Как да намерим n в аритметична прогресия. Сума от първите n-члена на аритметична прогресия

Някои хора се отнасят с повишено внимание към думата „прогресия“ като към много сложен термин от клоновете на висшата математика. Междувременно най-простата аритметична прогресия е работата на таксиметъра (където все още съществуват). И разбирането на същността (а в математиката няма нищо по-важно от „получаването на същността“) на една аритметична последователност не е толкова трудно, след като анализирате няколко елементарни понятия.

Математическа числова последователност

Цифровата последователност обикновено се нарича поредица от числа, всяко от които има свой номер.

a 1 е първият член на последователността;

и 2 е вторият член на последователността;

и 7 е седмият член на редицата;

и n е n-тият член на последователността;

Въпреки това не всеки произволен набор от числа и числа ни интересува. Ще съсредоточим вниманието си върху числова последователност, в която стойността на n-тия член е свързана с неговия пореден номер чрез връзка, която може да бъде ясно формулирана математически. С други думи: числовата стойност на n-то число е някаква функция на n.

a е стойността на член на числова редица;

n е неговият сериен номер;

f(n) е функция, където поредният номер в числовата последователност n е аргумент.

Определение

Аритметична прогресия обикновено се нарича числова последователност, в която всеки следващ член е по-голям (по-малък) от предходния със същото число. Формулата за n-тия член на аритметична последователност е следната:

a n - стойността на текущия член на аритметичната прогресия;

a n+1 - формула на следващото число;

d - разлика (определено число).

Лесно е да се определи, че ако разликата е положителна (d>0), тогава всеки следващ член на разглежданата серия ще бъде по-голям от предишния и такава аритметична прогресия ще нараства.

В графиката по-долу е лесно да се види защо числова последователностнаречено „нарастващо“.

В случаите, когато разликата е отрицателна (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Посочена стойност на член

Понякога е необходимо да се определи стойността на произволен член a n от аритметична прогресия. Това може да стане чрез последователно изчисляване на стойностите на всички членове на аритметичната прогресия, като се започне от първия до желания. Този път обаче не винаги е приемлив, ако например е необходимо да се намери стойността на петхилядната или осеммилионната дума. Традиционните изчисления ще отнемат много време. Въпреки това, специфична аритметична прогресия може да бъде изследвана с помощта на определени формули. Има и формула за n-тия член: стойността на всеки член на аритметична прогресия може да се определи като сбор от първия член на прогресията с разликата на прогресията, умножена по номера на желания член, намалена с един.

Формулата е универсална за увеличаване и намаляване на прогресията.

Пример за изчисляване на стойността на даден термин

Нека решим следната задача за намиране на стойността на n-тия член от аритметична прогресия.

Условие: има аритметична прогресия с параметри:

Първият член на редицата е 3;

Разликата в числовата серия е 1,2.

Задача: трябва да намерите стойността на 214 члена

Решение: за да определим стойността на даден член, използваме формулата:

a(n) = a1 + d(n-1)

Замествайки данните от формулировката на проблема в израза, имаме:

a(214) = a1 + d(n-1)

а(214) = 3 + 1,2 (214-1) = 258,6

Отговор: 214-ият член на редицата е равен на 258,6.

Предимствата на този метод на изчисление са очевидни - цялото решение отнема не повече от 2 реда.

Сума от даден брой членове

Много често в дадена аритметична серия е необходимо да се определи сумата от стойностите на някои от нейните сегменти. За да направите това, също няма нужда да изчислявате стойностите на всеки член и след това да ги събирате. Този метод е приложим, ако броят на членовете, чиято сума трябва да се намери, е малък. В други случаи е по-удобно да използвате следната формула.

Сумата от членовете на аритметичната прогресия от 1 до n е равна на сумата от първия и n-тия член, умножена по номера на члена n и разделена на две. Ако във формулата стойността на n-тия термин се замени с израза от предишния параграф на статията, получаваме:

Пример за изчисление

Например, нека решим задача със следните условия:

Първият член на редицата е нула;

Разликата е 0,5.

Задачата изисква да се определи сумата от членовете на редицата от 56 до 101.

