Kako pronaći n u aritmetičkoj progresiji. Zbir prvih n članova aritmetičke progresije

Neki ljudi s oprezom tretiraju riječ „progresija“, kao vrlo složen termin iz grana više matematike. U međuvremenu, najjednostavnija aritmetička progresija je rad taksimetra (gdje još postoje). A razumijevanje suštine (a u matematici nema ništa važnije od „shvatanja suštine“) aritmetičkog niza nije tako teško, analizirajući nekoliko elementarnih koncepata.

Matematički niz brojeva

Numerički niz se obično naziva nizom brojeva, od kojih svaki ima svoj broj.

a 1 je prvi član niza;

i 2 je drugi član niza;

i 7 je sedmi član niza;

i n je n-ti član niza;

Međutim, ne zanima nas bilo koji proizvoljan skup brojeva i brojeva. Pažnju ćemo usmjeriti na numerički niz u kojem je vrijednost n-og člana povezana s njegovim rednim brojem odnosom koji se može jasno matematički formulirati. Drugim riječima: brojčana vrijednost n-tog broja je neka funkcija od n.

a je vrijednost člana numeričkog niza;

n je njegov serijski broj;

f(n) je funkcija, gdje je redni broj u numeričkom nizu n argument.

Definicija

Aritmetičkom progresijom se obično naziva numerički niz u kojem je svaki sljedeći član veći (manji) od prethodnog za isti broj. Formula za n-ti član aritmetičkog niza je sljedeća:

a n - vrijednost trenutnog člana aritmetičke progresije;

a n+1 - formula sledećeg broja;

d - razlika (određeni broj).

Lako je utvrditi da ako je razlika pozitivna (d>0), tada će svaki sljedeći član razmatranog niza biti veći od prethodnog i takva će se aritmetička progresija povećavati.

Na donjem grafikonu lako je vidjeti zašto numerički niz nazvano "povećanje".

U slučajevima kada je razlika negativna (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Navedena vrijednost člana

Ponekad je potrebno odrediti vrijednost bilo kojeg proizvoljnog člana a n aritmetičke progresije. To se može učiniti uzastopnim izračunavanjem vrijednosti svih članova aritmetičke progresije, počevši od prvog do željenog. Međutim, ovaj put nije uvijek prihvatljiv ako je, na primjer, potrebno pronaći vrijednost pethiljaditog ili osammilionitog člana. Tradicionalni proračuni će oduzeti dosta vremena. Međutim, određena aritmetička progresija može se proučavati korištenjem određenih formula. Postoji i formula za n-ti član: vrijednost bilo kojeg člana aritmetičke progresije može se odrediti kao zbir prvog člana progresije s razlikom progresije, pomnoženom brojem željenog člana, umanjenom za jedan.

Formula je univerzalna za povećanje i smanjenje progresije.

Primjer izračunavanja vrijednosti datog pojma

Rešimo sledeći problem nalaženja vrednosti n-tog člana aritmetičke progresije.

Uvjet: postoji aritmetička progresija s parametrima:

Prvi član niza je 3;

Razlika u nizu brojeva je 1,2.

Zadatak: potrebno je pronaći vrijednost 214 pojmova

Rješenje: da bismo odredili vrijednost datog pojma, koristimo formulu:

a(n) = a1 + d(n-1)

Zamjenom podataka iz iskaza problema u izraz, imamo:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Odgovor: 214. član niza je jednak 258,6.

Prednosti ove metode proračuna su očigledne - cijelo rješenje ne traje više od 2 reda.

Zbir datog broja pojmova

Vrlo često je u datom aritmetičkom nizu potrebno odrediti zbir vrijednosti nekih njegovih segmenata. Da biste to učinili, također nije potrebno izračunati vrijednosti svakog pojma i zatim ih zbrajati. Ova metoda je primjenjiva ako je mali broj pojmova čiji zbir treba pronaći. U drugim slučajevima, prikladnije je koristiti sljedeću formulu.

