Решить уравнение тема тригонометрия sinx 3 2. Отбор корней в тригонометрическом уравнение

а) Решите уравнение: .

б) Найдите все корни этого уравнения, принадлежащие отрезку .

Решение задачи

В данном уроке рассматривается пример решения тригонометрического уравнения, который можно использовать в качестве примера для решения задач типа С1 при подготовке к ЕГЭ по математике.

Прежде всего, определяется область определения функции – все допустимые значения аргумента . Затем, в ходе решения выполняется преобразование тригонометрической функции синуса в косинус с применением формулы приведения. Далее все члены уравнения переносятся в его левую часть, где производится вынесение за скобки общего множителя. Каждый множитель приравнивается к нулю, что и позволяет определить корни уравнения. Затем методом витков определяются корни, принадлежащие заданному отрезку. Для этого на построенной единичной окружности отмечается виток от левой границы заданного отрезка к правой. Далее найденные корни на единичной окружности соединяются отрезками с ее центром и определяются точки, в которых эти отрезки пересекают виток. Данные точки пересечения и являются искомым ответом на вторую часть задачи.

а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

б) \left[ \frac{3\pi }2;\,3\pi \right].

Показать решение

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac{3\pi }2;\, 3\pi \right].

x_1=\frac\pi 4+2\pi =\frac{9\pi }4,

x_2=\frac\pi 3+2\pi =\frac{7\pi }3,

x_3=-\frac\pi 3+2\pi =\frac{5\pi }3.

Ответ

а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

б) \frac{5\pi }3, \frac{7\pi }3, \frac{9\pi }4.

Условие

а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt {tgx}=0.

б) Укажите корни этого уравнения, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right] ;

Показать решение

Решение

а) ОДЗ: \begin{cases} tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end{cases}

Исходное уравнение на ОДЗ равносильно совокупности уравнений

\left[\!\!\begin{array}{l} 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end{array}\right.

Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

2(1-t^2)-3t=0,

2t^2+3t-2=0,

t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

\cos 4x=\frac12,

4x=\pm \frac\pi 3+2\pi n,

x=\pm \frac\pi {12}+\frac{\pi n}2, n \in \mathbb Z.

Решим второе уравнение.

tg x=0,\, x=\pi k, k \in \mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi {12}+\pi n, n \in \mathbb Z; x=\frac{5\pi }{12}+\pi m, m \in \mathbb Z.

б) Найдём корни, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right].

x=\frac\pi {12}, x=\frac{5\pi }{12}; x=\pi ; x=\frac{13\pi }{12}; x=\frac{17\pi }{12}.

Ответ

а) \pi k, k \in \mathbb Z; \frac\pi {12}+\pi n, n \in \mathbb Z; \frac{5\pi }{12}+\pi m, m \in \mathbb Z.

б) \pi; \frac\pi {12}; \frac{5\pi }{12}; \frac{13\pi }{12}; \frac{17\pi }{12}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

б) Укажите все корни, принадлежащие промежутку \left(\frac{7\pi }2;\,\frac{9\pi }2\right].

Показать решение

Решение

а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

(\cos x)_{1,2}=\frac{1\pm\sqrt 9}4=\frac{1\pm3}4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac{2\pi }3+2s\pi , s \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

Объединим полученные решения:

x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Получим: x_1 =\frac{11\pi }3, x_2=4\pi , x_3 =\frac{13\pi }3.

Ответ

а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

б) \frac{11\pi }3, 4\pi , \frac{13\pi }3.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

а) Решите уравнение 10\cos ^2\frac x2=\frac{11+5ctg\left(\dfrac{3\pi }2-x\right) }{1+tgx}.

б) Укажите корни этого уравнения, принадлежащие интервалу \left(-2\pi ; -\frac{3\pi }2\right).

Показать решение

Решение

а) 1. Согласно формуле приведения, ctg\left(\frac{3\pi }2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac{11+5tgx}{1+tgx}.

Заметим, что \frac{11+5tgx}{1+tgx}= \frac{5(1+tgx)+6}{1+tgx}= 5+\frac{6}{1+tgx}, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac{6}{1+tgx}. Отсюда \cos x =\frac{\dfrac65}{1+tgx}, \cos x+\sin x =\frac65.

