промышленной революции» и за редакторский вклад в создание книги. Я признателен Эндрю Линоузу, директору по программам, за строгое управление нашей повседневной работой и за ценные редакторские замечания. Я также благодарю наших стажеров Флору де Словер, Альму Веласкес, Вальбону Тика, Лорен Буш, Барта Провуста, Дивиа Сусарла, Бобби Самьюэла, Брайана Бауэра, Петроса Кусму и Шона Мурхеда за квалифицированную помощь в подготовке рукописи.

Я очень признателен редактору Эмили Карлтон за ее энтузиазм и преданность этому проекту, а также за многочисленные предложения по оформлению книги. Благодарю также моего агента Ларри Киршбаума за идеи по первоначальному предложению книги и ее позиционированию на глобальном рынке.

Особой благодарности заслуживает Анджело Консоли, который руководил нашими европейскими операциями в течение последних девяти лет. Его политическая проницательность и беззаветная преданность делу очень помогли в превращении видения, представленного в «Третьей промышленной революции», в реальность по всей Европе.

Наконец, мне просто необходимо поблагодарить мою жену, Кэрол Грюневальд, за ее советы и терпение на протяжении последних 22 лет. Наша общая мечта о создании более стабильного мира для каждого человека вдохновляла нас в течение всего этого времени.

Введение

Вашингтон, округ Колумбия

Наша промышленная цивилизация стоит на перепутье. Нефть и другие ископаемые источники энергии, которые составляют ее основу, исчерпали себя, а порожденные ими технологии уходят в прошлое. Промышленная инфраструктура, выстроенная на ископаемом топливе, устаревает и требует обновления. В результате этого во всем мире растет безработица. Правительства, компании и потребители погрязли в долгах, а уровень жизни падает. Миллиард человек, почти седьмая часть населения Земли, страдает от недоедания и голода.

К тому же на горизонте уже маячит проблема изменения климата, связанная с промышленностью, в основе которой лежит ископаемое топливо. Ученые предупреждают, что нас ждет катастрофическое изменение температуры и химии планеты, грозящее дестабилизацией экосистем по всему миру. Они не исключают массового вымирания растений и животных в конце столетия, которое поставит под вопрос выживание человека как вида. Все яснее вырисовывается потребность в новой экономической концепции, способной обеспечить нам более справедливое и устойчивое будущее.

К 1980-м гг. начали накапливаться свидетельства, указывающие на то, что промышленная революция на основе ископаемого топлива достигла пика и что изменение климата, вызванное деятельностью человека, ведет к планетарному кризису невиданного масштаба. На протяжении последних 30 лет я занимался поисками новой парадигмы, которая могла бы положить начало постуглеродной эры. В результате этих изысканий я понял, что великие экономические революции случаются в истории тогда, когда новые коммуникационные технологии сливаются воедино с новыми энергетическими системами. Новые энергетические режимы делают возможной более взаимосвязанную экономическую деятельность, расширяют коммерческий обмен, а также способствуют более тесным и всеобъемлющим социальным взаимоотношениям. Сопутствующие им коммуникационные революции предоставляют средства организации и управления новой пространственно-временной динамикой, обусловленной новыми энергетическими системами.

В середине 1990-х гг. стало очевидно, что новая точка схождения коммуникационных и энергетических технологий не за горами. Интернет-технологии и возобновляемые источники энергии уже готовы соединиться и сформировать мощную новую инфраструктуру для третьей промышленной революции, которая изменит мир. В грядущей эпохе сотни миллионов людей будут сами производить зеленую энергию у себя дома, в офисах и на заводах и делиться ею через «энергетический Интернет» точно так же, как мы сейчас создаем информацию и делимся ею в Сети. Демократизация энергии приведет к фундаментальной перестройке человеческих взаимоотношений, изменению самой сути бизнеса, управления обществом, образования и участия в жизни гражданского общества.

Впервые с моим видением третьей промышленной революции познакомились слушатели курса повышения квалификации топ-менеджеров в Школе бизнеса Уортона Пенсильванского университета, где последние 16 лет я являюсь старшим преподавателем по вопросам новых тенденций в науке, технологии, экономике и обществе. Во время пятинедельного курса генеральные директора и топ-менеджеры со всего света занимаются проблемами, которые приходится решать в XXI веке. Моя идея довольно быстро проникла в штаб-квартиры компаний и стала частью политического лексикона глав государств Европейского союза.

К 2000 г. Европейский союз уже проводил агрессивную политику сокращения выбросов парниковых газов и перехода к эре экологически устойчивой экономики. В Европе занимались подготовкой целевых показателей и ориентиров, пересматривали приоритеты научных исследований и разработок, вводили кодексы, правила и стандарты нового экономического процесса. В отличие от этого Америку занимали гаджеты и «революционные новинки» из Кремниевой долины, а американские домовладельцы ничего не видели за фантастическим ростом рынка недвижимости, подпитываемым низкокачественными ипотечными кредитами.

В статье весьма кратко рассмотрены уже состоявшиеся четыре технологические революции, повлекшие замену предметов конкуренции (знаний, технологий и производства машин и механизмов). На эти предметы были направлены действия двигательной силы (воды, пара, электричества и углеводородов).. Затем, начиная с пятого технологического уклада произошла революция, ознаменовавшая переход к качественно новой конструкции, направляющей действия своих интеллектуальных сил на новые предметы конкуренции, а именно на разные виды конвергенции нано, био, инфо и когно – технологий. При этом, действия, направленные на новый предмет конкуренции, стали использовать новую логику кооперации(разделение труда, использование лучших стандартов и обмен опытом), обеспечившую доступ к интеллектуальным силам глобального облачного технологического ресурса.

Введение

Человечество пережило пять технологических революций. Всякий раз переход от одного технологического уклада к другому сопровождается кризисом и разрушением старой технологической структуры экономики. Это связано с тем, что потребность в старых технологиях и произведенной с их помощью продукции со временем снижается, а потребность в ресурсах растет. В результате предприятия несут непредвиденные расходы, теряют своих клиентов, прибыль, а банки становятся более осторожными в выдаче кредитов, инвесторы стремятся уйти на дно (фондовый рынок) в надежде сохранить свой капитал. Все это вместе взятое сулит многочисленные проблемы предпринимателям, которые не успели по тем или иным причинам или не хотят направить свои действия на новый предмет конкуренции (знания, технологии и производство продукции с новыми ценностями) , вызывающий доверие у инвесторов и потребителей продукции.