Zbir članova aritmetičke progresije od 1 do n jednak je zbiru prvog i n-tog člana, pomnoženog sa brojem člana n i podijeljenog sa dva. Ako se u formuli vrijednost n-tog člana zamijeni izrazom iz prethodnog stava članka, dobijamo:

Primjer izračuna

Na primjer, riješimo problem sa sljedećim uvjetima:

Prvi član niza je nula;

Razlika je 0,5.

Problem zahtijeva određivanje zbira članova niza od 56 do 101.

Rješenje. Koristimo formulu za određivanje količine progresije:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Prvo određujemo zbir vrijednosti 101 člana progresije zamjenom datih uslova našeg problema u formulu:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2,525

Očigledno, da bi se saznao zbir članova progresije od 56. do 101., potrebno je oduzeti S 55 od S 101.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Dakle, zbir aritmetičke progresije za ovaj primjer je:

s 101 - s 55 = 2.525 - 742,5 = 1.782,5

Primjer praktične primjene aritmetičke progresije

Na kraju članka, vratimo se primjeru aritmetičkog niza datog u prvom pasusu - taksimetar (taxi auto mjerač). Razmotrimo ovaj primjer.

Ukrcaj u taksi (koji uključuje 3 km putovanja) košta 50 rubalja. Svaki naredni kilometar se plaća po stopi od 22 rublje/km. Udaljenost putovanja je 30 km. Izračunajte cijenu putovanja.

1. Odbacimo prva 3 km čija je cijena uključena u cijenu slijetanja.

30 - 3 = 27 km.

2. Dalje izračunavanje nije ništa drugo do raščlanjivanje niza aritmetičkih brojeva.

Broj člana - broj prijeđenih kilometara (minus prva tri).

Vrijednost člana je zbir.

Prvi član u ovom zadatku će biti jednak a 1 = 50 rubalja.

Razlika progresije d = 22 r.

broj koji nas zanima je vrijednost (27+1)-og člana aritmetičke progresije - očitavanje brojila na kraju 27. kilometra je 27.999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Proračuni kalendarskih podataka za proizvoljno dug period zasnivaju se na formulama koje opisuju određene numeričke nizove. U astronomiji, dužina orbite geometrijski zavisi od udaljenosti nebeskog tijela do zvijezde. Osim toga, različiti brojevni redovi se uspješno koriste u statistici i drugim primijenjenim oblastima matematike.

Druga vrsta niza brojeva je geometrijska

Geometrijska progresija karakteriziraju velike, u poređenju sa aritmetičkim, stope promjene. Nije slučajno da se u politici, sociologiji i medicini, da bi se prikazala velika brzina širenja određene pojave, na primjer, bolesti tokom epidemije, kaže da se proces razvija geometrijskom progresijom.

N-ti član niza geometrijskih brojeva razlikuje se od prethodnog po tome što se množi s nekim konstantnim brojem - nazivnik, na primjer, prvi član je 1, nazivnik je odgovarajući jednak 2, zatim:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - vrijednost trenutnog člana geometrijske progresije;

b n+1 - formula sledećeg člana geometrijske progresije;

q je imenilac geometrijske progresije (konstantni broj).

Ako je graf aritmetičke progresije prava linija, onda geometrijska progresija daje malo drugačiju sliku:

Kao iu slučaju aritmetike, geometrijska progresija ima formulu za vrijednost proizvoljnog člana. Svaki n-ti član geometrijske progresije jednak je umnošku prvog člana i nazivnika progresije na stepen n smanjen za jedan:

Primjer. Imamo geometrijsku progresiju sa prvim članom jednakim 3 i nazivnikom progresije jednakim 1,5. Nađimo 5. član progresije

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Zbir datog broja termina se također izračunava pomoću posebne formule. Zbir prvih n članova geometrijske progresije jednak je razlici između umnoška n-tog člana progresije i njegovog nazivnika i prvog člana progresije, podijeljenog nazivnikom smanjenim za jedan:

