Частные производные первого порядка полный дифференциал. Лекция n21

Частными производными функции в том случае, если они существуют не в одной точке, а на некотором множестве, являются функции, определенные на этом множестве. Эти функции могут быть непрерывными и в некоторых случаях также могут иметь частные производные в различных точках области определения.

Частные производные от этих функций называются частными производными второго порядка или вторыми частными производными.

Частные производные второго порядка разбиваются на две группы:

· вторые частные производные от по переменной;

· смешанные частные производные от по переменным и.

При последующем дифференцировании можно определить частные производные третьего порядка и т.д. Аналогичными рассуждениями определяются и записываются частные производные высших порядков.

Теорема. Если все входящие в вычисления частные производные, рассматриваемые как функции своих независимых переменных, непрерывны, то результат частного дифференцирования не зависит от последовательности дифференцирования.

Часто возникает потребность решения обратной задачи, которая состоит в определении того, является ли полным дифференциалом функции выражение вида, где непрерывные функции с непрерывными производными первого порядка.

Необходимое условие полного дифференциала можно сформулировать в виде теоремы, которую примем без доказательства.

Теорема. Для того, чтобы дифференциальное выражение являлось в области полным дифференциалом функции, определенной и дифференцируемой в этой области, необходимо, чтобы в этой области тождественно было выполнено условие для любой пары независимых переменных и.

Задача вычисления полного дифференциала второго порядка функции может быть решена следующим образом. Если выражение полного дифференциала также является дифференцируемым, то вторым полным дифференциалом (или полным дифференциалом второго порядка) можно считать выражение, полученное в результате применения операции дифференцирования к первому полному дифференциалу, т.е. . Аналитическое выражение для второго полного дифференциала имеет вид:

С учетом того, что смешанные производные не зависят от порядка дифференцирования, формулу можно сгруппировать и представить виде квадратичной формы:

Матрица квадратичной формы равна:

Пусть задана суперпозиция функций, определенной в и

Определенных в. При этом. Тогда, если и имеют непрерывные частные производные до второго порядка в точках и, то существует второй полный дифференциал сложной функции следующего вида:

Как видно, второй полный дифференциал не обладает свойством инвариантности формы. В выражение второго дифференциала сложной функции входят слагаемые вида, которые отсутствуют в формуле второго дифференциала простой функции.

Построение частных производных функции более высоких порядков можно продолжать, выполняя последовательное дифференцирование этой функции:

Где индексы принимают значения от до, т.е. производная порядка рассматривается, как частная производная первого порядка от производной порядка. Аналогично можно ввести и понятие полного дифференциала порядка функции, как полного дифференциала первого порядка от дифференциала порядка: .

В случае простой функции двух переменных формула для вычисления полного дифференциала порядка функции имеет вид

Применение оператора дифференцирования позволяет получить компактную и легко запоминающуюся форму записи для вычисления полного дифференциала порядка функции, аналогичную формуле бинома Ньютона. В двумерном случае она имеет вид.

Пусть функция определена в некоторой (открытой) областиD точек
мерного пространства, и
– точка в этой области, т.е.
D .

Частным приращением функции многих переменных по какой-либо переменной называется то приращение, которое получит функция, если мы дадим приращение этой переменной, считая, что все остальные переменные имеют постоянные значения.

Например, частное приращение функции по переменнойбудет

Частной производной по независимой переменной в точке
от функции называется предел (если существует) отношения частного приращения
функции к приращению
переменнойпри стремлении
к нулю:

Частную производную обозначают одним из символов:

;
.

Замечание. Индекс внизу в этих обозначениях лишь указывает, по какой из переменных берется производная, и не связана с тем, в какой точке
эта производная вычисляется.

Вычисление частных производных не представляет ничего нового по сравнению с вычислением обыкновенной производной, необходимо только помнить, что при дифференцировании функции по какой-либо переменной все остальные переменные принимаются за постоянные. Покажем это на примерах.

Пример 1. Найти частные производные функции
.

Решение . При вычислении частной производной функции
по аргументурассматриваем функциюкак функцию только одной переменной, т.е. считаем, чтоимеет фиксированное значение. При фиксированномфункция
является степенной функцией аргумента. По формуле дифференцирования степенной функции получаем:

Аналогично, при вычислении частной производной считаем, что фиксировано значение, и рассматриваем функцию
как показательную функцию аргумента. В итоге получаем:

Пример 2 . Н айти частные производные ифункции
.