В каждом технологическом укладе могут использоваться предметы конкуренции из нескольких предыдущих укладов. Например, в России в настоящее время применяют в качестве предмета конкуренции технологии третьего (электрические приводы различных станков и механизмов, разработанных в начале прошлого века), четвертого (нынешние платформы добычи нефти и газа) и пятого технологических укладов (облачные коммуникации предприятий с помощью компьютеров, электронные правительства, ИНТЕРНЕТ). Но постепенно, в недрах очередного технологического уклада созревают технологии последующего технологического уклада, действия которых направлены на модернизацию предметов конкуренции из предыдущих технологических укладов.

Например, технологии добычи углеводородов справедливо относятся к предметам конкуренции из четвертого технологического уклада. В этих предметах нуждаются различные двигатели внутреннего сгорания. Но технологии пятого технологического уклада способны с помощью специальных добавок, произведенных с помощью нанотехнологий существенно повысить износоустойчивость инструментов добычи ресурсов. Такая модификация предметов конкуренции, произведенных в эпоху четвертого технологического уклада, позволяет существенно продлить их жизненный цикл и сохранить на должном уровне их конкурентные преимущества.

На рис. 1 приведена основная системная конструкция, характеризующая конкуренцию в каждом технологическом укладе. К предмету конкуренции относятся знания, технологии и производство продукции. К действиям, направленным на предметы конкуренции, относятся различные способы преобразования ресурсов в двигательную или интеллектуальную силу, а также различная логика действий (разделение труда технологических цепочек, обмен мировым опытом и использование лучших мировых стандартов).

При переходе к очередному технологическому укладу неизбежно меняется вся системная конструкция, содержащая предметы и действия, направленные на конкуренцию. Старая конструкция уже не удовлетворяет предпринимателей, поскольку затраты на ее обслуживание постоянно растут в геометрической прогрессии, в то время, как производительность труда растет в арифметической прогрессии. Смена конструкции повышает инвестиционную привлекательность предприятий и позволяет существенно снижать расходы на действия, направленные на новые предметы конкуренции.

1. Первая технологическая революция

В разных странах зарождение первого технологического уклада и связанных с ним предметов и действий конкуренции происходило в 1785–1843 гг., но раньше всего это зарождение произошло в Англии. В то время Англия являлась крупнейшим импортером хлопчатобумажных изделий. Это означало, что предметы и действия английских промышленников не соответствовали требованиям глобальной конкуренции. Переломить эту ситуацию можно было только с помощью конструкции, заменяющей человеческий труд на универсальную двигательную силу. Оперируя понятиями предметов и действий конкуренции на рис.1 можно утверждать, что английские промышленники, оказавшись не состоянии конкурировать с индийскими ткачами, ткани которых были лучше и дешевле, попытались изучить предметы конкуренции , то есть накопить знания, освоить новые технологии и механизировать производство тканей с помощью преобразования ресурсов в двигательную силу, а также новой логики действий на основе мануфактур (действий, направленных на разделение труда по производству пряжи и тканей).

С изобретением прядильных и ткацких станков технологическая революция хлопчатобумажной промышленности еще не закончилась. Дело в том, что текстильный (впрочем, как и любая другая машина) станок состоит из двух частей: рабочей машины (машины-орудия), которая непосредственно обрабатывает материал, и двигателя (ресурса), который приводит в движение эту рабочую машину. Технологическая революция началась с машины-орудия. Если до этого рабочий мог работать только одним веретеном, то машина могла вращать много веретен, вследствие чего увеличилась производительность труда примерно в 40 раз. Но возникло несоответствие между производительностью машины и двигательной силой. Для устранения этого несоответствия потребовалось, чтобы двигательной силой текстильных машин стала сила падающей воды.

Но все это промышленное развитие было поставлено под угрозу из-за отсутствия необходимых ресурсов. Быстротекущие реки имелись далеко не всюду, поэтому между предпринимателями происходила настоящая война за воду. Владельцы земель по берегам рек не упускали случая получить свою долю прибыли, повышая цену на участки земли. По сути дела владельцы земель сыграли роль недобросовестных дистрибуторов. Поэтому предпринимателю желательно было избавиться от необходимости выплачивать значительные суммы денег в виде ренты землевладельцу, в монопольном владении которого находилась земля на берегу реки. Все это вместе взятое заставило предпринимателей активно искать новую двигательную силу, способную обеспечивать растущую производительность труда достаточным ресурсом. И такая двигательная сила была найдена в виде пара. В результате, дефицит «водяного» ресурса привел к смене конструкции, то есть к предметам и действиям «парового ресурса». Конкуренция и кооперация небольших текстильных предприятий уступила дорогу конкуренции и кооперации технологических цепочек крупных мануфактур.

2. Вторая технологическая революция

Эта революция началась в 1780–1896 гг с изобретения Джемс Уаттом универсальной паровой машины, которая могла быть использована как двигатель для любого рабочего механизма. Еще в 1786 г. в Лондоне была устроена первая паровая мельница; за год перед этим была построена, первая текстильная паровая фабрика. Этим завершился процесс освоения нового предмета конкуренции , показанного на рис.1 , состоящего из знаний, технологий и производства различных паровых машин и механизмов. Действия , направленные на этот предмет конкуренции основывались на использовании двигательной силы пара , а также на логике действий , основанных на разделении труда и использовании новых стандартов качества текстильного производства.

С появлением парового ресурса фабрики могли покинуть долины рек, где они помещались уединенно, и приблизиться к рынкам, где бы они могли иметь сырье, товар и рабочие руки. Первые паровые машины, которые появились еще в XVII веке, сыграли значительную роль и в других видах экономической деятельности. Так, паровой двигатель Джемса Уатта можно было применять в качестве универсальной платформы в разных отраслях промышленности и на транспорте (паровозов, пароходов, паровых приводов прядильных и ткацких станков, паровых мельниц, парового молота) , а также других операций. При этом, история изобретения универсальной паровой машины лишний раз доказывает справедливость китайской формулы «инвестиционного счастья» в том, что технологическая революция — не просто цепь изобретений. Русский механик Ползунов изобрел свою паровую машину раньше Уатта, но в России того времени она оказалась не нужна и о ней забыли, как забыли, очевидно, и обо многих других «несвоевременных» изобретениях.

3. Третья технологическая революция

Третья технологическая революция происходила в 1889–1947 гг вследствие попыток предпринимателей удержать свою конкурентоспособность на должном уровне. Но предыдущий предмет конкуренции, показанный на рис. 1 (знания и технологии производства паровых машин), и действия с ним перестали удовлетворять новым требованиям цены и качества продукции. Многочисленные паровые машины требовали постоянного ухода и присутствия человека. Это не устраивало потребителей пара и в мире начался поиск иной системной конструкции, существенно увеличивающей ресурс двигательной силы. Предметом глобальной конкуренции стали электрические машины и механизмы, встроенные в новые средства производства, а действия , направленные на них стали использовать двигательную силу электричества.. Снова потребовалось накопить знания и технологии производства новой двигательной силы и изобрести новую конструкцию доступа к этой двигательной силе. Ключевым моментом наступления нового технологического уклада стало изобретение Томаса Эдисона и его последующих действий по созданию частных компаний, применяющих электрический ресурс. Изобретение возможности передачи электроэнергии позволило применять новые формы разделения труда, новые технологии, основанные на электрических приводах и простейших конвейерах.

