Ещё раз о законе Всемирного тяготения. Сила тяжести и сила всемирного тяготения Сила тяготения между землей и солнцем равна


В этом параграфе мы расскажем об удивительной догадке Ньютона, приведшей к открытию закона всемирного тяготения.
Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со стороны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, на-правленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.
Догадка Ньютона
Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»: «Брошенный горизонтально камень отклонится
, \\
1
/ /
У
Рис. 3.2
под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, ! то он упадет дальше» (рис. 3.2). Про- J должая эти рассуждения, Ньютон \ приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».
Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.
Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца - это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?
Зависимость силы тяготения от массы тел
В § 1.23 говорилось о свободном падении тел. Упоминались опыты Галилея, доказавшие, что Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. Именно в этом случае ускорение свободного падения, равное отношению силы земного притяжения к массе тела, является постоянной величиной.
Действительно, в этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а уско-
F
рение, которое равно отношению - , останется неизменным.
Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует. Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела.
Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:
F - тут2. (3.2.1)
От чего еще зависит сила тяготения, действующая на данное тело со стороны другого тела?
Зависимость силы тяготения от расстояния между телами
Можно предположить, что сила тяготения должна зависеть от расстояния между телами. Чтобы проверить правильность этого предположения и найти зависимость силы тяготения от расстояния между телами, Ньютон обратился к движению спутника Земли - Луны. Ее движение было в те времена изучено гораздо точнее, чем движение планет.
Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле
л 2
а = - Тг
где В - радиус лунной орбиты, равный примерно 60 радиусам Земли, Т = 27 сут 7 ч 43 мин = 2,4 106 с - период обращения Луны вокруг Земли. Учитывая, что радиус Земли R3 = 6,4 106 м, получим, что центростремительное ускорение Луны равно:
2 6 4к 60 ¦ 6,4 ¦ 10
М „ „„„. , о
а = 2 ~ 0,0027 м/с*.
(2,4 ¦ 106 с)
Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с2) приблизительно в 3600 = 602 раз.
Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 602 раз.
Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли:
ci
а = -к, (3.2.2)
R
где Сj - постоянный коэффициент, одинаковый для всех тел.
Законы Кеплера
Исследование движения планет показало, что это движение вызвано силой притяжения к Солнцу. Используя тщательные многолетние наблюдения датского астронома Тихо Браге, не-мецкий ученый Иоганн Кеплер в начале XVII в. установил ки-нематические законы движения планет - так называемые законы Кеплера.
Первый закон Кеплера
Все планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.
Эллипсом (рис. 3.3) называется плоская замкнутая кривая, сумма расстояний от любой точки которой до двух фиксированных точек, называемых фокусами, постоянна. Эта сумма расстояний равна длине большой оси АВ эллипса, т. е.
FгР + F2P = 2b,
где Fl и F2 - фокусы эллипса, a b = ^^ - его большая полуось; О - центр эллипса. Ближайшая к Солнцу точка орбиты называется перигелием, а самая далекая от него точка - р

В
Рис. 3.4
«2
В А А афелием. Если Солнце находится в фокусе Fr (см. рис. 3.3), то точка А - перигелий, а точка В - афелий.
Второй закон Кеплера
Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади. Так, если заштрихованные секторы (рис. 3.4) имеют одинаковые площади, то пути si> s2> s3 будут пройдены планетой за равные промежутки времени. Из рисунка видно, что Sj > s2. Следовательно, линейная скорость движения планеты в различных точках ее орбиты неодинакова. В перигелии скорость планеты наибольшая, в афе-лии - наименьшая.
Третий закон Кеплера
Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит. Обозначив большую полуось орбиты и период обращения одной из планет через Ьх и Tv а другой - через Ь2 и Т2, третий закон Кеплера можно записать так:

