Нужно пройти все 7 мостов. Исследовательская работа учащегося "старая-старая задача о мостах кенигсберга"

Когда я был маленьким (лет 8, наверное), я подошёл к отцу и спросил: «А почему Калининград называют городом семи мостов?». В ответ он мне поведал интереснейшую историю, разложил всё по полочкам. Это было захватывающе и очень познавательно. Естественно, я эту историю уже не помню в том первозданном виде, но постараюсь рассказать её максимально увлекательно.

Как известно, город Кенигсберг, основанный в 1255 году, состоял из трёх независимых городских поселений. Располагались они на островах и берегах реки Прегель (ныне – Преголя), делящей город на четыре части:

  • Альтштадт;
  • Кнайпхоф;
  • Ломзе;
  • Форштадт.

Для связи между городскими частями в XIV веке стали строить мосты. В связи с постоянной военной опасностью со стороны соседних Польши и Литвы, кёнигсбергские мосты стали иметь вторую функцию – оборонительную. Перед каждым из мостов была построена оборонительная башня с закрывающимися подъёмными или двустворчатыми воротами из дуба и с железной кованой обивкой. Опоры некоторых мостов имели пятиугольную форму, типичную для бастионов. Внутри этих опор располагались казематы, из которых можно было вести огонь через амбразуры.

Все семь мостов Кенигсберга были разводными. В связи с упадком судоходства по Преголе мосты перестали разводить. Исключением стал только Высокий мост, разводящийся периодически для профилактики механизма и проводки мачтовых судов.

Существовала традиция: гость города, чтобы впоследствии вернуться в Кёнигсберг, должен был бросить в Прегель с одного из мостов монету.

Вот Вам интересный факт , связанный с традицией: во время очистки русла Преголи земснарядом в девяностых годах XX века коллекционеры-нумизматы буквально дрались за право постоять с ситом у «кишки», из которой выливался донный ил.

А вот и второй факт: «Задача о семи кёнигсбергских мостах». Знаменитый философ и ученый Иммануил Кант, гуляя по мостам города Кенигсберга, поставил задачу: можно ли пройти по всем данным мостам и при этом вернуться в исходную точку маршрута так, чтобы пройти по каждому мосту только 1 раз. Многие пытались решить данную задачу как практически, так и теоретически. Но никому это не удавалось, при этом и не удавалось доказать, что это невозможно даже теоретически.

В 1736 году данная задача заинтересовала ученого Леонарда Эйлера, выдающегося и знаменитого математика и члена Петербургской академии наук. Об этом он написал в письме своему другу – учёному, итальянскому инженеру и математику Мариони от 13 марта 1736 года. Он нашел правило, используя которое можно было легко и просто получить ответ на данный интересующий всех вопрос. В случае с городом Кёнигсбергом и его мостами это оказалось невозможно. Но ему удалось создать теорию графов (математики поймут), которая используется до сих пор.

Вы тоже можете попробовать решить эту задачу. Вот схема мостов города:

Давайте разберёмся, что же это за семь мостов.

Krämerbrücke (Лавочный мост).

Считается самым старым из семи мостов. Его построили в 1286 году с целью соединить город Альтштадт и Кнайпхоф, и на его въезде была установлена статуя Ганса Загана, сына кнайпховского сапожника. Легенда гласила: во время битвы между войсками Тевтонского ордена и Литвы Ганс подхватил падающее орденское знамя из рук раненого рыцаря.

Название своё мост получил из – за того, что прилегающие берега Прегеля, да и он сам были местом торговли.

В 1900 году его перестроили, а в 1972 году был снесён по причине строительства Эстакадного моста.

Grünebrücke (Зелёный мост).

Зелёный мост был построен в 1322 году и соединял Кнайпхоф и Форштадт. Своё название получил от цвета краски, в который традиционно красили опоры и пролётное строение моста.