Следует отметить, что существенной стороной деятельности Томаса Эдисона был не талант изобретателя, а гений предпринимателя и технолога, воплощающего изобретения в жизнь. Помимо лампочки, всем известно, что Эдисон разработал генератор переменного тока, внес существенный вклад в конструкцию фонографа, кинокамеры, телефона, пишущей машинки (изобрел все это не он). В эпоху третьего технологического уклада усовершенствовалась техника преобразования ресурсов в электрическую энергию, а также генерирования, передачи и использования электрической энергии. Росли мощность станций и протяженность сетей, отдельные энергетические комплексы объединялись высоковольтными линиями передачи, происходил постепенный переход от централизованного электроснабжения отдельных предприятий к электрификации целых стран. Распространение предметов и действий электрического привода в производстве способствовало эффективному разделению труда в промышленности. Главным достижением третьего технологического уклада явилось то, что только электрическая энергия была способна окончательно ликвидировать разрыв между местонахождением природных ресурсов энергии (водных источников, залежей топлива) и расположением ее потребителей. Двигательную «электрическую» силу магнитоэлектрических машин научились получать еще в 30-х годах XIX века., но на практике этот вид тока был признан и оценен только в следующем технологическом укладе.

4. Четвертая технологическая революции

Четвертый технологический уклад (1940-1990 гг.) возник в недрах предыдущего « электрического» уклада и стал использовать в качестве основного предмета конкуренции на рис.1 знания и технологии, направленные на превращение энергии углеводородов в универсальную двигательную силу . В результате действий, направленных на этот предмет, появились двигатели внутреннего сгорания и на этой платформе были построены автомобили, тракторы и самолеты и другие машины и механизмы. Начала свое развитие ядерная энергетика задолго до ее использования в экономике стран. Это доказывает, что в жизни постоянно идет процесс обновления знаний, технологий и производства ресурсов и вытекающей из них конструкции преобразования ресурсов в разные виды двигательной силы. Этот процесс не является быстрым в силу человеческого фактора, который присущ социально-экономической системе. Однако стратегическое видение наиболее продвинутых предпринимателей и их стремление к обеспечению долговременной глобальной конкуренции постепенно приводило к формированию новых форм кооперации..

Четвертый технологический уклад существенно изменил облик технологической структуры экономики (тракторы, механизмы на основе двигателей внутреннего сгорания и др.) и фактически завершил век механизации в разных видах экономической деятельности. Важнейшим событием стало изобретение новых действий, направленных на предметы конкуренции (автомобили), а именно конвейера производства автомобилей, а также тракторов, самолетов и так далее. В обиходе граждан появилась механизированная бытовая техника, малогабаритные механизмы для обработки продуктов питания, а позже — электробритвы, пылесосы, стиральные и посудомоечные машины, музыкальные устройства и комплексы и т.д.

Для этого технологического уклада важнейшим глобальным технологическим ресурсом стали нефть и газ, а также их производные. Постепенно, этот ресурс трансформировался в разные виды двигательной силы. Посредством этих двигательных сил многие развитые страны обеспечили себя необходимым ростом экономики. С помощью новых видов двигательных сил расцвела экономика предметов конкуренции вооружений, основанная на применении двигателей внутреннего сгорания разных видов. На этой основе появились различные платформы для производства новых моделей станков, самолетов, танков, автомобилей, тракторов, подводных лодок и кораблей, другой военной техники. Данные платформы, обеспеченные двигательной силой двигателей внутреннего сгорания, сами стали глобальным предметом конкуренции, действия к которому стали осуществлять производственные сети предприятий.

Таким образом, четвертый технологический уклад повысил конкурентоспособность экономики за счет новых предметов конкуренции (знания, технологии и производство систем на платформе двигателей внутреннего сгорания). На эти предметы были направлены действия технологических цепочек предприятий по разделению труда, по применению новых стандартов качества и по обмену опытом с другими предпринимателями.

Надо отметить, что единственный раз в истории развития Российской империи СССР, удалось в кратчайшие сроки освоить предметы конкуренции четвертого технологического уклада в период 1930- 1940 годах и, в частности, в области вооружений. Это произошло благодаря огромным ресурсам страны, а также грамотным действиям власти, направленным на создание технологических цепочек предприятий, разделение труда, своевременную подготовку компетентных кадров, использование лучших стандартов и учет опыта США и Германии в производстве вооружений.

5. Пятая технологическая революция.

Спусковым крючком пятой технологической революции послужило изобретение в 1956 американскими физиками Вильямом Шокли, Джоном Бадин и Уолтером Брэттен транзистора. За это изобретение авторы были совместно удостоены Нобелевской премии в области физики. Транзистор произвел революцию в технологии радио. Он дал начало новым предметам конкуренции на рис.1 , основанным на достижениях микроэлектроники и, в конечном итоге, привел к созданию микросхем, микропроцессоров, компьютеров и многих других коммуникационных систем без которых мы в настоящее время не мыслим свою жизнь. Это был выход из «первобытного механического » века в век электронный, космический и компьютерный.

На этом этапе впервые в истории предмет конкуренции на рис.1 (знания, технологии и производство) перестал служить целям простой замены человеческого труда двигательной силой машин, как в предыдущих укладах. Вместо этого предмет конкуренции стал служить целям развития доселе неизвестных интеллектуальных сил массовой автоматизации производства, проектирования изделий и управления предприятием. В результате возникли на рубеже веков сложнейшиемеждисциплинарные интеллектуальные силы автоматизации проектирования изделий (САПР), управления технологиями (АСУТП) и предприятием (АСУП). Действия, этих сил привели к новой логике разделения труда, обмена мировых опытом и применения лучших мировых стандартов с помощью облачных технологий Интернет. В такие действия стал закладываться совершенно иной способ преобразования ресурсов в интеллектуальную силу , который получил название облачного от слов « сloud сomputing (облачные вычисления)» .