Из этой формулы видно, что чем дальше планета от Солнца, тем больше ее период обращения вокруг Солнца.
На основании законов Кеплера можно сделать определенные выводы об ускорениях, сообщаемых планетам Солнцем. Мы для простоты будем считать орбиты не эллиптическими, а круговыми. Для планет Солнечной системы эта замена не является слишком грубым приближением.
Тогда сила притяжения со стороны Солнца в этом приближе-нии должна быть направлена для всех планет к центру Солнца.
Если через Т обозначить периоды обращения планет, а через R - радиусы их орбит, то, согласно третьему закону Кеплера, для двух планет можно записать
т\ Л? Т2 R2
Нормальное ускорение при движении по окружности а = со2R. Поэтому отношение ускорений планет
Q-i ГлД.
7Г=-2~- (3-2-5)
2 t:r0
Используя уравнение (3.2.4), получим
Т2
Так как третий закон Кеплера справедлив для всех планет, .то ускорение каждой планеты обратно пропорционально квадрату расстояния ее до Солнца:
О о
а = -|. (3.2.6)
ВТ
Постоянная С2 одинакова для всех планет, но не совпадает с постоянной С2 в формуле для ускорения, сообщаемого телам земным шаром.
Выражения (3.2.2) и (3.2.6) показывают, что сила тяготения в обоих случаях (притяжение к Земле и притяжение к Солнцу) сообщает всем телам ускорение, не зависящее от их массы и убывающее обратно пропорционально квадрату расстояния между ними:
F~a~-2. (3.2.7)
R
Закон всемирного тяготения
Существование зависимостей (3.2.1) и (3.2.7) означает, что сила всемирного тяготения 12
ТП.Л Ш
F ~
R2? ТТЬ-і ТПп
F = G
В 1667 г. Ньютон окончательно сформулировал закон все-мирного тяготения:
(3.2.8) R
Сила взаимного притяжения двух тел прямо пропорци-ональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними. Коэффициент про-порциональности G называется гравитационной постоянной.
Взаимодействие точечных и протяженных тел
Закон всемирного тяготения (3.2.8) справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.5). Подобного рода силы называются центральными.
Для нахождения силы тяготения, действующей на данное тело со стороны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно раз-деляют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3.6). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.
Есть, однако, один практически важный случай, когда формула (3.2.8) применима к протяженным телам. Можно дока-
m^
Fi Рис. 3.5 Рис. 3.6
зать, что сферические тела, плот-ность которых зависит только от расстояний до их центров, при рас-стояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (3.2.8). В этом слу-чае R - это расстояние между центрами шаров.
И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (3.2.8) следует понимать расстояние от данного тела до центра Земли.
Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.
? 1. Расстояние от Марса до Солнца на 52% больше расстояния от Земли до Солнца. Какова продолжительность года на Марсе? 2. Как изменится сила притяжения между шарами, если алюминиевые шары (рис. 3.7) заменить стальными шарами той же массы? " того же объема?

Закон всемирного тяготения открыл Ньютон в 1687 году при изучении движения спутника Луны вокруг Земли. Английский физик четко сформулировал постулат, характеризующий силы притяжения. Кроме того, анализируя законы Кеплера, Ньютон вычислил, что силы притяжения должны существовать не только на нашей планете, но и в космосе.

История вопроса

Закон всемирного тяготения родился не спонтанно. Издревле люди изучали небосвод, главным образом для составления сельскохозяйственных календарей, вычисления важных дат, религиозных праздников. Наблюдения указывали, что в центре «мира» находится Светило (Солнце), вокруг которого по орбитам вращаются небесные тела. Впоследствии догматы церкви не позволяли так считать, и люди утратили накапливавшиеся тысячелетиями знания.

В 16 веке, до изобретения телескопов, появилась плеяда астрономов, взглянувших на небосвод по-научному, отбросив запреты церкви. Т. Браге, многие годы наблюдая за космосом, с особой тщательностью систематизировал перемещения планет. Эти высокоточные данные помогли И. Кеплеру впоследствии открыть три своих закона.