В XVII веке у Зелёного моста гонец раздавал прибывшие в Кёнигсберг письма. В ожидании корреспонденции здесь собирались деловые люди города, которые в ожидании почты обсуждали свои насущные дела. По легенде, именно по этой причине в 1623 году вблизи Зелёного моста было построено первое здание Кёнигсбергской торговой биржи.

В 1875 году на другой стороне моста было построено новое здание торговой биржи, сохранившееся до сих пор. Ныне это здание – Дворец культуры моряков.

В 1907 году мост был перестроен, а в 1972 его постигла та же участь, что и Лавочный мост: они были заменены на Эстакадный мост.

Köttelbrücke (Рабочий мост).

Рабочий мост возвели в 1337 году. Соединял Кнайпхоф и Форштадт. Иногда его название переводят как «Потроховый», которое связано со скотобойней, находившейся неподалёку. Откуда переправляли потроха вплавь по Прегелю через данный мост.

Изначально мост был разводным и состоял из трёх пролётов. В 1621 году его смыло наводнением и был отстроен заново уже без подъёмного механизма.

Во времена развития Форштадта в 1886 году Рабочий мост перестроили в камне и металле. Ему вернули разводную функцию.

Мост сгорел во время Великой Отечественной войны и был снесён вместе с опорами-быками в 70 – х годах ХХ века.

Schmiedebrücke (Кузнечный мост).

Кузнечный мост был построен в 1397 году был. Соединял Альтштадт и Кнайпхоф.

Рядом с этим мостом на берегах Прегеля традиционно размещались кузнецы, видимо от этого и получил своё название.

После строительства мост принял на себя часть нагрузки с располагавшегося параллельно, чуть ниже по течению, Лавочного моста. Изначально был снабжён двумя каменными опорами, укрытыми пролётами из досок, которые сильно износились к 1787 году и были заменены. В 1896 году Кузнечный мост пережил реконструкцию и получил декоративные опоры, стальные пролёты и стал разводным. На стороне Альтштадта была построена башня смотрителя, в которой располагалась установка для подъёма мостовых пролётов с помощью давления воды городского водопровода, и осуществлялось управление разводным механизмом.

Во времена Великой Отечественной войны был разрушен и после войны не восстанавливался.

Holzbrücke (Деревянный мост).

Деревянный мост был построен в 1404 году и соединял Альтштадт и Ломзе.

На нём находилась памятная доска с выдержками из «Прусской хроники» Альбрехта Лухела Давида. Этот десятитомный труд повествовал о языческой Пруссии и истории Тевтонского ордена.

Деревянный мост был реконструирован в 1904 году и в таком виде существует до сих пор.

Hohebrücke (Высокий мост).

Высокий мост был возведён в 1520 году, соединяя между собой Ломзе и Форштадт. В 1882 году его перестроили, добавив к нему «Домик смотрителя мостов» (помещение для разводки механизмов развода моста). Это здание в стиле неоготики сохранилось до сих пор.

Высокий мост был снесён в 1938 году.

В нескольких десятках метров от сохранившихся каменных опор старого Высокого моста возвели новый Высокий мост, который стоит и сейчас. Имеет разводную среднюю часть для проводки мачтовых судов.

Honigbrücke (Медовый мост).

Самый молодой из семи мостов, соединяет Ломзе и Кнайпхоф. Существует разные версии о происхождении названия:

  1. Член Кнайпховской ратуши Безенроде оплатил постройку моста бочками мёда.
  2. Тот же Безенроде оплатил бочками мёда строительство торговой лавки на заречной территории.
  3. Название происходит от слова «Hon», что значит – насмешка или издёвка. Построив этот мост, жители Кнайпхофа получили прямой доступ к городу Ломзе, в обход Высокого моста, который принадлежал Альтштадту. Таким образом, Медовый мост стал насмешкой над главным из кёнигсбергских мостов.

Сейчас имеет пешеходный характер и ведёт на остров Канта к Кафедральному собору и парку скульптур. Проезд для частного автотранспорта туда запрещён.