Следует отметить, что во времена четвертого технологического уклада ресурс интеллектуальной силы уже существовал, но был сравнительно мал, и его потребителей было немного. На начальных стадиях развития сloud сomputing , ресурс использовали сотрудники университетов и исследовательских лабораторий для коллективного творчества по созданию интеллектуальной силы, достаточной для создания изобретений и открытий. Предметом конкуренции стало создание разных каталогов знаний, технологий производства комплектующих. На этот предмет были направлены действия по преобразованию в интеллектуальную силу доступных ресурсов знаний по каталогам.

Первопроходцем в области преобразования доступных ресурсов в интеллектуальную силу знаний стал поисковик Yahoo. Это не была платформа знаний в прямом смысле, потому что область поиска знаний ограничивалась ресурсами каталога. Далее каталоги распространились и стали использоваться повсеместно и вместе с ними развивались и методы поиска. На данный момент каталоги почти утратили популярность. Это объясняется тем, что современная платформа знаний содержит огромное количество интеллектуальных сил, полученных из ресурсов с помощью ассоциативных способов действий.

В наши дни предметами конкуренции стали каталоги знаний Open Directory Project или DMOZ, включающие в себя информацию о 5 миллионах ресурсов, а также поисковая система Google, которая содержит около 8 миллиардов документов. Действия, направленные на эти предметы конкуренции, позволили выйти на международный уровень конкуренции таким поисковым системам, как MSN Search, Yahoo и Google. В этой области еще предстоит выявить новые предметы конкуренции (платформы знаний, технологий), на которые будут направлены действия конвергенции технологий, пока еще слабо изученные и недоступные для массового пользователя. Отсюда следует, что пятая технологическая революция еще продолжается и нас ожидает много новых изобретений и открытий.

6. Шестая технологическая революция

Эта революция еще впереди и в отличие от предыдущих впервые в истории человечества рассматривает в качестве действий, направленных на основные предметы глобальной конкуренции на рис.1 (знания, нано, био, информационные и когнитивные технологии), не двигательную силу, а прежде всего интеллектуальные силы человека. Действия, совершенные в предыдущем технологическом укладе в области облачных коммуникаций и систем поиска информации привели к тому, что основным ресурсом стали инвестиции в форме глобального облачного технологического ресурса , показанного на рис. 2. В течение четвертого и пятого технологических укладов глобальная конкуренция во всем мире поддерживалась с помощью мощного глобального ресурса (долларов), исходящего, главным образом, из США и кредитующего многочисленных, главным образом, американских покупателей.

Главной двигательной силой предприятий, направленной на предмет конкуренции, стал потребительский кредит. При этом, кредиторы закрывали глаза на то, что кредитные риски возрастали и значительная часть заемщиков кредиты не возвращала. Но зато поддерживался огромный спрос товаров и услуг на рынке США, служивший локомотивом улучшения параметров жизненного цикла производителей продукции пятого технологического уклада в США, странах ЕС, в Китае и в других странах. При переходе мировой экономики к шестому технологическому укладу произошел системный сбой, выразившийся в истощении кредитного ресурса. Этот сбой привел к краху мировой финансовой системы и рынка инвестиций. Теперь на развалинах старой модели возникают очертания новой модели, ориентированной на средства улучшения инвестиционной привлекательности и других параметров жизненного цикла производителей с помощью системных инновационных прорывов. Иными словами, кредит как двигательная сила экономики уступил место интеллектуальной силе, направленной на конвергенцию высоких технологий..

Ныне из массового применения инноваций в разных видах экономической деятельности складывается новый технологический уклад. Его основной предмет глобальной конкуренции поднимает знания, технологии и производство интеллектуальной силы на небывалую высоту коллективного творчества. Действия, направленные на главный предмет конкуренции выявляют и устраняют несоответствия между требованиями инвесторов и растущей сложностью действий, направленных на разные способы преобразования ресурсов в интеллектуальную силу и на разную логику разделения труда.

Стало ясно, что системная конструкция, состоящая из разрозненных по всему миру технопарков, кластеров, венчурных фондов в новых условиях явно не способна реализовать подобные проекты. Одновременно невероятно выросла роль кооперации предприятий, использования лучших мировых стандартов и обмена знаниями и компетенциями.

Для преобразования ресурсов инвестиций в новые формы интеллектуальной силы потребовался новый так называемыйглобальный облачный технологический ресурс знаний, технологий и продукции, снижающий риски инвесторов и обеспечивающий реализацию систем с высоким уровнем искусственного интеллекта. А для доступа к новому глобальному облачному технологическому ресурсу нужна совершенно иная системная конструкция , которая должна обеспечивать доступ инновационного бизнеса из разных стран мира к новому ресурсу с целью производства новых видов интеллектуальных сил . Такая конструкция представляет собой на рис.2 некое множество интеллектуальных оболочек, соединенных между собой по всему земному шару с помощью облачных коммуникаций. Каждая интеллектуальная оболочка в свою очередь состоит из набора функциональных платформ.

Каждая платформа поддерживает определенные нормы, правила и вытекающие из них стандарты преобразования ресурсов в новые виды интеллектуальных сил, наполнена множеством сложных проектных решений в разных странах и способна быстро выявлять и устранять несоответствия между ними. Благодаря этому, оболочка с платформами интегрируется в новый глобальный облачный технологический ресурс, который может быть преобразован в ресурс интеллектуальных сил, доступных другим производителям, дистрибуторам и потребителям знаний, разработчикам и поставщикам технологий, производителям интеллектуальной силы из разных стран мира. Причем, сама оболочка и ее логика действий (рис.1) служат основой кооперации предприятий, предусматривающей международное разделение труда, применение лучших мировых стандартов и обмен мировым опытом.

Число платформ в каждой интеллектуальной оболочке служит главным признаком определенного вида деятельности предприятия. В том случае, если мы имеем дело с оболочками, состоящими из двух платформ (трансферов технологий и производства продукции), то это обстоятельство явно свидетельствует о том, что мы способны успешно осуществлять модернизацию экономики с помощью импорта технологий и производства продукции. Если же мы применяем оболочки, состоящие из трех платформ (знаний, трансферов технологий и производства продукции), то тем самым мы приобретаем возможность коллективного творчества в создании новых видов интеллектуальных сил, направленных на предметы глобальной конкуренции.

Природа, предметы и действия системной конструкции, показанные на рис.1 , направленные на глобальную конкуренцию в шестом технологическом укладе более подробно показаны на рис.3. . Здесь предмет конкуренции характеризуется высоким уровнем конвергенции технологий в конструкциях NBIC и CCEIC (Конструкция S (социо) + NBIC пока только обсуждается.). Первая конструкция означает взаимопроникновение нано(N), био (B), инфо(I) и когно (C) технологий с целью реализации сложнейших в истории человечества проектов, касающихся преобразования ресурсов в интеллектуальные силы в разных видах производственной деятельности. Вторая конструкция означает преобразование ресурсов в интеллектуальные силы для конвергенции облачных вычислений (СС- сloud сomputing), усиленных знаниями об экономической деятельности предприятия (E) , моделировании генераторов отчетности (I) и когнитивных свойствах систем (С).