К моменту открытия (1667 г.) Исааком Ньютоном закона тяготения в астрономии окончательно утвердилась гелиоцентрическая система мира Н. Коперника. Согласно ей, каждая из планет системы вращается вокруг Светила по орбитам, которые с приближением, достаточным для многих расчетов, можно считать круговыми. В начале XVII в. И. Кеплер, анализируя работы Т. Браге, установил кинематические законы, характеризующие движения планет. Открытие стало фундаментом для выяснения динамики движения планет, то есть сил, которые определяют именно такой вид их движения.

Описание взаимодействия

В отличие от короткопериодных слабых и сильных взаимодействий, гравитация и электромагнитные поля имеют свойства дальнего действия: их влияние проявляется на гигантских расстояниях. На механические явления в макромире воздействуют 2 силы: электромагнитная и гравитационная. Воздействие планет на спутники, полет брошенного или запущенного предмета, плавание тела в жидкости - в каждом из этих явлений действуют гравитационные силы. Эти объекты притягиваются планетой, тяготеют к ней, отсюда и название «закон всемирного тяготения».

Доказано, что между физическими телами безусловно действует сила взаимного притяжения. Такие явления, как падение объектов на Землю, вращение Луны, планет вокруг Солнца, происходящие под действием сил всемирного притяжения, называют гравитационными.

Закон всемирного тяготения: формула

Всемирное тяготение формулируется следующим образом: два любых материальных объекта друг к другу притягиваются с определенной силой. Величина этой силы прямо пропорциональна произведению масс этих объектов и обратно пропорциональна квадрату расстояния между ними:

В формуле m1 и m2 являются массами исследуемых материальных объектов; r - расстояние, определяемое между центрами масс расчетных объектов; G - постоянная гравитационная величина, выражающая силу, с которой осуществляется взаимное притяжение двух объектов массой по 1 кг каждый, располагающихся между собой на расстоянии 1 м.

От чего зависит сила притяжения

Закон всемирного тяготения по-разному действует, в зависимости от региона. Так как сила притяжения зависит от значений широты на определенной местности, то аналогично ускорение свободного падения обладает разными значениями в разных местах. Максимальное значение сила тяжести и, соответственно, ускорение свободного падения имеют на полюсах Земли - сила тяжести в этих точках равна силе притяжения. Минимальными значения будут на экваторе.

Земной шар слегка сплюснут, его полярный радиус меньше экваториального примерно на 21,5 км. Однако эта зависимость менее существенная по сравнению с суточным вращением Земли. Расчеты показывают, что из-за сплюснутости Земли на экваторе величина ускорения свободного падения чуть меньше его значения на полюсе на 0,18%, а через суточное вращение - на 0,34%.

Впрочем, в одном и том же месте Земли угол между векторами направления мал, поэтому расхождение между силой притяжения и силой тяжести незначительно, и ею в расчетах можно пренебречь. То есть можно считать, что модули этих сил одинаковы - ускорение свободного падения около поверхности Земли везде одинаковое и равно приблизительно 9,8 м/с².

Вывод

Исаак Ньютон был ученым, который совершил научную революцию, полностью перестроил принципы динамики и на их основе создал научную картину мира. Его открытие повлияло на развитие науки, на создание материальной и духовной культуры. На судьбу Ньютона выпала задача пересмотреть результаты представления о мире. В XVII в. ученым завершена грандиозная работа построения фундамента новой науки - физики.

Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со сто-роны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, направленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.

Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»:

«Брошенный горизонтально камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше» (рис. 1).

Продолжая эти рассуждения, Ньютон приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».

Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.

Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца – это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?

Зависимость силы тяготения от массы тел

Галилей доказал, что при свободном падении Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Но ускорение по второму закону Ньютона обратно пропорционально массе\. Как же объяснить, что ускорение, сообщаемое телу силой притяжения Земли, одинаково для всех тел? Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. В этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно \(a = \frac {F}{m}\), останется неизменным. Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует.

Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела. Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:

\(F \sim m_1 \cdot m_2\)

Зависимость силы тяготения от расстояния между телами

Из опыта хорошо известно, что ускорение свободного падения равно 9,8 м/с 2 и оно одинаково для тел, падающих с высоты 1, 10 и 100 м, т. е. не зависит от расстояния между телом и Землей. Это как будто бы означает, что и сила от расстояния не зависит. Но Ньютон считал, что отсчитывать расстояния надо не от поверхности, а от центра Земли. Но радиус Земли 6400 км. Понятно, что несколько десятков, сотен или даже тысяч метров над поверхностью Земли не могут заметно изменить значение ускорения свободного падения.

Чтобы выяснить, как влияет расстояние между телами на силу их вза-имного притяжения, нужно было бы узнать, каково ускорение тел, удаленных от Земли на достаточно большие расстояния. Однако наблюдать и изучать свободное падение тела с высоты в тысячи километров над Землей трудно. Но сама природа пришла здесь на помощь и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли и обладающего поэтому центростремительным ускорением, вызванным, разумеется, той же силой притяжения к Земле. Таким телом является естественный спутник Земли – Луна. Если бы сила притяжения между Землей и Луной не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение тела, свободно падающего близ поверхности Земли. В действительности же центростремительное ускорение Луны равно 0,0027 м/с 2 .

Докажем это . Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле \(a = \frac {4 \pi^2 \cdot R}{T^2}\), где R – радиус лунной орбиты, равный примерно 60 радиусам Земли, Т ≈ 27 сут 7 ч 43 мин ≈ 2,4∙10 6 с – период обращения Луны вокруг Земли. Учитывая, что радиус Земли R з ≈ 6,4∙10 6 м, получим, что центростремительное ускорение Луны равно:

\(a = \frac {4 \pi^2 \cdot 60 \cdot 6,4 \cdot 10^6}{(2,4 \cdot 10^6)^2} \approx 0,0027\) м/с 2 .

Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с 2) приблизительно в 3600 = 60 2 раз.

Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 60 2 раз.

Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли

\(F \sim \frac {1}{R^2}\).

Закон всемирного тяготения

В 1667 г. Ньютон окончательно сформулировал закон всемирного тяготения:

\(F = G \cdot \frac {m_1 \cdot m_2}{R^2}.\quad (1)\)

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности G называется гравитационной постоянной .

Закон всемирного тяготения справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек . При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 2). Подобного рода силы называются центральными.

Для нахождения силы тяготения, действующей на данное тело со сто-роны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно разделяют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.

Есть, однако, один практически важный случай, когда формула (1) применима к протяженным телам. Можно доказать, что сферические тела, плотность которых зависит только от расстояний до их центров, при расстояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (1). В этом случае R – это расстояние между центрами шаров.

И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (1) следует понимать расстояние от данного тела до центра Земли.

Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.

Физический смысл гравитационной постоянной

Из формулы (1) находим

\(G = F \cdot \frac {R^2}{m_1 \cdot m_2}\).

Отсюда следует, что если расстояние между телами численно равно единице (R = 1 м) и массы взаимодействующих тел тоже равны единице (m 1 = m 2 = 1 кг), то гравитационная постоянная численно равна модулю силы F . Таким образом (физический смысл ),

гравитационная постоянная численно равна модулю силы тяготения, действующей на тело массой 1 кг со стороны другого тела такой же массы при расстоянии между телами, равном 1 м .

В СИ гравитационная постоянная выражается в

.

Опыт Кавендиша

Значение гравитационной постоянной G может быть найдено только опытным путем. Для этого надо измерить модуль силы тяготения F , действующей на тело массой m 1 со стороны тела массой m 2 при известном расстоянии R между телами.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. английским физиком Г. Кавендишем с помощью прибора, называемого крутильными весами. Схематично крутильные весы показаны на рисунке 4.

Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой m 1 = 775 г каждый) на противоположных концах двухметрового стержня. Стержень был подвешен на тонкой проволоке. Для этой проволоки предварительно определялись силы упругости, возникающие в ней при закручивании на различные углы. Два больших свинцовых шара (диаметром 20 см и массой m 2 = 49,5 кг) можно было близко подводить к маленьким шарам. Силы притяжения со стороны больших шаров заставляли маленькие шары перемещаться к ним, при этом натянутая проволока немного закручивалась. Степень закручивания была мерой силы, действующей между шарами. Угол закручивания проволоки (или поворота стержня с малыми шарами) оказался столь малым, что его пришлось измерять с помощью оптической трубы. Результат, полученный Кавендишем, только на 1% отличается от значения гравитационной постоянной, принятого сегодня:

G ≈ 6,67∙10 -11 (Н∙м 2)/кг 2

Таким образом, силы притяжения двух тел массой по 1 кг каждое, находящихся на расстоянии 1 м друг от друга, по модулям равны всего лишь 6,67∙10 -11 Н. Это очень малая сила. Только в том случае, когда взаимодействуют тела огромной массы (или по крайней мере масса одного из тел велика), сила тяготения становится большой. Например, Земля притягивает Луну с силой F ≈ 2∙10 20 Н.

Гравитационные силы – самые «слабые» из всех сил природы. Это связано с тем, что гравитационная постоянная мала. Но при больших массах космических тел силы всемирного тяготения становятся очень большими. Эти силы удерживают все планеты возле Солнца.

Значение закона всемирного тяготения

Закон всемирного тяготения лежит в основе небесной механики – науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.

Возмущения в движении планет . Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами. При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел – теорией возмущений.

Открытие Нептуна . Одним из ярких примеров триумфа закона все-мирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения – самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

Литература

  1. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

Падение тел на Землю в пустоте называется свободным падением тел. При падении в стеклянной трубке, из которой с помощью насоса откачан воздух, кусок свинца, пробка и легкое перо достигают дна одновременно (рис. 26). Следовательно, при свободном падении все тела независимо от их массы движутся одинаково.

Свободное падение является равноускоренным движением.

Ускорение, с которым падают на Землю тела в пустоте, называется ускорением свободного падения. Ускорение свободного падения обозначается буквой g. У поверхности земного шара модуль ускорения свободного падения примерно равен

Если в расчетах не требуется высокая точность, то принимают, что модуль ускорения свободного падения у поверхности Земли равен

Одинаковое значение ускорения свободно падающих тел, имеющих разную массу, свидетельствует о том, что сила, под действием которой тело приобретает ускорение свободного падения, пропорциональна массе тела. Эта сила притяжения, действующая со стороны Земли на все тела, называется силой тяжести:

Сила тяжести действует на любое тело у поверхности Земли и на расстоянии от поверхности, и на расстоянии 10 км, где летают самолеты. А действует ли сила тяжести на еще больших расстояниях от Земли? Зависят ли сила тяжести и ускорение свободного падения от расстояния до Земли? Над этими вопросами думали многие ученые, но впервые ответы на них дал в XVII в. великий английский физик Исаак Ньютон (1643- 1727).

Зависимость силы тяжести от расстояния.

Ньютон предположил, что сила тяжести действует на любом расстоянии от Земли, но ее значение убывает обратно пропорционально квадрату расстояния от центра Земли. Проверкой этого предположения могло быть измерение силы притяжения какого-то тела, находящегося на большом расстоянии от Земли, и сравнение ее с силой притяжения того же тела у поверхности Земли.

Для определения ускорения движения тела под действием силы тяжести на большом расстоянии от Земли Ньютон воспользовался результатами астрономических наблюдений за движением Луны.

Он предположил, что сила притяжения, действующая со стороны Земли на Луну, есть та же самая сила тяжести, которая действует на любые тела у поверхности Земли. Следовательно, центростремительное ускорение при движении Луны по орбите вокруг Земли представляет собой ускорение свободного падения Луны на Землю.

Расстояние от центра Земли до центра Луны равно км. Это примерно в 60 раз больше расстояния от центра Земли до ее поверхности.