Отцом теории графов (так же как и топологии) является Эйлер (1707-1782), решивший в 1736 г. широко известную в то время задачу, называвшуюся проблемой кёнигсбергских мостов. В городе Кенигсберге было два острова, соединенных семью моста­ми с берегами реки Преголя и друг с другом так, как показано на рисунке 4.

Задача состояла в следующем : найти маршрут прохожде­ния всех четырех частей суши, который начинался бы с любой из них, кончался бы на этой же части и ровно один раз проходил по каждому мосту. Легко, конечно, попытаться решить эту задачу эмпирически, производя перебор всех маршрутов, но все попытки окончатся неудачей.

Рисунок 4- Задача о кёнигсбергских мостах.

Исключительный вклад Эйлера в решение этой задачи заключается в том, что он доказал невозможность та­кого маршрута.

Для доказательства того, что задача не имеет решения, Эйлер обозначил каждую часть суши точкой (вершиной), а каждый мост – линией (ребром), соединяющей соответствующие точки. Получился граф. Утверждение о несуществовании положительного решения у этой задачи эквивалентно утверждению о невозможности обойти специальным образом данный граф.

Рисунок 5 – Граф.

Элементы графа. Способы задания графа. Подграфы.

Такая структура как граф в качестве (синонима используется также термин «сеть»), имеет самые различные применения в информатике.

Графом G называется система (V , U ) ,

где V ={ v } - множество элементов, называемых вершинами графа;

U =={ u } - .множество элементов, называемых ребрами графа.

    Каждое ребро определяется либо парой вершин (v1,v2), либо двумя противоположными парами (v1,v2) и (v2,v1).

    Если ребро из U представляется только одной парой (v1,v2), то оно называется ориентированным ребром , ведущим из v1 в v2. При этом v1 называется началом, а v2 -концом такого ребра.

    Если ребро U представляется двумя парами (v1,v2) и (v2,v1), то U называется неориентированным ребром . Всякое неориентированное ребро между вершинами v1 и v2 ведет как из v1 в v 2, так и обратно. При этом вершины v1 и v2 являются как началами, так и концами этого ребра. Говорят, что ребро ведет как из v 1 в v 2, так и из v 2 в v 1.

    Всякие две вершины, которые соединяются ребром, являются смежными.

    По количеству элементов графы делятся на конечные и бесконечные.

    Граф, все рёбра которого неориентированные, называется неориентированным графом.

    Если рёбра графа определяются упорядоченными парами вершин, то такой граф называется ориентированным.

Р
исунок 6 – Ориентированный граф.

    Существуют смешанные графы , состоящие как из ориентированных, так и из неориентированных рёбер.

    Если две вершины соединены двумя или более рёбрами, то эти рёбра называют параллельными .

    Если начало и конец ребра совпадают, то такое ребро называется петлёй .

    Граф без петель и параллельных рёбер называется простым.

    Если ребро определяется вершинами v1 и v2, то ребро инцидентно вершинам v1 и v2.

    Вершина, не инцидентная ни одному ребру, называется изо­лированной .

    Вершина, инцидентная ровно одному ребру, и само это ребро называются концевыми, или висячими.

    Ребра, которым поставлена в соответствие одна и та же пара вер­шин, называются кратными, или параллельными.

    Две вершины неориентированного графа v1 и v2 называются смежными, если в графе существует ребро (v1,v2).

    Две вершины ориентированного графа v1 и v2 называются смежными, если они различны и существует ребро, ведущее из вершины v1 в v2.

Рассмотрим некоторые понятия для ориентированного графа.

Рисунок 7 – Ориентированный граф.

Простой путь:

Элементарный путь:

Элементарный контур:

Контур:

Для неориентированных графов понятия «простой путь», «элементарный путь», «контур», «элементарный контур» заменяют, соответственно, понятия «цепь», «простая цепь», «цикл», «простой цикл». Граф называется связным , если для любых двух вершин существует путь (цепь), соединяющий эти вершины.