Вторая конструкция обеспечивает переход к применению интеллектуальной силы в тех областях., где пока используется мозг человека и где наблюдается высокая степень формализации информации. Например, это касается автоматизации составления финансовой отчетности и ее перевода на иностранные языки. Условия, в которых осуществляется глобальная конкуренция в шестом технологическом укладе, характеризуются одновременным присутствием технологий из разных предыдущих технологических укладов. При этом, основные действия технологических цепочек направлены на использование интеллектуальных сил в разных видах человеческой деятельности

Для выполнения основных действий предприятия из технологических цепочек приобретают в лице глобальных индустриальных центров возможность использования интеллектуальных оболочек, помогающих кооперировать усилия предприятий в разных способах преобразования ресурсов в интеллектуальные силы. Кооперация должна быть основана на логике действий, направленной на обмен опытом, использование лучших стандартов и на разделение труда. Особое значение при разделении труда приобретает дистрибуция комплектующих из тех стран, где достигнуто лучшее качество этой продукции. В этом случае, все действия дистрибуторов, направляемые на предмет конкуренции, должны быть прозрачными и налагать на производителей продукции требования соблюдать заданный уровень качества.

Владелец системной конструкции (глобальный индустриальный центр) обеспечивает сдачу в аренду разных интеллектуальных оболочек, состоящих из платформ знаний, технологий и производства продукции. Одновременно владелец определяет предметы глобальной конкуренции, то есть знания, технологии и производство инновационной продукции. С помощью интеллектуальных оболочек владелец получает возможность подключаться к инновационным и финансовым супермаркетам, обеспечивающим прозрачность, ответственность и высокое качество преобразования ресурсов финансовых супермаркетов в интеллектуальные силы инновационного супермаркета.

На рис. 4 показана архитектура платформы знаний, входящей в состав интеллектуальной оболочки. Эта платформа создает условия работы другой платформы – платформы технологий. Владельцами платформы знаний являются прежде всего университеты, научные институты, другие индустриальные центры. Владельцы осуществляют действия, направленные на предметы накопления, производства и потребления знаний по преобразованию ресурсов в интеллектуальные силы. Эти действия включают в себя экспертизу и доказательную базу научно – исследовательских работ (НИР). Право пользоваться платформой знаний имеют компетентные кадры (ученые и менеджеры по научному сотрудничеству). Эти кадры производят продукцию, к которой относятся фундаментальные знания и публикации. Они осуществляют с помощью платформы знаний действия, направленные на защиту патентов и проводят бизнес – экспертизу процессов производства и потребления знаний.

В качестве партнера индустриальных центров могут выступать государство, наиболее продвинутое в области инноваций, различные международные регуляторы защиты интеллектуальной собственности, обеспечивающие улучшение платежного технологического баланса (баланса между доходами и расходами, связанными с разработкой новых технологий). Платформа позволяет реализовать коммуникации с частными предпринимателями, использующими в качестве инвестиций в инновации глобальный облачный технологический ресурс.

Платформа знаний с помощью интеллектуальной оболочки и системной конструкции связана с множеством других интеллектуальных оболочек, а через них – с инновационными супермаркетами. Подобные супермаркеты играют важную роль в трансформации знаний в технологии преобразования ресурсов финансовых супермаркетов в интеллектуальные силы и обеспечивают прозрачность поставок деталей для сложных изделий из разных стран мира. Тем самым технологические цепочки предприятий посредством индустриальных центров осуществляют эффективные формы кооперации в международном пространстве с целью инновационных прорывов и разработки конвергентных продуктов NBIC и CCEIC .

На рис.5 приведена платформа технологий, обеспечивающая преобразование ресурсов финансовых супермаркетов в интеллектуальные силы НИОКР глобального облачного технологического ресурса. Эта платформа создает условия для работы платформ производственных сетей предприятий, например, в таких разных странах, как Япония и страны ЕС. Платформа рассматривает в качестве основного предмета конкуренции трансфер технологий и их конвергенцию.

Кроме этого, к важному предмету конкуренции относятся различные механизмы регулирования прав на технологии. С помощью глобальной экспертизы технологий обеспечивается ускорение превращения идей в продукцию.

Владельцы платформы (а это могут быть как технологические цепочки малых предприятий, так и отдельные крупные предприятия) благодаря проектной ориентации и защитным мерам, механизмам защиты патентов и бизнес – экспертизе снижают риски недоброкачественных технологий и улучшают свой технологический платежный баланс. Такой баланс служит важным индикатором инновационной деятельности предприятий, поскольку отражает доходы и расходы при выполнении НИОКР.

Данная платформа решает исключительно важную задачу осуществления прозрачной и качественной системы дистрибуции. В условиях международного разделения труда дистрибуция занимает важное место, поскольку технологические цепочки предприятий делают отдельные детали, а серийная сборка наукоемких изделий производится на одном из крупных предприятий. Тем самым, технологическая цепочка подобно мануфактурам из первого технологического уклада способна конкурировать с другими производителями и производить детали и изделия в целом класса NBIC .

Важным звеном в технологической цепочке предприятий является подготовка кадров. Здесь главные требования к компетенциям лежат в плоскости инноваций. Поэтому, основной состав специалистов образуют научные предприниматели, подобные Эдисону, а также квалифицированные инженеры. Подготовка и сертификация кадров на соответствие требованиям компетентности производится в рамках проектных семинаров, аккредитованных среди пользователей платформы технологий. И конечно важным обстоятельством является предоставление данной платформой пользователям возможности для снижения инновационных и финансовых рисков при преобразовании с помощью инновационных и финансовых супермаркетов ресурсов в интеллектуальные силы конвергенции технологий NBIC .

На рис. 6 приведена архитектура платформы производственных сетей предприятий, связанных между собой с помощью облачных коммуникаций. На основе данной платформы работают производственные сети предприятий. Свою продукцию они продают через супермаркеты наукоемкой продукции. Инвесторы и владельцы платформы взаимодействуют с помощью финансовых супермаркетов, существенно снижающих риски инвесторов. Основными предметами глобальной конкуренции платформы служат знания и технологии потребительского кредитования, на которые направлены интеллектуальные силы, включающие в себя лучшие стандарты, обмен мировым опытом, инфраструктуру разделения труда между различными предприятиями из технологических цепочек, грамотное технологическое прогнозирование, компетентный инженерный корпус и облачные индустриальные центры.