Решение. Нека използваме формулата за определяне на степента на прогресия:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Първо, ние определяме сумата от стойностите на 101 членове на прогресията, като заместваме дадените условия на нашия проблем във формулата:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2,525

Очевидно, за да се намери сумата от членовете на прогресията от 56-то до 101-во, е необходимо да се извади S 55 от S 101.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Така сумата от аритметичната прогресия за този пример е:

s 101 - s 55 = 2525 - 742,5 = 1782,5

Пример за практическо приложение на аритметичната прогресия

В края на статията нека се върнем към примера за аритметична последователност, дадена в първия параграф - таксиметър (таксиметров автомобил). Нека разгледаме този пример.

Качването на такси (което включва 3 км пътуване) струва 50 рубли. Всеки следващ километър се заплаща в размер на 22 рубли/км. Разстоянието за пътуване е 30 км. Изчислете цената на пътуването.

1. Да изхвърлим първите 3 км, чиято цена е включена в цената на кацането.

30 - 3 = 27 км.

2. По-нататъшното изчисление не е нищо повече от анализиране на аритметична числова серия.

Номер на член - броят на изминатите километри (минус първите три).

Стойността на члена е сумата.

Първият член в тази задача ще бъде равен на a 1 = 50 рубли.

Разлика в прогресията d = 22 r.

числото, което ни интересува, е стойността на (27+1)-ия член от аритметичната прогресия - показанието на измервателния уред в края на 27-ия километър е 27,999... = 28 км.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Изчисленията на календарните данни за произволно дълъг период се основават на формули, описващи определени числови последователности. В астрономията дължината на орбитата е геометрично зависима от разстоянието на небесното тяло до звездата. В допълнение, различни числови серии се използват успешно в статистиката и други приложни области на математиката.

Друг вид числова последователност е геометричната

Геометрична прогресиясе характеризира с големи, в сравнение с аритметичните, скорости на промяна. Неслучайно в политиката, социологията и медицината, за да покажат високата скорост на разпространение на определено явление, например заболяване по време на епидемия, често казват, че процесът се развива в геометрична прогресия.

N-тият член на редицата от геометрични числа се различава от предишния по това, че се умножава по някакво постоянно число - знаменателят, например, първият член е 1, знаменателят съответно е равен на 2, тогава:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - стойността на текущия член на геометричната прогресия;

b n+1 - формула на следващия член на геометричната прогресия;

q е знаменателят на геометричната прогресия (постоянно число).

Ако графиката на аритметична прогресия е права линия, тогава геометричната прогресия рисува малко по-различна картина:

Както в случая с аритметиката, геометричната прогресия има формула за стойността на произволен член. Всеки n-ти член от геометрична прогресия е равен на произведението от първия член и знаменателя на прогресията на степен n, намален с единица:

Пример. Имаме геометрична прогресия, като първият член е равен на 3 и знаменателят на прогресията е равен на 1,5. Нека намерим 5-ия член на прогресията

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Сумата от даден брой членове също се изчислява по специална формула. Сумата от първите n члена на геометрична прогресия е равна на разликата между произведението на n-тия член на прогресията и неговия знаменател и първия член на прогресията, разделено на знаменателя, намален с единица:

Ако b n се замени с формулата, обсъдена по-горе, стойността на сумата от първите n членове на разглежданата числова серия ще приеме формата:

Пример. Геометричната прогресия започва с първия член, равен на 1. Знаменателят е настроен на 3. Нека намерим сбора на първите осем члена.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

При изучаването на алгебра в средното училище (9 клас) една от важните теми е изучаването на числови редици, които включват прогресии - геометрични и аритметични. В тази статия ще разгледаме аритметична прогресия и примери с решения.

Какво е аритметична прогресия?

За да се разбере това, е необходимо да се дефинира въпросната прогресия, както и да се предоставят основните формули, които ще се използват по-късно при решаването на задачи.

Аритметична или алгебрична прогресия е набор от подредени рационални числа, всеки член от които се различава от предходния с някаква постоянна стойност. Тази стойност се нарича разлика. Тоест, познавайки всеки член на подредена серия от числа и разликата, можете да възстановите цялата аритметична прогресия.