    Неориентированный связный граф без циклов называется деревом .

    Неориентированный несвязный граф без циклов - лесом .

Рисунок 8 – Связный граф.

Рисунок 9 –Лес.

Рисунок 10 – Дерево.

Основы теории графов как математической науки заложил в 1736 г. Леонард Эйлер, рассматривая задачу о кенигсбергских мостах. Сегодня эта задача стала классической.

Бывший Кенигсберг (ныне Калининград) расположен на реке Прегель. В пределах города река омывает два острова. С берегов на острова были перекинуты мосты. Старые мосты не сохранились, но осталась карта города, где они изображены. Кенигсбергцы предлагали приезжим следующую задачу: пройти по всем мостам и вернуться в начальный пункт, причём на каждом мосту следовало побывать только один раз.


Проблема семи мостов Кёнигсберга

Проблема семи мостов Кёнигсберга или Задача о кёнигсбергских мостах (нем. Königsberger Brückenproblem) - старинная математическая задача, в которой спрашивалось, как можно пройти по всем семи мостам Кёнигсберга, не проходя ни по одному из них дважды. Впервые была решена в 1736 году немецким и русским математиком Леонардом Эйлером.

Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем мостам (через реку Преголя), не проходя ни по одному из них дважды. Многие кёнигсбержцы пытались решить эту задачу как теоретически, так и практически, во время прогулок. Впрочем, доказать или опровергнуть возможность существования такого маршрута никто не мог.

В 1736 году задача о семи мостах заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, о чём он написал в письме итальянскому математику и инженеру Мариони от 13 марта 1736 года. В этом письме Эйлер пишет о том, что он смог найти правило, пользуясь которым, легко определить, можно ли пройти по всем мостам, не проходя дважды ни по одному из них. Ответ был «нельзя».

Решение задачи по Леонарду Эйлеру

На упрощённой схеме части города (графе) мостам соответствуют линии (дуги графа), а частям города - точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам:

Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа должно быть чётно. Не может существовать граф, который имел бы нечётное число нечётных вершин.
Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине.
Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком.
Граф кёнигсбергских мостов имел четыре (синим) нечётные вершины (то есть все), следовательно, невозможно пройти по всем мостам, не проходя ни по одному из них дважды

Созданная Эйлером теория графов нашла очень широкое применение в транспортных и коммуникационных системах (например, для изучения самих систем, составления оптимальных маршрутов доставки грузов или маршрутизации данных в Интернете).

Дальнейшая история мостов Кёнигсберга

В 1905 году был построен Императорский мост, который был впоследствии разрушен в ходе бомбардировки во время Второй мировой войны. Существует легенда о том, что этот мост был построен по приказу самого кайзера, который не смог решить задачу мостов Кёнигсберга и стал жертвой шутки, которую сыграли с ним учёные умы, присутствовавшие на светском приёме (если добавить восьмой мост, то задача становится разрешимой). На опорах Императорского моста в 2005 году был построен Юбилейный мост. На данный момент в Калининграде семь мостов, и граф, построенный на основе островов и мостов Калининграда, по-прежнему не имеет эйлерова пути.

Или Задача о семи кёнигсбергских мостах — старинная математическая задача, в которой спрашивалось, как можно пройти по всем семи мостам Кёнигсберга, не проходя ни по одному из них дважды. Впервые была решена в 1736 году математиком Леонардом Эйлером , доказавшим, что это невозможно, и изобретшим таким образом эйлеровы циклы .


Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем городским мостам (через реку Преголя), не проходя ни по одному из них дважды. Многие кёнигсбержцы пытались решить эту задачу как теоретически, так и практически, во время прогулок. Впрочем, доказать или опровергнуть возможность существования такого маршрута никто не мог.

