Для симметричной фигуры центробежный момент инерции равен. Осевой момент инерции

Если m = 1, n = 1, тогда получим характеристику

которая называется центробежным моментом инерции .

Центробежный момент инерции относительно осей координат – сумма произведений элементарных площадей dA на их расстояния до этих осей, взятая по всей площади сечения А .

Если хотя бы одна из осей y или z является осью симметрии сечения, центробежный момент инерции такого сечения относительно этих осей равен нулю (так как в этом случае каждой положительной величине z·y·dA можем поставить в соответствие точно такую же, но отрицательную, по другую сторону от оси симметрии сечения, см. рисунок).

Рассмотрим дополнительные геометрические характеристики, которые могут быть получены из перечисленных основных и также часто используются в расчетах на прочность и жесткость.

Полярный момент инерции

Полярным моментом инерции J p называют характеристику

С другой стороны,

Полярный момент инерции (относительно данной точки) – сумма произведений элементарных площадей dA на квадраты их расстояний до этой точки, взятая по всей площади сечения А .

Размерность моментов инерции – м 4 в СИ.

Момент сопротивления

Момент сопротивления относительно некоторой оси – величина равная моменту инерции относительно той же оси отнесенному к расстоянию (y max или z max ) до наиболее удаленной от этой оси точки

Размерность моментов сопротивления – м 3 в СИ.

Радиус инерции

Радиусом инерции сечения относительно некоторой оси, называется величина, определяемая из соотношения:

Радиусы инерции выражаются в м в системе СИ.

Замечание: сечения элементов современных конструкций часто представляют собой некоторую композицию из материалов с разным сопротивлением упругим деформациям, характеризуемым, как известно из курса физики, модулем Юнга E . В самом общем случае неоднородного сечения модуль Юнга является непрерывной функцией координат точек сечения, т. е. E = E(z, y) . Поэтому жесткость неоднородного по упругим свойствам сечения характеризуется более сложными, чем геометрические характеристики однородного сечения, характеристиками, а именно упруго-геометрическими вида



2.2. Вычисление геометрических характеристик простых фигур

Прямоугольное сечение

Определим осевой момент инерции прямоугольника относительно оси z . Разобьем площадь прямоугольника на элементарные площадки с размерами b (ширина) и dy (высота). Тогда площадь такого элементарного прямоугольника (заштрихован) равна dA = b · dy . Подставляя значение dA в первую формулу, получим

По аналогии запишем осевой момент относительно оси у :

Осевые моменты сопротивления прямоугольника:

;

Подобным образом можно получить геометрические характеристики и для других простых фигур.

Круглое сечение

Сначала удобно найти полярный момент инерции J p .

Затем, учитывая, что для круга J z = J y , а J p = J z + J y , найдем J z = J y = J p / 2.

Разобьем круг на бесконечно малые кольца толщиной и радиусом ρ ; площадь такого кольца dA = 2 ∙ π ∙ ρ ∙ dρ . Подставляя выражение для dA в выражение для J p и интегрируя, получим

2.3. Вычисление моментов инерции относительно параллельных осей

z и y :

Требуется определить моменты инерции этого сечения относительно «новых» осей z 1 и y 1 , параллельных центральным и отстоящих от них на расстояние a и b соответственно:

Координаты любой точки в «новой» системе координат z 1 0 1 y 1 можно выразить через координаты в «старых» осях z и y так:

Так как оси z и y – центральные, то статический момент S z = 0.

Окончательно можем записать формулы «перехода» при параллельном переносе осей:

Отметим, что координаты a и b необходимо подставлять с учетом их знака (в системе координат z 1 0 1 y 1 ).

2.4. Вычисление моментов инерции при повороте координатных осей

Пусть известны моменты инерции произвольного сечения относительно центральных осей z, y :

; ;

Повернем оси z , y на угол α против часовой стрелки, считая угол поворота осей в этом направлении положительным.

Требуется определить моменты инерции относительно «новых» (повернутых) осей z 1 и y 1 :

Координаты элементарной площадки dA в «новой» системе координат z 1 0y 1 можно выразить через координаты в «старых» осях так:

Подставляем эти значения в формулы для моментов инерции в «новых» осях и интегрируем почленно:

Проделав аналогичные преобразования с остальными выражениями, запишем окончательно формулы «перехода» при повороте координатных осей:

Отметим, что если сложить два первых уравнения, то получим

т. е. полярный момент инерции есть величина инвариантная (другими словами, неизменная при повороте координатных осей).

2.5. Главные оси и главные моменты инерции

До сих пор рассматривались геометрические характеристики сечений в произвольной системе координат, однако наибольший практический интерес представляет система координат, в которой сечение описывается наименьшим количеством геометрических характеристик. Такая «особая» система координат задается положением главных осей сечения. Введем понятия: главные оси и главные моменты инерции .

Главные оси – две взаимно перпендикулярные оси, относительно которых центробежный момент инерции равен нулю, при этом осевые моменты инерции принимают экстремальные значения (максимум и минимум).

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями .

Моменты инерции относительно главных осей называются главными моментами инерции.