Ako se b n zamijeni gore opisanom formulom, vrijednost zbroja prvih n članova brojevnog niza koji se razmatra imat će oblik:

Primjer. Geometrijska progresija počinje sa prvim članom jednakim 1. Imenilac je postavljen na 3. Nađimo zbir prvih osam članova.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

Prilikom izučavanja algebre u srednjoj školi (9. razred) jedna od važnih tema je izučavanje numeričkih nizova, koji uključuju progresije – geometrijske i aritmetičke. U ovom članku ćemo pogledati aritmetičku progresiju i primjere s rješenjima.

Šta je aritmetička progresija?

Da bi se ovo razumjelo, potrebno je definirati o kojoj se progresiji radi, kao i navesti osnovne formule koje će se kasnije koristiti u rješavanju problema.

Aritmetička ili algebarska progresija je skup uređenih racionalnih brojeva, čiji se svaki član razlikuje od prethodnog za neku konstantnu vrijednost. Ova vrijednost se naziva razlika. To jest, znajući bilo koji član uređenog niza brojeva i razliku, možete vratiti cjelokupnu aritmetičku progresiju.

Dajemo primjer. Sljedeći niz brojeva će biti aritmetička progresija: 4, 8, 12, 16, ..., pošto je razlika u ovom slučaju 4 (8 - 4 = 12 - 8 = 16 - 12). Ali skup brojeva 3, 5, 8, 12, 17 se više ne može pripisati tipu progresije koji se razmatra, jer razlika za njega nije konstantna vrijednost (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Važne formule

Predstavimo sada osnovne formule koje će biti potrebne za rješavanje problema korištenjem aritmetičke progresije. Označimo simbolom a n n-ti član niza, gdje je n cijeli broj. Razliku označavamo latiničnim slovom d. Tada su važeći sljedeći izrazi:

  1. Za određivanje vrijednosti n-tog člana prikladna je sljedeća formula: a n = (n-1)*d+a 1 .
  2. Odrediti zbir prvih n članova: S n = (a n +a 1)*n/2.

Da bismo razumjeli bilo koji primjer aritmetičke progresije sa rješenjima u 9. razredu, dovoljno je zapamtiti ove dvije formule, jer se svaki problem tipa koji se razmatra zasniva na njihovoj upotrebi. Također treba imati na umu da je razlika u progresiji određena formulom: d = a n - a n-1.

Primjer #1: pronalaženje nepoznatog pojma

Navedimo jednostavan primjer aritmetičke progresije i formule koje je potrebno koristiti za rješavanje.

Neka je zadan niz 10, 8, 6, 4, ..., u njemu morate pronaći pet članova.

Već iz uslova zadatka proizilazi da su prva 4 člana poznata. Peti se može definisati na dva načina:

  1. Prvo izračunajmo razliku. Imamo: d = 8 - 10 = -2. Slično, možete uzeti bilo koja druga dva člana koji stoje jedan pored drugog. Na primjer, d = 4 - 6 = -2. Pošto je poznato da je d = a n - a n-1, onda je d = a 5 - a 4, od čega dobijamo: a 5 = a 4 + d. Zamijenjujemo poznate vrijednosti: a 5 = 4 + (-2) = 2.
  2. Druga metoda također zahtijeva poznavanje razlike dotične progresije, tako da je prvo trebate odrediti kao što je prikazano gore (d = -2). Znajući da je prvi član a 1 = 10, koristimo formulu za n broj niza. Imamo: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Zamjenom n = 5 u posljednji izraz dobijamo: a 5 = 12-2 * 5 = 2.

Kao što vidite, oba rješenja su dovela do istog rezultata. Imajte na umu da je u ovom primjeru razlika d u progresiji negativna vrijednost. Takvi nizovi se nazivaju opadajućim, jer je svaki sljedeći član manji od prethodnog.