2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left(x-\frac\pi 4\right) = \frac65.

Отсюда \cos \left(x-\frac\pi 4\right) =\frac{3\sqrt 2}5. Значит, x-\frac\pi 4= arc\cos \frac{3\sqrt 2}5+2\pi k, k \in \mathbb Z,

или x-\frac\pi 4= -arc\cos \frac{3\sqrt 2}5+2\pi t, t \in \mathbb Z.

Поэтому x=\frac\pi 4+arc\cos \frac{3\sqrt 2}5+2\pi k,k \in \mathbb Z,

или x =\frac\pi 4-arc\cos \frac{3\sqrt 2}5+2\pi t,t \in \mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac{3\sqrt 2}5 и b=\frac\pi 4-arccos \frac{3\sqrt 2}5.

1. Докажем вспомогательное неравенство:

\frac{\sqrt 2}{2}<\frac{3\sqrt 2}2<1.

Действительно, \frac{\sqrt 2}{2}=\frac{5\sqrt 2}{10}<\frac{6\sqrt2}{10}=\frac{3\sqrt2}{5}.

Заметим также, что \left(\frac{3\sqrt 2}5\right) ^2=\frac{18}{25}<1^2=1, значит \frac{3\sqrt 2}5<1.

2. Из неравенств (1) по свойству арккосинуса получаем:

arccos 1

0

Отсюда \frac\pi 4+0<\frac\pi 4+arc\cos \frac{3\sqrt 2}5<\frac\pi 4+\frac\pi 4,

0<\frac\pi 4+arccos \frac{3\sqrt 2}5<\frac\pi 2,

0

Аналогично, -\frac\pi 4

0=\frac\pi 4-\frac\pi 4<\frac\pi 4-arccos \frac{3\sqrt 2}5< \frac\pi 4<\frac\pi 2,

0

При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

\Bigg(a-2\pi =-\frac74\pi +arccos \frac{3\sqrt 2}5,\, b-2\pi =-\frac74\pi -arccos \frac{3\sqrt 2}5\Bigg). При этом -2\pi

2\pi Значит, эти корни принадлежат заданному промежутку \left(-2\pi , -\frac{3\pi }2\right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac{7\pi }2.

Ответ

а) \frac\pi4\pm arccos\frac{3\sqrt2}5+2\pi k, k\in\mathbb Z;

б) -\frac{7\pi}4\pm arccos\frac{3\sqrt2}5.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

а) Решите уравнение \sin \left(\frac\pi 2+x\right) =\sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку ;

Показать решение

Решение

а) Преобразуем уравнение:

\cos x =-\sin 2x,

\cos x+2 \sin x \cos x=0,

\cos x(1+2 \sin x)=0,

\cos x=0,

x =\frac\pi 2+\pi n, n \in \mathbb Z;

1+2 \sin x=0,

\sin x=-\frac12,

x=(-1)^{k+1}\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

б) Корни, принадлежащие отрезку , найдём с помощью единичной окружности.

Указанному промежутку принадлежит единственное число \frac\pi 2.

Ответ

а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^{k+1}\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

б) \frac\pi 2.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

не входит в ОДЗ.

Значит, \sin x \neq 1.

Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1{1+\cos 2x}=\frac 1{1+\cos (\pi +x)}, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

б) Решим неравенства

1) -\frac{3\pi }2 \leqslant \frac{\pi }3+2\pi m \leqslant -\frac \pi 2 ,

2) -\frac{3\pi }2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi {2,}

3) -\frac{3\pi }2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

1) -\frac{3\pi }2 \leqslant \frac{\pi }3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac{11}6 \leqslant 2m \leqslant -\frac56 , -\frac{11}{12} \leqslant m \leqslant -\frac5{12}.

\left [-\frac{11}{12};-\frac5{12}\right] .

2) -\frac {3\pi} 2 \leqslant -\frac{\pi }3+2\pi n \leqslant -\frac{\pi }{2}, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1{6}, -\frac7{12} \leqslant n \leqslant -\frac1{12}.