В 1736 году задача о семи мостах заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, о чём он написал в письме итальянскому математику и инженеру Маринони от 13 марта 1736 года. В этом письме Эйлер пишет о том, что он смог найти правило, пользуясь которым, легко определить, можно ли пройти по всем мостам, не проходя дважды ни по одному из них. В данном случае ответ был: «нельзя».

Решение задачи по Леонарду Эйлеру


На упрощённой схеме города (графе) мостам соответствуют линии (ребра графа), а частям города — точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам:

  • Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа должно быть чётно. Не может существовать граф, который имел бы нечётное число нечётных вершин.
  • Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине.
  • Если ровно две вершины графа нечётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой из нечётных вершин и завершить его в другой нечетной вершине.
  • Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком.
  • Граф кёнигсбергских мостов имел четыре нечётные вершины (то есть все) — следовательно, невозможно пройти по всем мостам, не проходя ни по одному из них дважды.


Но самое интересное в том, что историки считают, что есть человек, который решил данную задачу, он смог пройти через все мосты только один раз, правда теоретически, но решение было…. А произошло это вот как...

Кайзер (император) Вильгельм славился своей простотой мышления, прямотой и солдатской «недалёкостью». Однажды, находясь на светском рауте, он чуть не стал жертвой шутки, которую с ним решили сыграть учёные умы, присутствующие на данном приёме. Они показали кайзеру карту города Кёнигсберга, и попросили его попробовать решить эту знаменитую задачку, которая по определению была просто не решаемой.

К всеобщему удивлению, Кайзер попросил лист бумаги и перо, и при этом уточнил, что решит данную задачку всего за полторы минуты. Ошеломлённые ученные не могли поверить своим ушам, но чернила и бумагу быстро нашли для него. Кайзер положил листок на стол, взял перо, и написал: «Приказываю построить восьмой мост на острове Ломзе». И всё: задача решена…

Так в городе Кёнигсберг и появился новый 8-й мост через реку, который так и назвали — мост Кайзера , который был впоследствии разрушен в ходе бомбардировки во время Второй мировой войны.

На опорах Императорского моста в 2005 году был построен Юбилейный мост. На 2017 год в Калининграде восемь мостов.

____________________

Небольшой научно-популярный фильм, рассказывающий о том, как абстрактная математическая теория, зародившаяся 300 лет назад, неожиданно нашла свое применение в современной науке.

В 1735 году математик Леонард Эйлер решил знаменитую загадку о семи мостах Кёнигсберга, положив начало новой области математики - теории графов. Изначально, в теории не углядяли никакого прикладного значения, и она оставалась "чисто математической". Однако, в 21 веке теория графов находит свое применение во многих областях науки. С помощью неё, например, решается задача рафсшифровки ДНК.

От мостов Кёнигсберга до сборки генома


Муниципальное автономное образовательное учреждение

«Средняя общеобразовательная школа №6» г.Перми

История математики

Старая-старая задача о мостах Кенигсберга

Выполнил: Железнов Егор,

ученик 10 «а» класса

Руководитель: Орлова Е. В.,

учитель математики

2014, г. Пермь

Введение …………………………………………………………………………..3

История мостов Кенигсберга …………………………………………................4

Задача о семи мостах Кенигсберга ………………………………………….......8

Вычерчивание фигур одним росчерком ……………………………………….12

Заключение ………………………………………………………………………15

Список литературы...…………………………………………………………….16

Приложение 1 ……………………………………………………………………18

Приложение 2 ……………………………………………………………………22

Приложение 3 ……………………………………………………………………23

Приложение 4 ……………………………………………………………………26

Ведение

Кенигсберг – это историческое название Калининграда, центра самой западной области России, знаменитой своим мягким климатом, пляжами и изделиями из янтаря. Калининград обладает богатым культурным достоянием. Здесь в свое время жили и трудились великий философ И. Кант, сказочник Эрнст Теодор Амадей Гофман, физик Франц Нейман и многие другие, чьи имена вписаны в историю науки и творчества. С Кенигсбергом связана одна интересная задача, так называемая задача о мостах Кенигсберга.