Главные центральные оси принято обозначать буквами u и v ; главные моменты инерции – J u и J v (по определению J uv = 0).

Выведем выражения, позволяющие находить положение главных осей и величину главных моментов инерции. Зная, что J uv = 0, воспользуемся уравнением (2.3):

Угол α 0 определяет положение главных осей относительно любых центральных осей z и y . Угол α 0 откладывается между осью z и осью u и считается положительным в направлении против часовой стрелки.

Заметим, что если сечение имеет ось симметрии, то, в соответствии со свойством центробежного момента инерции (см. разд.2.1, п.4), такая ось всегда будет главной осью сечения.

Исключая угол α в выражениях (2.1) и (2.2) с помощью (2.4), получим формулы для определения главных осевых моментов инерции:

Запишем правило: ось максимум всегда составляет меньший угол с той из осей (z или y), относительно которой момент инерции имеет большее значение.

2.6. Рациональные формы поперечных сечений

Нормальные напряжения в произвольной точке поперечного сечения балки при прямом изгибе определяются по формуле:

, (2.5)

где М – изгибающий момент в рассматриваемом поперечном сечении; у – расстояние от рассматриваемой точки до главной центральной оси, перпендикулярной плоскости действия изгибающего момента; J x – главный центральный момент инерции сечения.

Наибольшие растягивающие и сжимающие нормальные напряжения в данном поперечном сечении возникают в точках, наиболее удаленных от нейтральной оси. Их определяют по формулам:

; ,

где у 1 и у 2 – расстояния от главной центральной оси Х до наиболее удаленных растянутого и сжатого волокон.

Для балок из пластичных материалов, когда [σ p ] = [σ c ] ([σ p ], [σ c ] – допускаемые напряжения для материала балки соответственно на растяжение и сжатие), применяют сечения, симметричные относительно центральной оси. В этом случае условие прочности имеет вид:

[σ], (2.6)

где W x = J x / y max – момент сопротивления площади поперечного сечения балки относительно главной центральной оси; y max = h / 2 (h – высота сечения); М max – наибольший по абсолютному значению изгибающий момент; [σ] – допускаемое напряжение материала на изгиб.

Кроме условия прочности балка должна удовлетворять и условию экономичности. Наиболее экономичными являются такие формы поперечных сечений, для которых с наименьшей затратой материала (или при наименьшей площади поперечного сечения) получается наибольшая величина момента сопротивления. Чтобы форма сечения была рациональной, необходимо, по возможности, распределять сечение подальше от главной центральной оси.

Например, двутавровая стандартная балка примерно в семь раз прочнее и в тридцать раз жестче, чем балка квадратного поперечного сечения той же площади сделанного из того же материала.

Необходимо иметь в виду, что при изменении положения сечения по отношению к действующей нагрузке прочность балки существенно изменяется, хотя площадь сечения остается неизменной. Следовательно, сечение надо располагать так, чтобы силовая линия совпадала с той из главных осей, относительно которых момент инерции минимален. Следует стремится, чтобы изгиб бруса проходил в плоскости его наибольшей жесткости.

Рассмотрим еще несколько геометрических характеристик плоских фигур. Одна из этих характеристик носит название осевого или экваториального момента инерции. Эта характеристика относительно осей и
(Рис.4.1) принимает вид:

;
. (4.4)

Основным свойством осевого момента инерции является то, что он не может быть меньше нуля или равным нулю. Этот момент инерции всегда больше нуля:
;
. Единица измерения осевого момента инерции – (длина 4).

Соединим отрезком прямой линии начало координат с бесконечно малой площадью
и обозначим этот отрезок буквой(Рис.4.4). Момент инерции фигуры относительно полюса – начала координат – называется полярным моментом инерции:


. (4.5)

Этот момент инерции так же, как и осевой, всегда больше нуля (
) и имеет размерность – (длина 4).

Запишем условие инвариантности суммы экваториальных моментов инерции относительно двух взаимно перепендикулярных осей. Из рис.4.4 видно, что
.

Подставим это выражение в формулу (4.5), получим:

Формулируется условие инвариантности следующим образом: сумма осевых моментов инерции относительно двух любых взаимно перпедикулярных осей есть величина постоянная и равная полярному моменту инерции относительно точки пересечения этих осей.

Момент инерции плоской фигуры относительно одновременно двух взаимно перепендикулярных осей называется двухосным или центробежным моментом инерции. Центробежный момент инерции имеет следующий вид:

. (4.7)

Центробежный момент инерции имеет размерность – (длина 4). Он может быть положительным, отрицательным и равным нулю. Оси, относительно которых центробежный момент инерции равен нулю, называютсяглавными осями инерции . Докажем, что ось симметрии плоской фигуры является главной осью.

Рассмотрим плоскую фигуру, изображенную на рис.4.5.

Выберем слева и справа от оси симметрии два элемента с бесконечно малой площадью
. Центр тяжести всей фигуры находится в точке С. Поместим начало координат в точку С и обозначим координаты выбранных элементов по вертикали буквой“”, по горизонтали – для левого элемента “
”, для правого элемента “”. Вычислим сумму центробежных моментов инерции для выбранных элементов с бесконечно малой площадью относительно осей и:

Если проинтегрировать выражение (4.8) слева и справа, получим:

, (4.9)

так как, если ось является осью симметрии, то для любой точки, лежащей слева от этой оси, всегда найдется ей симметричная.