Нет целых чисел, принадлежащих промежутку \left[ -\frac7{12} ; -\frac1{12} \right].

3) -\frac{3\pi }2 \leqslant \pi +2\pi k\leqslant -\frac{\pi }2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

Ответ

а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;

б) -\pi .

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение : с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

А) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

Sqrt(2)cos^2x = cosx

Sqrt(2)cos^2x - cosx = 0

Cosx(sqrt(2)cosx - 1) = 0

X1 = Pi/2 + Pin, n ∈ Z

Sqrt(2)cosx - 1 = 0

Cosx = 1/sqrt(2)

Cosx = sqrt(2)/2

X2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

X2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

7/2 меньше или равно 1/2 + n меньше или равно -2

7/2 - 1/2 меньше или равно n меньше или равно -2 - 1/2

4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 - 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 - 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 - 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Вы можете заказать подробное решение вашей задачи !!!

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

`\frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Обязательный минимум знаний

sin x = a, -1 a 1 (a 1)
x = arcsin a + 2 n, n Z
x = - arcsin a + 2 n, n Z
или
x = (- 1)k arcsin a + k, k Z
arcsin (- a) = - arcsin a
sin x = 1
x = /2 + 2 k, k Z
sin x = 0
x = k, k Z
sin x = - 1
x = - /2 + 2 k, k Z
y
y
x
y
x
x

Обязательный минимум знаний

cos x = a, -1 a 1 (a 1)
x = arccos a + 2 n, n Z
arccos (- a) = - arccos a
cos x = 1
x = 2 k, k Z
cos x = 0
x = /2 + k, k Z
y
y
x
cos x = - 1
x = + 2 k, k Z
y
x
x

Обязательный минимум знаний

tg x = a, a R
x = arctg a + n, n Z
ctg x = a, a R
x = arcctg a + n, n Z
arctg (- a) = - arctg a
arctg (- a) = - arctg a Свести уравнение к одной функции
Свести к одному аргументу
Некоторые методы решения
тригонометрических уравнений
Применение тригонометрических формул
Использование формул сокращённого умножения
Разложение на множители
Сведение к квадратному уравнению относительно sin x, cos x, tg x
Введением вспомогательного аргумента
Делением обеих частей однородного уравнения первой степени
(asin x +bcosx = 0) на cos x
Делением обеих частей однородного уравнения второй степени
(a sin2 x +bsin x cos x+ c cos2x =0) на cos2 x

Устные упражнения Вычислите

arcsin ½
arcsin (- √2/2)
arccos √3/2
arccos (-1/2)
arctg √3
arctg (-√3/3)
= /6
= - /4
= /6
= - arccos ½ = - /3 = 2 /3
= /3
= - /6


(с помощью тригонометрической окружности)
cos 2x = ½, x [- /2; 3 /2]
2x = ± arccos ½ + 2 n, n Z
2x = ± /3 + 2 n, n Z
x = ± /6 + n, n Z
Отберём корни с помощью тригонометрической окружности
Ответ: - /6; /6; 5 /6; 7 /6

Различные способы отбора корней

Найти корни уравнения, принадлежащие данному промежутку
sin 3x = √3/2, x [- /2; /2]
3x = (– 1)k /3 + k, k Z
x = (– 1)k /9 + k/3, k Z
Отберём корни с помощью перебора значений k:
k = 0, x = /9 – принадлежит промежутку
k = 1, x = – /9 + /3 = 2 /9 – принадлежит промежутку
k = 2, x = /9 + 2 /3 = 7 /9 – не принадлежит промежутку
k = – 1, x = – /9 – /3 = – 4 /9 – принадлежит промежутку
k = – 2, x = /9 – 2 /3 = – 5 /9 – не принадлежит промежутку
Ответ: -4 /9; /9; 2 /9