Цель нашего исследования: изучить историю возникновения задачи о мостах Кенигберга, рассмотреть её решение, выяснить роль задачи в развитии математики.

Для достижения цели необходимо решить следующие задачи:

    изучить литературу по данной теме;

    систематизировать материал;

    подобрать задачи в решении которых используется прием решения задачи о мостах Кентгсберга,;

    составить библиографический список литературы.

    История мостов Кенигсберга

Возникший в город Кёнигсберг (ныне ) состоял из трёх формально независимых городских поселений и ещё нескольких «слобод» и «посёлков». Расположены они были на островах и берегах реки (ныне Преголя), делящей город на четыре главные части: , , и . Для связи между городскими частями уже в стали строить . В связи с постоянной военной опасностью со стороны соседних и , а также по причине междоусобиц между Кёнигсбергскими городами (в - между городами даже произошла война, вызванная тем, что Кнайпхоф перешёл на сторону Польши, а Альтштадт и Лёбенихт остались верны ) в кёнигсбергские мосты имели оборонные качества. Перед каждым из мостов была построена оборонительная башня с закрывающимися подъёмными или двустворчатыми воротами из дуба и с железной кованой обивкой. Да и сами мосты приобретали характер оборонительных сооружений. Опоры некоторых мостов имели пятиугольную форму, типичную для бастионов. Внутри этих опор располагались казематы. Из опор можно было вести огонь через амбразуры.

Мосты были местом шествий, религиозных и праздничных процессий, а в годы так называемого «Первого русского времени» (-), когда во время Семилетней войны Кёнигсберг ненадолго вошёл в состав , по мостам проходили крестные ходы. Один раз такой крестный ход даже был посвящён православному празднику Водосвятия реки Прегель, вызвавшему неподдельный интерес у жителей Кёнигсберга.

К концу 19 века в Кёнигсберге было построено 7 основных мостов (Приложение 1).

Самый старый из семи мостов Лавочный мост (Krämerbrücke/ Крэмер-брюке). Он был построен в 1286 году. Само название моста говорит само за себя. Площадь, которая прилегала к нему, была местом оживлённой торговли. Он связывал два средневековых города Альтштадт и Кнайпхоф. Построен он был сразу же в камне. В 1900 году он был перестроен и сделан разводным. По мосту стали ходить трамваи. Во время войны он был сильно разрушен, но восстановлен, пока в 1972 году не был демонтирован.

Вторым по возрасту был Зелёный мост (Grüne Brücke/Грюне-брюке) . Он был построен в . Этот мост связал остров Кнайпхоф с южным берегом Прегеля. Он так же был каменным и трёхпролётным. В 1907 году мост был перестроен, средний пролёт стал разводным и по нему стали ходить трамваи. Во время войны этот мост сильно пострадал, был восстановлен, а в 1972 году - демонтирован. Название моста происходит от цвета краски, в который традиционно красили опоры и пролётное строение моста. В у Зелёного моста гонец раздавал прибывшие в Кёнигсберг письма. В ожидании корреспонденции здесь собирались деловые люди города. Здесь же в ожидании почты они обсуждали свои дела. Неудивительно, что именно в непосредственной близости от Зелёного моста в была построена кёнигсбергская торговая . В на другом берегу Прегеля, но также в непосредственной близости от Зелёного моста было построено новое здание торговой биржи, сохранившееся до сих пор (ныне Дворец культуры моряков). В 1972 году вместо Зелёного и Лавочного мостов был построен Эстакадный мост.