Primjer #2: razlika u progresiji

Sada ćemo malo zakomplikovati zadatak, dajmo primjer kako

Poznato je da je u nekima 1. član jednak 6, a 7. član jednak 18. Potrebno je pronaći razliku i vratiti ovaj niz na 7. član.

Koristimo formulu da odredimo nepoznati pojam: a n = (n - 1) * d + a 1 . Zamenimo u njega poznate podatke iz uslova, odnosno brojeve a 1 i a 7, imamo: 18 = 6 + 6 * d. Iz ovog izraza možete lako izračunati razliku: d = (18 - 6) /6 = 2. Dakle, odgovorili smo na prvi dio zadatka.

Da biste vratili niz na 7. član, trebali biste koristiti definiciju algebarske progresije, to jest, a 2 = a 1 + d, a 3 = a 2 + d, i tako dalje. Kao rezultat, vraćamo cijeli niz: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16, a 7 = 18.

Primjer br. 3: izrada progresije

Hajde da još više zakomplikujemo problem. Sada moramo odgovoriti na pitanje kako pronaći aritmetičku progresiju. Može se dati sljedeći primjer: data su dva broja, na primjer - 4 i 5. Potrebno je napraviti algebarsku progresiju tako da se između njih smjeste još tri člana.

Prije nego počnete rješavati ovaj problem, morate razumjeti koje će mjesto dati brojevi zauzeti u budućoj progresiji. Pošto će između njih biti još tri člana, onda je a 1 = -4 i a 5 = 5. Nakon što smo ovo ustanovili, prelazimo na problem koji je sličan prethodnom. Opet, za n-ti član koristimo formulu, dobijamo: a 5 = a 1 + 4 * d. Od: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Ono što smo dobili ovdje nije cjelobrojna vrijednost razlike, već je to racionalan broj, tako da formule za algebarsku progresiju ostaju iste.

Sada dodajmo pronađenu razliku na 1 i vratimo nedostajuće članove progresije. Dobijamo: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, što odgovara sa uslovima problema.

Primjer br. 4: prvi termin progresije

Nastavimo davati primjere aritmetičke progresije s rješenjima. U svim prethodnim problemima prvi broj algebarske progresije je bio poznat. Razmotrimo sada problem drugog tipa: neka su data dva broja, pri čemu je a 15 = 50 i a 43 = 37. Potrebno je pronaći kojim brojem počinje ovaj niz.

Do sada korištene formule pretpostavljaju poznavanje a 1 i d. U opisu problema ništa se ne zna o ovim brojevima. Ipak, za svaki termin ćemo zapisati izraze o kojima su dostupne informacije: a 15 = a 1 + 14 * d i a 43 = a 1 + 42 * d. Dobili smo dvije jednačine u kojima postoje 2 nepoznate veličine (a 1 i d). To znači da se problem svodi na rješavanje sistema linearnih jednačina.

Najlakši način da se riješi ovaj sistem je izraziti 1 u svakoj jednačini i zatim uporediti rezultirajuće izraze. Prva jednadžba: a 1 = a 15 - 14 * d = 50 - 14 * d; druga jednadžba: a 1 = a 43 - 42 * d = 37 - 42 * d. Izjednačavanjem ovih izraza dobijamo: 50 - 14 * d = 37 - 42 * d, odakle je razlika d = (37 - 50) / (42 - 14) = - 0,464 (date su samo 3 decimale).

Znajući d, možete koristiti bilo koji od 2 gornja izraza za 1. Na primjer, prvo: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Ako sumnjate u dobijeni rezultat, možete ga provjeriti, na primjer, odrediti 43. član progresije, koji je naveden u uvjetu. Dobijamo: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Mala greška je zbog činjenice da je u proračunima korišteno zaokruživanje na hiljaditi dio.

Primjer br. 5: iznos

Pogledajmo sada nekoliko primjera s rješenjima za zbir aritmetičke progresije.