Различные способы отбора корней

Найти корни уравнения, принадлежащие данному промежутку
(с помощью неравенства)
tg 3x = – 1, x (- /2;)
3x = – /4 + n, n Z
x = – /12 + n/3, n Z
Отберём корни с помощью неравенства:
– /2 < – /12 + n/3 < ,
– 1/2 < – 1/12 + n/3 < 1,
– 1/2 + 1/12 < n/3 < 1+ 1/12,
– 5/12 < n/3 < 13/12,
– 5/4 < n < 13/4, n Z,
n = – 1; 0; 1; 2; 3
n = – 1, x = – /12 – /3 = – 5 /12
n = 0, x = – /12
n = 1, x = – /12 + /3 = /4
n = 2, x = – /12 + 2 /3 = 7 /12
n = 3, x = – /12 + = 11 /12
Ответ: – 5 /12; – /12; /4; 7 /12; 11 /12

10. Различные способы отбора корней

Найти корни уравнения, принадлежащие данному промежутку
(с помощью графика)
cos x = – √2/2, x [–4; 5 /4]
x = arccos (– √2/2) + 2 n, n Z
x = 3 /4 + 2 n, n Z
Отберём корни с помощью графика:
x = – /2 – /4 = – 3 /4; x = – – /4 = – 5 /4
Ответ: 5 /4; 3 /4

11. 1. Решить уравнение 72cosx = 49sin2x и указать его корни на отрезке [; 5/2]

1. Решить уравнение 72cosx = 49sin2x
и указать его корни на отрезке [ ; 5 /2]
Решим уравнение:
72cosx = 49sin2x,
72cosx = 72sin2x,
2cos x = 2sin 2x,
cos x – 2 sinx cosx = 0,
cos x (1 – 2sinx) = 0,
cos x = 0 ,
x = /2 + k, k Z
или
1 – 2sinx = 0,
sin x = ½,
x = (-1)n /6 + n, n Z
Проведём отбор корней с помощью
тригонометрической окружности:
x = 2 + /6 = 13 /6
Ответ:
а) /2 + k, k Z, (-1)n /6 + n, n Z
б) 3 /2; 5 /2; 13 /6

12. 2. Решить уравнение 4cos2 x + 8 cos (x – 3/2) +1 = 0 Найти его корни на отрезке

2. Решить уравнение 4cos2 x + 8 cos (x – 3 /2) +1 = 0
Найти его корни на отрезке
4cos2 x + 8 cos (x – 3 /2) +1 = 0
4cos2x + 8 cos (3 /2 – x) +1 = 0,
4cos2x – 8 sin x +1 = 0,
4 – 4sin2 x – 8 sin x +1 = 0,
4sin 2x + 8sin x – 5 = 0,
D/4 = 16 + 20 = 36,
sin x = – 2,5
или
sin x = ½
x = (-1)k /6 + k, k Z

13. Проведем отбор корней на отрезке (с помощью графиков)

Проведем отбор корней на отрезке
(с помощью графиков)
sin x = ½
Построим графики функций y = sin x и y = ½
x = 4 + /6 = 25 /6
Ответ: а) (-1)k /6 + k, k Z; б) 25 /6

14. 3. Решить уравнение Найти его корни на отрезке

4 – cos2 2x = 3 sin2 2x + 2 sin 4x
4 (sin2 2x + cos2 2x) – cos2 2x = 3 sin2 2x + 4 sin 2x cos 2x,
sin2 2x + 3 cos2 2x – 4 sin 2x cos 2x = 0
Если cos2 2x = 0, то sin2 2x = 0, что невозможно, поэтому
cos2 2x 0 и обе части уравнения можно разделить на cos2 2x.
tg22x + 3 – 4 tg 2x = 0,
tg22x – 4 tg 2x + 3= 0,
tg 2x = 1,
2x = /4 + n, n Z
x = /8 + n/2, n Z
или
tg 2x = 3,
2x = arctg 3 + k, k Z
x = ½ arctg 3 + k/2, k Z

15.