Основные действия платформы направлены на улучшение технологического платежного баланса и на доступ к ресурсам инновационных супермаркетов, обеспечивающих прозрачную дистрибуцию наукоемкой продукции. Многочисленные предприятия из технологических цепочек используют облачные коммуникации между собой для обмена проектами, основанными на использовании вместо физических дорогостоящих макетов их цифровыми аналогами на основе класса решенийProduct Lifecycle Management (PLM).

Заключение

Таким образом, мы весьма кратко рассмотрели уже состоявшиеся четыре технологические революции, повлекшие замену предметов конкуренции (знаний, технологий и производства машин и механизмов). На эти предметы были направлены действия двигательной силы (воды, пара, электричества и углеводородов).. Затем, начиная с пятого технологического уклада произошла революция, ознаменовавшая переход к качественно новой конструкции, направляющей действия своих интеллектуальных сил на новые предметы конкуренции, а именно на разные виды конвергенции нано, био, инфо и когно – технологий. При этом, действия, направленные на новый предмет конкуренции, стали использовать новую логику кооперации(разделение труда, использование лучших стандартов и обмен опытом), обеспечившую доступ к интеллектуальным силам глобального облачного технологического ресурса.

Литература:

Перес.К. Технологические революции и финансовой капитал. Динамика пузырей и периодов процветания. М. Дело. 2012. 232 с.

Овчинников В.В. Глобальная конкуренция. М. ИНЭС 2007. 358 с.

Овчинников В.В. Глобальная конкуренция в эпоху многоукладной экономики. М. ИНЭС- МАИБ 2011. 152 с.

Овчинников В.В. Технологии глобальной конкуренции. М. ИНЭС- МАИБ.2012. 280 с.

Экспертное сообщество всё отчетливее осознаёт, что дальнейшее развитие цивилизации по исторически сложившемуся пути невозможно, так как ныне появились новые глобальные проблемы, угрожающие существованию этой цивилизации. Впервые в истории человечества сдвинулись со стационарных уровней важнейшие показатели состояния биосферы.

К таким показателям можно отнести: резкое ухудшение качества воздуха и воды; глобальное потепление; истощение озонового слоя; уменьшение биоразнообразия; достижение предела пищевых, сырьевых и энергетических возможностей биосферы; утрату нравственных ориентиров значительной частью человеческого сообщества (так называемый «феномен аморального большинства»).

Памятник нашему поколению будет выглядеть, видимо, так: посреди огромного шламового отвала стоит величественная бронзовая фигура в противогазе, а внизу на гранитном постаменте надпись: «Мы победили природу!».

Первая промышленная революция на базе угля и Вторая промышленная революция на базе нефти и газа фундаментально изменили жизнь и труд человечества и преобразили облик планеты. Однако эти две революции привели человечество к пределу развития. Среди главных вызовов, которые брошены человечеству - проблемы экологии (см. выше), истощение биоресурсов и традиционных источников энергии. И на эти вызовы человечество должно ответить ТРЕТЬЕЙ ПРОМЫШЛЕННОЙ РЕВОЛЮЦИЕЙ.

«Третья промышленная революция» (ThirdIndustrialRevolution - TIR) - это концепт развития человечества, автором которого является американский ученый - экономист и эколог - Джереми Рифкин (JeremyRifkin). Вот основные положения концепции TIR:

1) Переход на возобновляемые источники энергии (солнце, ветер, водные потоки, геотермальные источники).

Хотя «зеленая» энергия все еще не заняла в мире большой сегмент (не больше 3-4%), инвестиции в неё растут огромными темпами. Так, в 2008 г. было потрачено $155 миллиардов на выполнение «зеленых» энергетических проектов ($52 миллиарда - энергия ветра, $34 миллиарда - солнечная энергия, $17 миллиардов - биотопливо и др.), и впервые это были больше, чем инвестиции в ископаемое топливо.

Только за последние три года (2009-2011) суммарная мощность установленных в мире солнечных станций утроилась (с 13,6 ГВт до 36,3 ГВт). Если же говорить обо всех ВИЭ (ветровая, солнечная, геотермальная и морская энергетика, биоэнергетика и малая гидроэнергетика), то установленная мощность электростанций в мире, использующих ВИЭ, уже в 2010 г. превысила мощность всех АЭС и составила около 400 ГВт.

На конец 2011 г. цена в Европе одного кВт-ч «зеленой» энергии для потребителей составляла: гидроэнергии - 5 евроцентов, ветровой - 10 евроцентов, солнечной - 20 евроцентов (для сравнения: обычной тепловой - 6 евроцентов). Однако ожидаемые научно-технологические прорывы в солнечной энергетике позволят к 2020 г. получить резкое падение цен на солнечные панели и снизить цену «под ключ» 1-го ватта солнечной мощности с $2,5 до $0,8-1, что позволит генерировать «зеленую» электроэнергию по цене меньшей, чем от самых дешевых сейчас угольных ТЭС.

2) Превращение существующих и новых зданий (как промышленных, так и жилых) в минизаводы по производству энергии (за счет оборудования их солнечными батареями, мини-ветряками, теплонасосами). Например, в Евросоюзе имеется 190 млн. зданий. Каждое из них может стать маленькой электростанцией, черпающей энергию из крыш, стен, теплых вентиляционных и канализационных потоков, мусора. Необходимо постепенно распрощаться с крупными поставщиками энергии, порожденными Второй промышленной революцией - основанных на угле, газе, нефти, уране. Третья промреволюция - это мириады малых источников энергии от ветра, солнца, воды, геотермии, тепловых насосов, биомассы, включая твердые бытовые и «канализационные» городские отходы и др.

3) Развитие и внедрение технологий энерго-ресурсо-сбережения (как производственного, так и «домашнего») - полная утилизация остаточных потоков и потерь электроэнергии, пара, воды, любого тепла, полная утилизация промышленных и бытовых отходов и др.

4) Перевод всего автомобильного (легкового и грузового) и всего общественного транспорта на электротягу на основе водородной энергетики (плюс развитие новых экономичных видов грузового транспорта таких как дирижабли, подземный пневмотранспорт и др.).

В настоящее время в мире эксплуатируется свыше одного миллиарда ДВС - двигателей внутреннего сгорания (легковые и грузовые автомобили, тракторы, сельхоз- и строительная техника, военная техника, корабли, авиация и др.), которые ежегодно сжигают около полутора миллиардов тонн моторного топлива (бензина, авиакеросина, дизтоплива) и оказывая угнетающее действие на окружающую природную среду.

По данным InternationalEnergyAgency, более половины потребляемой в мире нефти идет на нужды транспорта. В США на транспорт приходится около 70% всей потребляемой нефти, в Европе - 52%; неудивительно, что 65% нефти потребляется в крупных городах (в сумме - 30 млн баррелей нефти в день!).