После Лавочного и Зелёного был построен Рабочий мост (Koettelbrucke/ Кёттель или Киттель-брюке), также соединявший Кнайпхоф и Форштадт. Иногда название также переводят как Потроховой мост. И тот, и другой вариант перевода не является идеальным, так как немецкое название происходит из и по-русски означает примерно «рабочий, вспомогательный, предназначенный для провоза мусора» и.т.п. Этот мост был построен в . Он соединил город Кнайпхоф с пригородом Форштадт. Мост был наполовину каменным, а пролёты - деревянные настилы. В 1621 году, во время сильного наводнения, мост сорвало и унесло в реку. Мост возвратили на место. В 1886 году его заменили новым, стальным, трёхпролётным, разводным. По нему тоже ходили трамваи. Мост был разрушен во время и позднее не восстанавливался.

Семь мостов Кенигсберга – Википедия (ru /wikipedia .ord )

Теория графов – сайт www .ref .by /refs

Приложение 1

Лавочный мост

Зеленый мост

Потроховый мост

Кузнечный мост

Деревянный мост


Высокий мост

Медовый мост. Вид сбоку на

бывший разводной пролёт.


Медовый мост. Остатки разводного механизма.

Кайзера мост

Приложение 2

Леонард Эйлер

Немецкий и русский математик, механик и физик. Родился 15 апреля 1707 г. в Базеле. Учился в Базельском университете (в 1720–1724 гг.), где его учителем был Иоганн Бернулли. В 1722 г. получил степень магистра искусств. В 1727 г. переехал в Санкт-Петербург, получив место адъюнкт-профессора в недавно основанной Академии наук и художеств. В 1730 г. стал профессором физики, в 1733 г. – профессором математики. За 14 лет своего первого пребывания в Петербурге Эйлер опубликовал более 50 работ. В 1741–1766 гг. работал в Берлинской академии наук под особым покровительством Фридриха II и написал множество сочинений, охватывающих по существу все разделы чистой и прикладной математики. В 1766 г. по приглашению Екатерины II Эйлер возвратился в Россию. Вскоре после прибытия в Санкт-Петербург полностью потерял зрение из-за катаракты, но благодаря великолепной памяти и способностям проводить вычисления в уме до конца жизни занимался научными исследованиями: за это время им было опубликовано около 400 работ, общее же их число превышает 850. Умер Эйлер в Санкт-Петербурге 18 сентября 1783 г.

Труды Эйлера свидетельствуют о необычайной разносторонности автора. Широко известен его трактат по небесной механике «Теория движения планет и комет». Автор книг по гидравлике, кораблестроению, артиллерии. Наибольшую известность принесли Эйлеру исследования в области чистой математики.

Приложение 3

Задачи

З
адача 1
(задача о мостах Ленинграда). В одном из залов Дома занимательной науки в Санкт-Петербурге посетители показывали схему мостов города (рис.). Требовалось обойти все 17 мостов, соединяющих острова и берега Невы, на которых расположен Санкт-Петербург. Обойти надо так, чтобы каждый мост был пройден один раз.

И перерезавши кварталы,

Всплывают вдруг из темноты

Санкт-Петербургские каналы,

Санкт-Петербургские мосты!

(Н. Агнивцев)

Докажите, что требуемый уникурсальный обход всех мостов Санкт-Петербурга того времени возможен, но не может быть замкнутым, т. е. оканчиваться в пункте, от которого начинался.

Задача 2. На озере находится семь островов, которые соединены между собой так, как показано на рисунке. На какой остров должен доставить путешественников катер, чтобы они могли пройти по каждому мосту и только один раз? Почему нельзя доставить путешественников на остров A? 17

Задача 3. (В поисках сокровищ) .