4 – cos2 2x = 3 sin2 2x + 2 sin 4x
x = /8 + n/2, n Z или x = ½ arctg 3 + k/2, k Z
Так как 0 < arctg 3< /2,
0 < ½ arctg 3< /4, то ½ arctg 3
является решением
Так как 0 < /8 < /4 < 1,значит /8
также является решением
Другие решения не попадут в
промежуток , так как они
получаются из чисел ½ arctg 3 и /8
прибавлением чисел, кратных /2.
Ответ: а) /8 + n/2, n Z ; ½ arctg 3 + k/2, k Z
б) /8; ½ arctg 3

16. 4. Решить уравнение log5(cos x – sin 2x + 25) = 2 Найти его корни на отрезке

4. Решить уравнение log5(cos x – sin 2x + 25) = 2
Найти его корни на отрезке
Решим уравнение:
log5(cos x – sin 2x + 25) = 2
ОДЗ: cos x – sin 2x + 25 > 0,
cos x – sin 2x + 25 = 25, 25 > 0,
cos x – 2sin x cos x = 0,
cos x (1 – 2sin x) = 0,
cos x = 0,
x = /2 + n, n Z
или
1 – 2sinx = 0,
sin x = 1/2
x = (-1)k /6 + k, k Z

17.

Проведём отбор корней на отрезке
Проведём отбор корней на отрезке :
1) x = /2 + n, n Z
2 /2 + n 7 /2, n Z
2 1/2 + n 7/2, n Z
2 – ½ n 7/2 – ½, n Z
1,5 n 3, n Z
n = 2; 3
x = /2 + 2 = 5 /2
x = /2 + 3 = 7 /2
2) sin x = 1/2
x = 2 + /6 = 13 /6
x = 3 – /6 = 17 /6
Ответ: а) /2 + n, n Z ; (-1)k /6 + k, k Z
б) 13 /6 ; 5 /2; 7 /2; 17 /6

18. 5. Решить уравнение 1/sin2x + 1/sin x = 2 Найти его корни на отрезке [-5/2; -3/2]

5. Решить уравнение 1/sin2x + 1/sin x = 2
Найти его корни на отрезке [-5 /2; -3 /2]
Решим уравнение:
1/sin2x + 1/sin x = 2
x k
Замена 1/sin x = t,
t2 + t = 2,
t2 + t – 2 = 0,
t1= – 2, t2 = 1
1/sin x = – 2,
sin x = – ½,
x = – /6 + 2 n, n Z
или
x = – 5 /6 + 2 n, n Z
1/sin x = 1,
sin x = 1,
x = /2 + 2 n, n Z
Исключается эта серия корней, т.к. -150º+ 360ºn выходит за пределы
заданного промежутка [-450º; -270º]

19.

Продолжим отбор корней на отрезке
Рассмотрим остальные серии корней и проведём отбор корней
на отрезке [-5 /2; -3 /2] ([-450º; -270º]):
1) x = - /6 + 2 n, n Z
2) x = /2 + 2 n, n Z
-5 /2 - /6 + 2 n -3 /2, n Z
-5 /2 /2 + 2 n -3 /2, n Z
-5/2 -1/6 + 2n -3/2, n Z
-5/2 1/2 + 2n -3/2, n Z
-5/2 +1/6 2n -3/2 + 1/6, n Z
-5/2 - 1/2 2n -3/2 - 1/2, n Z
– 7/3 2n -4/3, n Z
– 3 2n -2, n Z
-7/6 n -2/3, n Z
-1,5 n -1, n Z
n = -1
n = -1
x = - /6 - 2 = -13 /6 (-390º)
x = /2 - 2 = -3 /2 (-270º)
Ответ: а) /2 + 2 n, n Z ; (-1)k+1 /6 + k, k Z
б) -13 /6 ; -3 /2

20. 6. Решить уравнение |sin x|/sin x + 2 = 2cos x Найти его корни на отрезке [-1; 8]

Решим уравнение
|sin x|/sin x + 2 = 2cos x
1)Если sin x >0, то |sin x| =sin x
Уравнение примет вид:
2 cos x=3,
cos x =1,5 – не имеет корней
2) Если sin x <0, то |sin x| =-sin x
и уравнение примет вид
2cos x=1, cos x = 1/2,
x = ±π/3 +2πk, k Z
Учитывая, что sin x < 0, то
остаётся одна серия ответа
x = - π/3 +2πk, k Z
Произведём отбор корней на
отрезке [-1; 8]
k=0, x= - π/3 , - π < -3, - π/3 < -1,
-π/3 не принадлежит данному
отрезку
k=1, x = - π/3 +2π = 5π/3<8,
5 π/3 [-1; 8]
k=2, x= - π/3 + 4π = 11π/3 > 8,
11π/3 не принадлежит данному
отрезку.
Ответ: а) - π/3 +2πk, k Z
б) 5
π/3