Вольфганг Шрайберг, один из руководителей Volkswagen, привел интересную статистику: большая часть городского коммерческого транспорта в большинстве стран проезжает за день не более 50 км, а средняя скорость движения этих автомобилей - 5-10 км/час; однако с такими мизерными показателями эти автомобили потребляют в среднем литров моторного топлива на 100 км! Большая часть этого топлива сгорает на светофорах, в пробках или при мелкой погрузке-разгрузке (или на остановках - для общественного транспорта) с невыключенным мотором.

NationalRenewableEnergyLaboratory (США) в своих расчётах использовала среднюю дальность пробега легкового автомобиля 12000 миль в год (19200 км), потребление водорода - 1 кг на пробег 60 миль (96 км). Т.е. одному легковому автомобилю в год требуется 200 кг водорода, или 0,55 кг в день.

Недавно «водородомобиль» Ливерморской национальной лаборатории (LLNL) Министерства энергетики США прошел 1046 километров на одной водородной заправке.

Средний кпд ДВС невысок - в среднем 25%, т.е. при сжигании 10 л бензина 7,5 л уходит «в трубу». Средний кпд электропривода - 75%, втрое выше (а термодинамическое кпд топливного элемента - около 90%); выхлопы водородомобиля -только Н2О.

Важно отметить, что если для движения традиционного автомобиля необходима нефть (бензин, дизель), которая есть далеко не у каждой страны, то водород получают из воды (даже морской) с помощью электроэнергии, которую, в отличие от нефти, можно получать из различных источников - уголь, газ, уран, водные потоки, солнце, ветер и др., и у любой страны что-то из этого «набора» обязательно имеется.

5) Переход от промышленного к локальному и даже «домашнему» производству большинства бытовых товаров благодаря развитию технологии 3D-принтеров.

3D-принтер - устройство, использующее метод послойного создания физического объекта на основе виртуальной 3D-модели. В отличие от обычных принтеров, 3D-принтеры печатают не фотографии и тексты, а «вещи» - промышленные и бытовые товары. В остальном они очень похожи. Как и в обычных принтерах, применяются две технологии формирования слоёв - лазерная и струйная. У 3D-принтера тоже есть «печатающая» головка и «чернила» (точнее, заменяющий их рабочий материал). Фактически, 3D-принтеры - это те же специализированные промышленные станки с числовым программным управлением, но на абсолютно новой научно-технической базе XXI века.

6) Переход от металлургии к композитным материалам (особенно нано-материалам) на основе углерода, а также замена металлургии на технологию 3D-печати на основе селективной лазерной плавки (SLM - SelectiveLaserMelting).

Например, новейший американский «Boeing-787-Dreamliner» - первый в мире самолет, изготовленный на 50% из композитных материалов на основе углерода. В новом авиалайнере из композитных полимеров изготовлены в том числе крылья и фюзеляж. Широкое использование углепластика по сравнению с традиционным алюминием позволило значительно уменьшить вес самолета и сократить использование топлива на 20% без потерь в скорости

Американо-израильская компания «ApNano» создала наноматериалы - «неорганические фуллерены» (inorganicfullerene - IF), которые многократно прочнее и легче стали. Так, в опытах образцы IF на основе сульфида вольфрама останавливали стальные снаряды, летящие на скорости 1,5 км/сек, а также выдерживали статическую нагрузку в 350 тонн/кв.см. Эти материалы могут быть использованы для создания корпусов ракет, самолетов, морских судов и морских субмарин, небоскребов, автомобилей, бронемашин и в других целях.

NASA решила использовать технологию 3D-печати на основе селективной лазерной плавки как замену металлургии. Недавно сложную деталь для космической ракеты сделали с помощью лазерной трехмерной печати, в процессе которой лазер сплавляет металлическую пыль в деталь любой формы - без единого шва или винтового соединения. Изготовление сложнейших деталей по технологии SLM с применением 3D-принтеров занимает считанные дни вместо месяцев, кроме того, SLM-технологии делают производство на 35-55% дешевле.

7) Отказ от животноводства, переход к производству «искусственного мяса» из животных клеток с использованием 3D-биопринтеров;

Американская компания ModernMeadow изобрела технологию «индустриального» изготовления мяса животных и натуральной кожи. Процесс создания таких мяса и кожи будет включать в себя несколько этапов. Сначала учёные отбирают миллионы клеток у животных-доноров. Это может быть как скот, так и экзотические виды, которых часто убивают только ради их кожи. Затем эти клетки будут размножены в биореакторах. На следующем этапе клетки будут центрифугироваться для удаления питательной жидкости и соединения их в единую массу, которая затем при помощи 3D-биопринтера будет сформирована в слои. Эти пласты клеток будут снова помещены в биореактор, где произойдёт их «созревание». Клетки кожи сформируют коллагеновые волокна, а клетки «мяса» образуют настоящую мышечную ткань. Этот процесс займёт несколько недель, после чего мышечная и жировая ткань может быть использована для производства пищевых продуктов, а кожа - для обуви, одежды, сумок. Для получения мяса в 3D-биопринтере энергии потребуется втрое меньше, а воды - в 10 раз меньше, чем на производство того же количества свинины, а особенно говядины обычными способами, а выбросы парниковых газов снижаются в 20 раз по сравнению с выбросами при выращивании скота на убой (ведь в настоящее время для производства 15 г животного протеина нужно скормить скоту 100 г растительного протеина, таким образом, кпд традиционного метода получения мяса составляет лишь 15%). Искусственный «мясозавод» требует намного меньше земли (займет всего 1% земли по сравнению с обычной фермой той же производительности по мясу). Кроме того, из пробирки в стерильных лабораторных можно получить экологически чистый продукт, без всяких токсичных металлов, глистов, лямблий и прочих «прелестей», часто присутствующих в сыром мясе. К тому же, искусственно выращенное мясо не нарушает этических норм: не надо будет выращивать скот, а затем безжалостно его умерщвлять.

8) Перевод части сельского хозяйства в города на базе технологии «вертикальных ферм» (VerticalFarm).

Откуда взять на все это деньги, коль скоро и Европа, и Америка тонут в долгах? Но ведь везде ежегодно закладывается бюджет развития - каждая страна и почти каждый город планируют его. Важно делать капиталовложения в то, у чего есть будущее, а не в поддержание жизни таких инфраструктур, технологий, отраслей или систем, которые обречены на вымирание.

Хочется выразить надежду, что «всемирная TIR» случится гораздо раньше того момента, когда человечество исчерпает все имеющиеся в природе запасы угля, нефти, газа и урана, а заодно окончательно загубит окружающую природную среду.