Да дадем пример. Следната последователност от числа ще бъде аритметична прогресия: 4, 8, 12, 16, ..., тъй като разликата в този случай е 4 (8 - 4 = 12 - 8 = 16 - 12). Но наборът от числа 3, 5, 8, 12, 17 вече не може да се припише на разглеждания тип прогресия, тъй като разликата за него не е постоянна стойност (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Важни формули

Нека сега представим основните формули, които ще са необходими за решаване на задачи с помощта на аритметична прогресия. Нека означим със символа a n n-тия член на редицата, където n е цяло число. Разликата означаваме с латинската буква d. Тогава са валидни следните изрази:

  1. За определяне на стойността на n-тия член е подходяща следната формула: a n = (n-1)*d+a 1 .
  2. За да се определи сумата от първите n члена: S n = (a n +a 1)*n/2.

За да разберете всички примери за аритметична прогресия с решения в 9 клас, достатъчно е да запомните тези две формули, тъй като всички проблеми от разглеждания тип се основават на тяхното използване. Трябва също да запомните, че разликата в прогресията се определя по формулата: d = a n - a n-1.

Пример #1: намиране на неизвестен член

Нека дадем прост пример за аритметична прогресия и формулите, които трябва да се използват за нейното решаване.

Нека е дадена редицата 10, 8, 6, 4, ..., трябва да намерите пет члена в нея.

От условията на задачата вече следва, че първите 4 члена са известни. Петият може да се дефинира по два начина:

  1. Нека първо изчислим разликата. Имаме: d = 8 - 10 = -2. По същия начин можете да вземете всеки двама други членове, стоящи един до друг. Например d = 4 - 6 = -2. Тъй като е известно, че d = a n - a n-1, тогава d = a 5 - a 4, от което получаваме: a 5 = a 4 + d. Заменяме известните стойности: a 5 = 4 + (-2) = 2.
  2. Вторият метод също изисква познаване на разликата във въпросната прогресия, така че първо трябва да я определите, както е показано по-горе (d = -2). Знаейки, че първият член a 1 = 10, използваме формулата за числото n на редицата. Имаме: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Като заместим n = 5 в последния израз, получаваме: a 5 = 12-2 * 5 = 2.

Както можете да видите, и двете решения доведоха до един и същ резултат. Обърнете внимание, че в този пример прогресивната разлика d е отрицателна стойност. Такива последователности се наричат ​​намаляващи, тъй като всеки следващ член е по-малък от предишния.

Пример #2: разлика в прогресията

Сега нека усложним малко задачата, нека дадем пример как

Известно е, че в някои първият член е равен на 6, а 7-ият член е равен на 18. Необходимо е да се намери разликата и да се възстанови тази последователност до 7-ия член.

Нека използваме формулата, за да определим неизвестния член: a n = (n - 1) * d + a 1 . Нека заместим в него известните данни от условието, тоест числата a 1 и a 7, имаме: 18 = 6 + 6 * d. От този израз можете лесно да изчислите разликата: d = (18 - 6) /6 = 2. Така отговорихме на първата част от задачата.

За да възстановите последователността до 7-ия член, трябва да използвате дефиницията на алгебрична прогресия, тоест a 2 = a 1 + d, a 3 = a 2 + d и т.н. В резултат на това възстановяваме цялата последователност: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16, a 7 = 18.

Пример №3: съставяне на прогресия

Нека усложним проблема още повече. Сега трябва да отговорим на въпроса как да намерим аритметична прогресия. Може да се даде следният пример: дадени са две числа, например - 4 и 5. Необходимо е да се създаде алгебрична прогресия, така че между тях да се поставят още три члена.

Преди да започнете да решавате този проблем, трябва да разберете какво място ще заемат дадените числа в бъдещата прогресия. Тъй като между тях ще има още три члена, тогава a 1 = -4 и a 5 = 5. След като установихме това, преминаваме към задачата, която е подобна на предишната. Отново, за n-тия член използваме формулата, получаваме: a 5 = a 1 + 4 * d. От: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Това, което имаме тук, не е цяло число на разликата, а е рационално число, така че формулите за алгебричната прогресия остават същите.

Сега нека добавим намерената разлика към 1 и да възстановим липсващите членове на прогресията. Получаваме: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, което съвпадна с условията на проблема.

Пример № 4: първи член на прогресията

Нека продължим да даваме примери за аритметична прогресия с решения. Във всички предишни задачи първото число от алгебричната прогресия беше известно. Сега нека разгледаме задача от различен тип: нека са дадени две числа, където 15 = 50 и 43 = 37. Необходимо е да се намери с кое число започва тази редица.