Если сила тяжести убывает обратно пропорционально квадрату расстояния от центра Земли, то ускорение свободного падения на орбите Луны должно быть в раза меньше ускорения свободного падения у поверхности Земли

По известным значениям радиуса орбиты Луны и периода ее обращения вокруг Земли Ньютон вычислил центростремительное ускорение Луны. Оно оказалось действительно равным

Теоретически предсказанное значение ускорения свободного падения совпало со значением, полученным в результате астрономических наблюдений. Это доказывало справедливость предположения Ньютона о том, что сила тяжести убывает обратно пропорционально квадрату расстояния от центра Земли:

Закон всемирного тяготения.

Подобно тому как Луна движется вокруг Земли, Земля в свою очередь обращается вокруг Солнца. Вокруг Солнца обращаются Меркурий, Венера, Марс, Юпитер и другие планеты

Солнечной системы. Ньютон доказал, что движение планет вокруг Солнца происходит под действием силы притяжения, направленной к Солнцу и убывающей обратно пропорционально квадрату расстояния от него. Земля притягивает Луну, а Солнце - Землю, Солнце притягивает Юпитер, а Юпитер - свои спутники и т. д. Отсюда Ньютон сделал вывод, что все тела во Вселенной взаимно притягивают друг друга.

Силу взаимного притяжения, действующую между Солнцем, планетами, кометами, звездами и другими телами во Вселенной, Ньютон назвал силой всемирного тяготения.

Сила всемирного тяготения, действующая на Луну со стороны Земли, пропорциональна массе Луны (см. формулу 9.1). Очевидно, что снла всемирного тяготения, действующая со стороны Луны на Землю, пропорциональна массе Земли. Эти силы по третьему закону Ньютона равны между собой. Следовательно, сила всемирного тяготения, действующая между Луной и Землей, пропорциональна массе Земли и массе Луны, т. е. пропорциональна произведению их масс.

Распространив установленные закономерности - зависимость силы тяжести от расстояния и от масс взаимодействующих тел - на взаимодействие всех тел во Вселенной, Ньютон открыл в 1682 г. закон всемирного тяготения: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела.

Закон всемирного тяготения в такой форме может быть использован для вычисления сил взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними. Ньютон доказал, что для однородных шарообразных тел закон всемирного тяготения в данной форме применим при любых расстояниях между телами. За расстояние между телами в этом случае принимается расстояние между центрами шаров.

Силы всемирного тяготения называют гравитационными силами, а коэффициент пропорциональности в законе всемирного тяготения называют гравитационной постоянной.

Гравитационная постоянная.

Если существует сила притяжения между земным шаром и куском мела, то, вероятно, существует сила притяжения и между половиной земного шара и куском мела. Продолжая мысленно такой процесс деления земного шара, мы придем к выводу, что гравитационные силы должны действовать между любыми телами, начиная от звезд и планет и кончая молекулами, атомами и элементарными частицами. Это предположение было доказано экспериментально английским физиком Генри Кавендишем (1731-1810) в 1788 г.

Кавендиш выполнил опыты по обнаружению гравитационного взаимодействия тел небольших

размеров с помощью крутильных весов. Два одинаковых небольших свинцовых шара диаметром примерно 5 см были укреплены на стержне длиной около подвешенном на тонкой медной проволоке. Против малых шаров он устанавливал большие свинцовые шары диаметром 20 см каждый (рис. 27). Опыты показали, что при этом стержень с малыми шарами поворачивался, что говорит о наличии силы притяжения между свинцовыми шарами.

Повороту стержня препятствует сила упругости, возникающая при закручивании подвеса.

Эта сила пропорциональна углу поворота. Силу гравитационного взаимодействия шаров можно определить по углу поворота подвеса.

Массы шаров расстояние между ними в опыте Кавендиша были известны, сила гравитационного взаимодействия измерялась непосредственно; поэтому опыт позволил определить гравитационную постоянную в законе всемирного тяготения. По современным данным она равна