Neka je data numerička progresija sljedećeg oblika: 1, 2, 3, 4, ...,. Kako izračunati zbir 100 ovih brojeva?

Zahvaljujući razvoju računarske tehnologije, moguće je riješiti ovaj problem, odnosno sabrati sve brojeve uzastopno, što će računar učiniti čim osoba pritisne tipku Enter. Međutim, problem se može riješiti mentalno ako obratite pažnju da je predstavljeni niz brojeva algebarska progresija, a njegova razlika je jednaka 1. Primjenom formule za zbir dobijamo: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Zanimljivo je da je ovaj problem nazvan „Gausov” jer je početkom 18. veka slavni Nemac, još uvek samo 10-godišnjak, uspeo da ga reši u svojoj glavi za nekoliko sekundi. Dječak nije znao formulu za zbir algebarske progresije, ali je primijetio da ako dodate brojeve na krajevima niza u parovima, uvijek dobijete isti rezultat, odnosno 1 + 100 = 2 + 99 = 3 + 98 = ..., a pošto će ovi zbroji biti tačno 50 (100 / 2), onda je za tačan odgovor dovoljno pomnožiti 50 sa 101.

Primjer br. 6: zbir članova od n do m

Još jedan tipičan primjer zbira aritmetičke progresije je sljedeći: dajući niz brojeva: 3, 7, 11, 15, ..., morate pronaći koliko će biti jednak zbir njegovih članova od 8 do 14 .

Problem se rješava na dva načina. Prvi od njih uključuje pronalaženje nepoznatih pojmova od 8 do 14, a zatim njihovo sumiranje uzastopno. Budući da postoji malo pojmova, ova metoda nije baš radno intenzivna. Ipak, predlaže se rješavanje ovog problema korištenjem druge metode, koja je univerzalnija.

Ideja je dobiti formulu za zbir algebarske progresije između pojmova m i n, gdje su n > m cijeli brojevi. Za oba slučaja pišemo dva izraza za zbir:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Pošto je n > m, očigledno je da 2. zbir uključuje prvi. Posljednji zaključak znači da ako uzmemo razliku između ovih zbira i dodamo joj pojam a m (u slučaju uzimanja razlike, ona se oduzme od zbira S n), dobićemo neophodan odgovor na problem. Imamo: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). U ovaj izraz potrebno je zamijeniti formule za n i a m. Tada dobijamo: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Rezultirajuća formula je pomalo glomazna, međutim, zbir S mn ovisi samo o n, m, a 1 i d. U našem slučaju, a 1 = 3, d = 4, n = 14, m = 8. Zamjenom ovih brojeva dobijamo: S mn = 301.

Kao što se vidi iz gornjih rješenja, svi problemi se zasnivaju na poznavanju izraza za n-ti član i formule za zbir skupa prvih članova. Prije nego počnete rješavati bilo koji od ovih problema, preporučuje se da pažljivo pročitate uvjet, jasno shvatite što trebate pronaći i tek onda nastaviti s rješavanjem.

Još jedan savjet je da težite jednostavnosti, odnosno, ako možete odgovoriti na pitanje bez korištenja složenih matematičkih proračuna, onda morate učiniti upravo to, jer je u ovom slučaju vjerovatnoća da ćete pogriješiti manja. Na primjer, u primjeru aritmetičke progresije sa rješenjem br. 6, moglo bi se zaustaviti na formuli S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, i break zajednički zadatak u zasebne podzadatke (u ovom slučaju prvo pronađite pojmove a n i a m).

Ako sumnjate u dobiveni rezultat, preporučuje se da ga provjerite, kao što je učinjeno u nekim od navedenih primjera. Saznali smo kako pronaći aritmetičku progresiju. Ako to shvatite, nije tako teško.