Използваните досега формули предполагат познаване на 1 и d. В изложението на проблема не се знае нищо за тези числа. Въпреки това ще запишем изрази за всеки термин, за който има налична информация: a 15 = a 1 + 14 * d и a 43 = a 1 + 42 * d. Получихме две уравнения, в които има 2 неизвестни величини (a 1 и d). Това означава, че задачата се свежда до решаване на система от линейни уравнения.

Най-лесният начин за решаване на тази система е да изразите 1 във всяко уравнение и след това да сравните получените изрази. Първо уравнение: a 1 = a 15 - 14 * d = 50 - 14 * d; второ уравнение: a 1 = a 43 - 42 * d = 37 - 42 * d. Приравнявайки тези изрази, получаваме: 50 - 14 * d = 37 - 42 * d, откъдето разликата d = (37 - 50) / (42 - 14) = - 0,464 (посочени са само 3 знака след десетичната запетая).

Като знаете d, можете да използвате който и да е от двата израза по-горе за 1. Например, първо: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Ако имате съмнения относно получения резултат, можете да го проверите, например да определите 43-тия член на прогресията, който е посочен в условието. Получаваме: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Малката грешка се дължи на факта, че при изчисленията е използвано закръгляване до хилядни.

Пример № 5: сума

Сега нека да разгледаме няколко примера с решения за сумата на аритметична прогресия.

Нека е дадена числова прогресия от следния вид: 1, 2, 3, 4, ...,. Как да изчислим сбора на 100 от тези числа?

Благодарение на развитието на компютърните технологии е възможно да се реши този проблем, тоест да се добавят всички числа последователно, което компютърът ще направи веднага щом човек натисне клавиша Enter. Проблемът обаче може да бъде решен психически, ако обърнете внимание на факта, че представената редица от числа е алгебрична прогресия и нейната разлика е равна на 1. Прилагайки формулата за сумата, получаваме: S n = n * ( a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Интересно е да се отбележи, че тази задача се нарича „Гаусова“, защото в началото на 18 век известният германец, все още само на 10 години, успя да я реши наум за няколко секунди. Момчето не знаеше формулата за сумата на алгебрична прогресия, но забеляза, че ако събереш числата в краищата на редицата по двойки, винаги получаваш един и същ резултат, тоест 1 + 100 = 2 + 99 = 3 + 98 = ..., и тъй като тези суми ще бъдат точно 50 (100 / 2), тогава за да получите правилния отговор е достатъчно да умножите 50 по 101.

Пример № 6: сбор на членовете от n до m

Друг типичен пример за сумата на аритметична прогресия е следният: дадена е поредица от числа: 3, 7, 11, 15, ..., трябва да намерите на какво ще бъде равна сумата от нейните членове от 8 до 14 .

Проблемът се решава по два начина. Първият от тях включва намиране на неизвестни членове от 8 до 14 и след това тяхното последователно сумиране. Тъй като има малко термини, този метод не е много трудоемък. Въпреки това се предлага този проблем да се реши с помощта на втори метод, който е по-универсален.

Идеята е да се получи формула за сумата на алгебричната прогресия между членовете m и n, където n > m са цели числа. И в двата случая записваме два израза за сумата:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Тъй като n > m, очевидно е, че втората сума включва първата. Последният извод означава, че ако вземем разликата между тези суми и добавим члена a m към нея (в случай на вземане на разликата, тя се изважда от сумата S n), ще получим необходимия отговор на задачата. Имаме: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). Необходимо е да се заменят формули за n и m в този израз. Тогава получаваме: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Получената формула е донякъде тромава, но сумата S mn зависи само от n, m, a 1 и d. В нашия случай a 1 = 3, d = 4, n = 14, m = 8. Замествайки тези числа, получаваме: S mn = 301.

Както може да се види от горните решения, всички задачи се основават на познаване на израза за n-тия член и формулата за сумата на множеството от първите членове. Преди да започнете да решавате някой от тези проблеми, се препоръчва внимателно да прочетете условието, ясно да разберете какво трябва да намерите и едва след това да продължите с решението.

Друг съвет е да се стремите към простота, тоест ако можете да отговорите на въпрос, без да използвате сложни математически изчисления, тогава трябва да направите точно това, тъй като в този случай вероятността да направите грешка е по-малка. Например, в примера за аритметична прогресия с решение № 6, може да се спре на формулата S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, и прекъсвам обща задачав отделни подзадачи (в този случай първо намерете термините a n и a m).