Решение. При вычислении частной производной по заданную функциюмы будем рассматривать как функцию одной переменной, а выражения, содержащие, будут постоянными множителями, т.е.
выступает в роли постоянного коэффициентапри степенной функции(
). Дифференцируя это выражение по , получим:

.

Теперь, наоборот, функцию рассматриваем как функцию одной переменной, в то время как выражения, содержащие, выступают в роли коэффициента
(
).Дифференцируя по правилам дифференцирования тригонометрических функций, получаем:

Пример 3. Вычислить частные производные функции
в точке
.

Решение. Находим сначала частные производные данной функции в произвольной точке
её области определения. При вычислении частной производной посчитаем, что
являются постоянными.

при дифференцировании по постоянными будут
:

а при вычислении частных производных по и по, аналогично, постоянными будут, соответственно,
и
, т.е.:

Теперь вычислим значения этих производных в точке
, подставляя в их выражения конкретные значения переменных. В итоге получаем:

11. Частные и полный дифференциалы функции

Если теперь к частному приращению
применить теорему Лагранжа о конечных приращениях по переменной, то, считаянепрерывной, получим следующие соотношения:

где
,
– бесконечно малая величина.

Частным дифференциалом функции по переменнойназывается главная линейная часть частного приращения
, равная произведению частной производной по этой переменной на приращение этой переменной, и обозначается

Очевидно, частный дифференциал отличается от частного приращения на бесконечно малую высшего порядка.

Полным приращением функции многих переменных называется то её приращение, которое она получит, когда мы всем независимым переменным дадим приращение, т.е.

где все
, зависят оти вместе с ними стремятся к нулю.

Под дифференциалами независимых переменных условились подразумеватьпроизвольные приращения
и обозначать их
. Таким образом, выражение частного дифференциала примет вид:

Например, частный дифференциал поопределяется так:

.

Полным дифференциалом
функции многих переменныхназывается главная линейная часть полного приращения
, равная, т.е.сумме всех её частных дифференциалов:

Если функция
имеет непрерывные частные производные

в точке
, то онадифференцируема в данной точке .

При достаточно малом для дифференцируемой функции
имеют место приближенные равенства

,

с помощью которых можно производить приближенные вычисления.

Пример 4. Найти полный дифференциал функции
трёх переменных
.

Решение. Прежде всего, находим частные производные:

Заметив, что они непрерывны при всех значениях
, находим:

Для дифференциалов функций многих переменных верны все теоремы о свойствах дифференциалов, доказанные для случая функций одной переменной, например: если и– непрерывные функции переменных
, имеющие непрерывные частные производные по всем переменным, аи– произвольные постоянные, то:

(6)

Для упрощения записи и изложения материала ограничимся случаем функций двух переменных. Все дальнейшее справедливо также для функций любого числа переменных.

Определение. Частной производной функции z = f (х, у ) по независимой переменной х называется производная

вычисленная при постоянном у .

Аналогично определяется частная производная по переменной у .

Для частных производных справедливы обычные правила и формулы дифференцирования.

Определение. Произведение частной производной на приращение аргумента х ( y) называется частным дифференциалом по переменной х (у ) функции двух переменных z = f (x, y ) (обозначения: ):

Если под дифференциалом независимой переменной dx (dy ) понимать приращение х (у ), то

Для функции z = f (x, y ) выясним геометрический смысл ее частотных производных и .

Рассмотрим точку , точку P 0 (х 0 , y 0 , z 0) на поверхности z = f (x , у ) и кривую L , которая получится при сечении поверхности плоскостью у = у 0 . Эту кривую можно рассматривать как график функции одной переменной z = f (x, y ) в плоскости у = у 0 . Если провести в точке Р 0 (х 0 , у 0 , z 0) касательную к кривой L , то, согласно геометрическому смыслу производной функции одной переменной , где a угол, образованный касательной с положительным направлением оси Ох .


Или: аналогично зафиксируем другую переменную, т.е. проведем сечение поверхности z = f (x, y ) плоскостью х = х 0 . Тогда функцию

z = f (x 0 , y ) можно рассмотреть как функцию одной переменной у :

где b – угол, образованный касательной в точке М 0 (х 0 , у 0) с положительным направлением оси Oy (рис. 1.2).

Рис. 1.2. Иллюстрация геометрического смысла частных производных

Пример 1.6. Дана функция z = х 2 3ху – 4у 2 – х + 2у + 1. Найти и .

Решение. Рассматривая у как постоянную величину, получим

Считая х постоянной, находим