На рис. изображен план подземелья, в одной из комнат которого скрыты богатства рыцаря. Чтобы безопасно проникнуть в эту комнату, надо, войти через определенные ворота в одну из крайних комнат подземелья, пройти последовательно через все 29 дверей, выключая сигнализацию тревоги. Проходить дважды через одни и те же двери нельзя. Определить номер комнаты в которой скрыты сокровища и ворота через которые нужно войти? 20

З

адача 4 . Павлик -заядлый велосипедист - изобразил на классной доске часть плана местности и поселка (рис.8), где он жил прошлым летом. По рас­сказу Павлика, недалеко от поселка, расположившегося по берегам реки Оя, есть маленькое глубокое озерцо, питающееся подземными источника­ми. От него и берет начало Оя, ко­торая при входе поселок разде­ляется на две отдельные речушки, соединенные естественным каналом так, что образуется зеленый остро­ вок (на рисунке отмечен буквой А) с пляжем и спортплощадкой. Далек о за поселком обе речушки, сли­ваясь, образуют широкую реку. Павлик утверждает, что, возвра­щаясь на велосипеде со спортивной площадки, находящейся на острове, домой (на рисунке буква D ), он проезжает по одному разу по всем восьми мостикам, показанным на плане, ни разу не прерывая движе­ния. Наши знатоки теории таких головоломок отметили буквами А, В, С, D участки поселка, разъединен­ные речкой (участки - это узлы се­ти, мосты - ветви), и установили, что уникурсальный маршрут, начи­нающийся в А (нечетном узле), воз­можен, но закончиться он должен непременно в В - во втором нечет­ном узле, остальные два узла С и D - четные. Но ведь и Павлик го­ворит правду: его маршрут из А в D действительно пролегал по всем восьми мостикам и был уникурсальным. В чем же здесь дело? Как вы полагаете?

Задача 5 . Английский математик Л.Кэрролл (автор всемирно известных книг «Алиса в стране чудес», «Алиса в Зазеркалье» и др.) любил задавать своим маленьким друзьям головоломку на обход фигуры (рис.9) единым росчерком пера и не проходя дважды ни одного участка контура. Пересечение линий допускалось. Такая задача решается просто.

Усложним ее дополнительным требованием: при каждом переходе через узел (считая узлами точки пересечения линий на рисунке) направление обхода должно изменяться на 90°. (Начиная обход с любого узла, придется сделать 23 поворота) 6 .

Задача 6 . (Муха в банке) Муха забралась в банку из-под сахара. Банка имеет форму куба. Сможет ли муха последовательно обойти все 12 ребер куба, не проходя дважды по одному ребру. Подпрыгивать и перелетать с места на место не разрешается. 22

Задача 7 . На рисунке изображена птица. Можно ли нарисовать ее одним росчерком?

Задача 8 . На рис.10 пред­ставлен эскиз одного из портретов Эйлера. Художник воспроизвел его одним росчерком пера (только воло­сы нарисованы отдельно). Где на ри­сунке расположены начало и конец уникурсального контура? Повторите движение пера художника (волосы и пунктирные линии на рисунке не включаются в маршрут обхода) 6 .

Рис.10

З

адача 9 . Начертить одним росчерком следующие фигуры. (Такие фигуры называются уникурсальными (от латинского unus – один, cursus –путь)).


Приложение 4

Решение задач

1

.

3 . Для решения нужно построить граф, где вершины – номера комнат, а ребра – двери.

Нечетные вершины: 6, 18. Так как количество нечетных вершин = 2, то безопасно проникнуть в комнату с сокровищами можно.

Начать путь нужно через ворота В , а закончить в комнате № 18 .

5. Пример требуемого обхода дан на рисунке

6 . Ребра и вершины куба образуют граф, все 8 вершин которого имеют кратность 3 и, следовательно, требуемый условием обход невозможен.

7. Взяв за вершины графа точки пересечения линии, получим 7 вершин, только две из которых имеют нечетную степень. Поэтому в этом графе существует эйлеров путь, а значит, его (т.е. птицу) можно нарисовать одним росчерком. Начать путь нужно в одной нечетной вершине, а закончить в другой.

8. Начать обход надо с нечетного узла в уголке правого глаза и закончить в нечетном узле брови над левым глазом (пунктирные линии в сеть не входят). Все остальные узлы на рисунке четные.

9 .