В конце концов, каменный век закончился вовсе не потому, что на Земле закончились камни...

Технологическая революция – это качественные изменения технологических способов производства, сущность которых состоит в коренном перераспределении основных техноло­гических форм между человеческими и техническими компонентами производительных сил общества.

Технологические революции стали возможными с появлением машин – технических объектов, способных самостоятельно выполнять технологические формы полу­чения, преобразования, транспортиров­ки и хранения (накопления) различ­ных форм вещества, энергии и инфор­мации.

В общественном производстве произошли три технологические революции .

Первая технологическая революция была обусловлена передачей машине техно­логических функций формообразования ве­щественно-материальных предметов и возникла в недрах мануфактур и фаб­рик (конец XVII-нач. XVIII вв.). Мас­совое использование машин в тек­стильном производстве (чесальных, прядильных, ткацких и др.), металло­обработке (ковочных, прокатных, ме­таллорежущих и др.), бумагодела­тельной, пищевой (машины по пере­работке сырья) и других отраслях привело к первой промышленной революции. Коли­чественные изменения (увеличение размеров машин, одновременное ис­пользование нескольких орудий и ин­струментов, объединение нескольких машин в системы и т.п.) привели к проблеме создания универсального ис­точника энергии.

Вторая технологическая революция – энер­гетическая – была связана с осущест­влением машинного способа генера­ции и трансформации энергии , ее на­чалом стало изобретение универсаль­ного парового двигателя (вторая по­ловина XVIII в.). Энергетическая технологическая революция привела ко второй промышленной революции, распространилась на транспорт, сель­ское хозяйство и др. отрасли матери­ального производства.

Современная или третья технологическая революция (вторая половина XX в.) по своей сути является информационно-тех­нологической . Она подчиняет себе все общественное производство, детерми­нирует революции в системе техники в целом и в различных её отраслях. Компьютеризация и роботизация за­вершают предыдущие технологические революции и связыва­ют их в единое целое. По сути информационно-технологическая революция – это революция в области компьютерных технологий.

Компьютерная революция – это радикальные изменения во всех сферах (материальных и духовных) человеческой деятельности, обусловленные созданием и широкомасштаб­ным использованием современной вычислительной техники, в рамках которой постепенно стираются грани между научным и техническим уровнем познания.

В основе «компьютерной рево­люции» лежит возникновение и развитие кибернетики – науки об управлении и связи между объектами и системами различного уровня и качества, основателем которой является американский ученый Н. Винер. В книге «Кибернетика, или Управление и связь в животном и машине» (1948) он обосновывает возможность количественного под­хода к сигналу (информации), когда информация пред­стала в качестве одной из фундаментальных характеристик материальных объектов (наряду с веществом и энергией) и рассматривалась как феномен, противоположный по своей сути (знаку) энтропии. Этот подход позволил пред­ставить кибернетику как теорию преодоления тенденции ро­ста энтропии.

С середины XX в. формируется структура кибернетики, куда входят:

а) математические основания (теория алгорит­мов, теория игр, математическое программирование и др.);

б) отраслевые направления (экономическая кибернетика, био­логическая кибернетика и др.);

в) конкретно-технические дисциплины (теория цифровых ЭВМ, основы автоматичес­ких систем управления, основы робототехники и др.).

Кибернетика – междисциплинарная наука на стыке ес­тественных, технических и гуманитарных наук, для которой характерен специфический метод исследований объекта (или процесса), а именно: моделирование на ЭВМ. Кибернетика – дисциплина общенаучного характера.

Техническая кибернетика – одно из наиболее развитых отраслевых направлений кибернетики, куда входят теория автоматического управления, ин­форматизация и др. Техническая кибернетика – общетеоретическая основа для группы дисциплин, изучающих информационную функцию техники. В процессе развития кибернетики возникла проблема ис­кусственного интеллекта – выявление возможностей со­здания с помощью современных ЭВМ сравнительно самосто­ятельно мыслящих технических систем, которые должны не только оперировать полученной информацией, но осуществ­лять общение с человеком-оператором на естественном язы­ке.

Выделяются следующие точки зрения на проблему имитационного моделирования (искусственного интеллекта):

1) оптимисты – ЭВМ обладает практи­чески неограниченными возможностями при моделировании мыслительных процессов и любые формы человеческой деятельности, вклю­чая творческие процессы, поддаются технической имитации;

2) пессимисты – скептически подходят к самой возможности реализации идеи полной имитации естествен­ных процессов техническими средствами;

3) реалисты – пытаясь примирить полярные воззрения, полагают, что в поведении и мышлении человека можно найти такие элементы и процессы, которые могут быть имитированы с помощью технических и программных средств.

Компьютерная революция – это научно-техническая основа информационного общества , для которого характерны:

– предельное увеличение скорости передачи информа­ции, сравнимой со скоростью света;

– минимизация (и миниатюризация) технических систем, обладающих значительной эффективностью;

– новая форма передачи информации, основанная на прин­ципе цифрового кодирования;

– распространение программного обеспечения, создав­шее предпосылки для свободного использования персональ­ных компьютеров во всех сферах деятельности.

Если НТР являлась научно-технической основой современ­ного индустриального общества , то компьютерная револю­ция обеспечила становление постиндустриального общества или техногенной цивилизации (буквально – цивилизация, порожденная техникой), которые характеризуются:

– доминированием не количественных (экономический рост), а качественных показателей развития социума (динамика здра­воохранения, образования, социальной политики и т. п.);

– реализацией экологической политики, обеспечивающей не только удовлетворение рациональных потребностей со­циума, но и сохранение равновесия исторически сложивших­ся экосистем (стратегия устойчивого развития);

– экспансией глобализации при стремлении к сохранению национальной идентичности на государственном уровне.

Переход к техногенной цивилизации связан с техногенным изменением человека, которое можно рассматривать как совокупность непосредственно воздействующих на природу человека факторов, обусловленных развитием техники и технологии:

– резкое возрастание сложности, скорости и интенсивности производственных процессов сочетается с колоссальными требованиями к интеллекту, психическому здоровью и моральным качествам личности;

– опосредованно влияют на все аспекты человеческого бытия антропогенные изменения окружающей среды (загрязнение и перестройка которой наряду с другими возмущениями экосистем биосферы создают реальную угрозу существованию homo sapiens);

– тенденция денатурализации, т.е. утраты человеком устойчивых качеств своего естества как биологического организма, жизнь которого всё труднее поддерживать на оптимальном уровне, даже достаточном для простого воспроизводства себе подобных (это обстоятельство позволяет некоторым исследователям предполагать возможность пост-человеческой стадии эволюции).