21. 7. Решить уравнение 4sin3x=3cos(x- π/2) Найти его корни на промежутке

8. Решить уравнение √1-sin2x= sin x
Найти его корни на промежутке
Решим уравнение √1-sin2x= sin x.
sin x ≥ 0,
1- sin2x = sin2x;
sin x ≥ 0,
2sin2x = 1;
sin x≥0,
sin x =√2/2; sin x = - √2/2;
sin x =√2/2
x=(-1)k /4 + k, k Z
sin x =√2/2

25. Проведём отбор корней на отрезке

Проведём отбор корней на отрезке
x=(-1)k /4 + k, k Z
sin x =√2/2
у =sin x и у=√2/2
5 /2 + /4 = 11 /4
Ответ: а) (-1)k /4 + k, k Z ;б) 11 /4

26. 9. Решить уравнение (sin2x + 2 sin2x)/√-cos x =0 Найти его корни на промежутке [-5; -7/2]

9. Решить уравнение (sin2x + 2 sin2x)/√-cos x =0
Найти его корни на промежутке [-5 ; -7 /2]
Решим уравнение
(sin2x + 2 sin2x)/√-cos x =0.
1) ОДЗ: cos x <0 ,
/2 +2 n 2) sin2x + 2 sin2x =0,
2 sinx∙cos x + 2 sin2x =0,
sin x (cos x+ sin x) =0,
sin x=0, x= n, n Z
или
cos x+ sin х=0 | : cos x,
tg x= -1, x= - /4 + n, n Z
C учётом ОДЗ
x= n, n Z, x= +2 n, n Z;
x= - /4 + n, n Z,
x= 3 /4 + 2 n, n Z

27. Отберём корни на заданном отрезке

Отберём корни на заданном
отрезке [-5 ; -7 /2]
x= +2 n, n Z ;
-5 ≤ +2 n ≤ -7 /2,
-5-1 ≤ 2n ≤ -7/2-1,
-3≤ n ≤ -9/4, n Z
n = -3, x= -6 = -5
x= 3 /4 + 2 n, n Z
-5 ≤ 3 /4 + 2 n ≤ -7 /2
-23/8 ≤ n ≤ -17/8, нет такого
целого n.
Ответ: а) +2 n, n Z ;
3 /4 + 2 n, n Z ;
б) -5 .

28. 10. Решить уравнение 2sin2x =4cos x –sinx+1 Найти его корни на промежутке [/2; 3/2]

10. Решить уравнение 2sin2x =4cos x –sinx+1
Найти его корни на промежутке [ /2; 3 /2]
Решим уравнение
2sin2x = 4cos x – sinx+1
2sin2x = 4cos x – sinx+1,
4 sinx∙cos x – 4cos x + sin x -1 = 0,
4cos x(sin x – 1) + (sin x – 1) = 0,
(sin x – 1)(4cos x +1)=0,
sin x – 1= 0, sin x = 1, x = /2+2 n, n Z
или
4cos x +1= 0, cos x = -0,25
x = ± (-arccos (0,25)) + 2 n, n Z
Запишем корни этого уравнения иначе
x = - arccos(0,25) + 2 n,
x = -(- arccos(0,25)) + 2 n, n Z

29. Отберём корни с помощью окружности

x = /2+2 n, n Z, х = /2;
x = -arccos(0,25)+2 n,
х=-(-arccos(0,25)) +2 n, n Z,
x = - arccos(0,25),
x = + arccos(0,25)
Ответ: а) /2+2 n,
-arccos(0,25)+2 n,
-(-arccos(0,25)) +2 n, n Z;
б) /2;
-arccos(0,25); +arccos(0,25)