Ако имате съмнения относно получения резултат, препоръчително е да го проверите, както беше направено в някои от дадените примери. Открихме как да намерим аритметична прогресия. Ако го разберете, не е толкова трудно.

Аритметични и геометрични прогресии

Теоретична информация

Теоретична информация

Аритметична прогресия

Геометрична прогресия

Определение

Аритметична прогресия a nе последователност, в която всеки член, започвайки от втория, е равен на предишния член, добавен към същото число d (d- разлика в прогресията)

Геометрична прогресия b nе поредица от ненулеви числа, всеки член от който, започвайки от втория, е равен на предишния член, умножен по същото число р (р- знаменател на прогресията)

Формула за повторение

За всеки естествен п
a n + 1 = a n + d

За всеки естествен п
b n + 1 = b n ∙ q, b n ≠ 0

Формула n-ти член

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Характерно свойство
Сума от първите n члена

Примерни задачи с коментари

Задача 1

В аритметична прогресия ( a n) а 1 = -6, а 2

Според формулата на n-тия член:

а 22 = а 1+ d (22 - 1) = а 1+ 21 д

Според условието:

а 1= -6, тогава а 22= -6 + 21 d .

Необходимо е да се намери разликата в прогресиите:

d = а 2 – а 1 = -8 – (-6) = -2

а 22 = -6 + 21 ∙ (-2) = - 48.

Отговор: а 22 = -48.

Задача 2

Намерете петия член на геометричната прогресия: -3; 6;....

1-ви метод (използвайки формулата с n-член)

Според формулата за n-ия член на геометрична прогресия:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4.

защото b 1 = -3,

2-ри метод (използване на повтаряща се формула)

Тъй като знаменателят на прогресията е -2 (q = -2), тогава:

б 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

б 5 = 24 ∙ (-2) = -48.

Отговор: б 5 = -48.

Задача 3

В аритметична прогресия ( a n ) a 74 = 34; 76= 156. Намерете седемдесет и петия член на тази прогресия.

За аритметична прогресия характеристичното свойство има формата .

От това следва:

.

Нека заместим данните във формулата:

Отговор: 95.

Задача 4

В аритметична прогресия ( a n ) a n= 3n - 4. Намерете сумата от първите седемнадесет члена.

За да се намери сумата от първите n членове на аритметична прогресия, се използват две формули:

.

Кой от тях е по-удобен за използване в този случай?

По условие формулата за n-тия член на първоначалната прогресия е известна ( a n) a n= 3n - 4. Можете да намерите веднага и а 1, И а 16без намиране d. Затова ще използваме първата формула.

Отговор: 368.

Задача 5

В аритметична прогресия ( a n) а 1 = -6; а 2= -8. Намерете двадесет и втория член на прогресията.

Според формулата на n-тия член:

a 22 = a 1 + d (22 – 1) = а 1+ 21г.

По условие, ако а 1= -6, тогава а 22= -6 + 21d. Необходимо е да се намери разликата в прогресиите:

d = а 2 – а 1 = -8 – (-6) = -2

а 22 = -6 + 21 ∙ (-2) = -48.

Отговор: а 22 = -48.

Задача 6

Записани са няколко последователни члена на геометричната прогресия:

Намерете члена на прогресията, обозначен с x.

При решаването ще използваме формулата за n-тия член b n = b 1 ∙ q n - 1За геометрични прогресии. Първият член на прогресията. За да намерите знаменателя на прогресията q, трябва да вземете който и да е от дадените членове на прогресията и да разделите на предишния. В нашия пример можем да вземем и разделим на. Получаваме, че q = 3. Вместо n, заместваме 3 във формулата, тъй като е необходимо да се намери третият член на дадена геометрична прогресия.

Замествайки намерените стойности във формулата, получаваме:

.

Отговор : .

Задача 7

От аритметичните прогресии, дадени от формулата на n-тия член, изберете тази, за която условието е изпълнено а 27 > 9:

Тъй като даденото условие трябва да бъде изпълнено за 27-ия член на прогресията, ние заместваме 27 вместо n във всяка от четирите прогресии. В 4-та прогресия получаваме:

.

Отговор: 4.

Задача 8

В аритметична прогресия а 1= 3, d = -1,5. Посочете най-висока стойност n, за които неравенството е в сила a n > -6.