Aritmetičke i geometrijske progresije

Teoretske informacije

Teoretske informacije

Aritmetička progresija

Geometrijska progresija

Definicija

Aritmetička progresija a n je niz u kojem je svaki član, počevši od drugog, jednak prethodnom članu dodanom istom broju d (d- razlika u napredovanju)

Geometrijska progresija b n je niz brojeva koji nisu nula, čiji je svaki član, počevši od drugog, jednak prethodnom članu pomnoženom istim brojem q (q- imenilac progresije)

Formula recidiva

Za bilo koji prirodni n
a n + 1 = a n + d

Za bilo koji prirodni n
b n + 1 = b n ∙ q, b n ≠ 0

Formula n-ti član

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Karakteristično svojstvo
Zbir prvih n članova

Primjeri zadataka s komentarima

Zadatak 1

U aritmetičkoj progresiji ( a n) a 1 = -6, a 2

Prema formuli n-tog člana:

a 22 = a 1+ d (22 - 1) = a 1+ 21 d

prema uslovu:

a 1= -6, dakle a 22= -6 + 21 d .

Potrebno je pronaći razliku progresija:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = - 48.

Odgovor : a 22 = -48.

Zadatak 2

Naći peti član geometrijske progresije: -3; 6;....

1. metoda (koristeći n-term formulu)

Prema formuli za n-ti član geometrijske progresije:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4.

Jer b 1 = -3,

2. metoda (koristeći ponavljajuću formulu)

Pošto je imenilac progresije -2 (q = -2), onda:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Odgovor : b 5 = -48.

Zadatak 3

U aritmetičkoj progresiji ( a n) a 74 = 34; a 76= 156. Pronađite sedamdeset peti član ove progresije.

Za aritmetičku progresiju, karakteristično svojstvo ima oblik .

Iz ovoga proizilazi:

.

Zamijenimo podatke u formulu:

Odgovor: 95.

Zadatak 4

U aritmetičkoj progresiji ( a n ) a n= 3n - 4. Naći zbir prvih sedamnaest članova.

Da bi se pronašao zbroj prvih n članova aritmetičke progresije, koriste se dvije formule:

.

Koji od njih je pogodniji za korištenje u ovom slučaju?

Po uslovu je poznata formula za n-ti član originalne progresije ( a n) a n= 3n - 4. Možete odmah pronaći i a 1, And a 16 bez pronalaženja d. Stoga ćemo koristiti prvu formulu.

Odgovor: 368.

Zadatak 5

U aritmetičkoj progresiji ( a n) a 1 = -6; a 2= -8. Pronađite dvadeset drugi član progresije.

Prema formuli n-tog člana:

a 22 = a 1 + d (22 – 1) = a 1+ 21d.

Po uslovu, ako a 1= -6, dakle a 22= -6 + 21d . Potrebno je pronaći razliku progresija:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = -48.

Odgovor : a 22 = -48.

Zadatak 6

Zapisano je nekoliko uzastopnih članova geometrijske progresije:

Pronađite termin progresije označen sa x.

Prilikom rješavanja koristit ćemo formulu za n-ti član b n = b 1 ∙ q n - 1 Za geometrijske progresije. Prvi termin progresije. Da biste pronašli nazivnik progresije q, potrebno je da uzmete bilo koji od datih članova progresije i podijelite s prethodnim. U našem primjeru možemo uzeti i podijeliti po. Dobijamo da je q = 3. Umjesto n, u formulu zamjenjujemo 3, jer je potrebno pronaći treći član date geometrijske progresije.

Zamjenom pronađenih vrijednosti u formulu dobijamo:

.

Odgovor: .

Zadatak 7

Od aritmetičkih progresija datih formulom n-tog člana, izaberite onu za koju je uslov zadovoljen a 27 > 9:

Pošto dati uslov mora biti zadovoljen za 27. član progresije, u svakoj od četiri progresije zamjenjujemo 27 umjesto n. U 4. progresiji dobijamo:

.

Odgovor: 4.

Zadatak 8

U aritmetičkoj progresiji a 1= 3, d = -1,5. Navedite najveća vrijednost n za koji vrijedi nejednakost a n > -6.