Анализируя полученное решение, приходим к выводу, что ось симметрии является главной осью инерции. Центральная осьтакже является главной осью, хотя она и не является осью симметрии, так как центробежный момент инерции вычислялся одновременно двух осейии оказался равным нулю.

Допустим, что имеется система координат с началом в точке O и осями OX; OY; OZ. По отношению к данным осям центробежными моментами инерции (произведениями инерции) называются величины , которые определяются равенствами:

где - массы материальных точек, на которые разбивают тело; - координаты соответствующих материальных точек.

Центробежный момент инерции обладает свойством симметрии, это следует из его определения:

Центробежные моменты тела могут быть положительными и отрицательными, при определённом выборе осей OXYZ они могут обращаться в ноль.

Для центробежных моментов инерции существует аналог теоремы Штейнберга. Если рассмотреть две системы координат: и . Одна из этих систем имеет начало координат в центе масс тела (точка C), оси систем координат являются попарно параллельными (). Пусть в системе координат координатами центра масс тела являются (), тогда:

где - масса тела.

Главные оси инерции тела

Пусть однородное тело имеет ось симметрии. Построим координатные оси так, чтобы ось OZ была направлена вдоль оси симметрии тела. Тогда, как следствие симметрии каждой точке тела с массой и координатами соответствует точка, имеющая другой индекс, но такую же массу и координаты: . В результате получаем, что:

так как в данных суммах все слагаемые имеют свою равную по величине, но противоположную по знаку пару. Выражения (4) эквивалентны записи:

Мы получили, что осевая симметрия распределения масс по отношению к оси OZ характеризуется равенством нулю двух центробежных моментов инерции (5), которые содержат среди своих индексов наименование этой оси. В таком случае ось OZ называется главной осью инерции тела для точки О.

Главная ось инерции не всегда является осью симметрии тела. Если тело обладает плоскостью симметрии, то любая ось, которая перпендикулярна этой плоскости, является главной осью инерции для точки O, в которой ось пересекает рассматриваемую плоскость. Равенства (5) отображают условия того, что ось OZ является главной осью инерции тела для точки O (начала координат). Если выполняются условия:

то ось OY будет для точки O главной осью инерции.

В том случае, если выполняются равенства:

то все три координатные оси системы координат OXYZ являются главными осями инерции тела для начала координат.

Моменты инерции тела по отношению к главным осям инерции называются главными моментами инерции тела. Главные оси инерции, которые построены для центра масс тела, носят название главных центральных осей инерции тела.

Если тело обладает осью симметрии, то она является одной из главных центральных осей инерции тела, поскольку центр масс находится на этой оси. В том случае, если тело имеет плоскость симметрии, то ось, нормальная к этой плоскости и проходящая через центр масс тела является одной из главных центральных осей инерции тела.

Понятие главных осей инерции в динамике твердого тела имеет существенное значение. Если вдоль них направить оси координат OXYZ, то все центробежные моменты инерции становятся равными нулю, при этом значительно упрощаются формулы, которые следует применять при решении задач динамики. С понятием о главных осях инерции связано решение задач о динамическом уравнении тела находящегося во вращении и о центре удара.

Момент инерции тела (и центробежный в том числе) в международной системем единиц измеряются в:

Центробежный момент инерции сечения

Центробежным моментом инерции сечения (плоской фигуры) относительно двух взаимно нормальных осей (OX и OY) называют величину, равную:

выражение (8) говорит о том, что центробежный момент инерции сечения относительно взаимно перпендикулярных осей есть сумма произведений элементарных площадок () на расстояния от них до рассматриваемых осей, по всей площади S.

Единицей измерения моментов инерции сечения в СИ является:

Центробежный момент инерции сложного сечения по отношению к любым двум взаимно нормальным осям равен сумме центробежных моментов инерции составляющих его частей относительно этих осей.

Примеры решения задач

ПРИМЕР 1

Задание Получите выражение для центробежного момента инерции прямоугольного сечения относительно осей (X,Y).
Решение Сделаем рисунок.

Для определения центробежного момента инерции выделим из имеющегося прямоугольника элемент его площади (рис.1) , площадь которой равна:

На первом этапе решения задачи найдем центробежный момент инерции () вертикальной полосы, имеющей высоту и ширину , которая находится на расстоянии от оси Y (учтем, что при интегрировании для всех площадок в избранной вертикальной полоске величина является постоянной):

Если через точку О провести координатные оси , то по отношению к этим осям центробежными моментами инерции (или произведениями инерции) называют величины определяемые равенствами:

где - массы точек; - их координаты; при этом очевидно, что и т. д.

Для сплошных тел формулы (10) по аналогии с (5) принимают вид

В отличие от осевых центробежные моменты инерции могут быть как положительными, так и отрицательными величинами и, в частности, при определенным образом выбранных осях могут обращаться в нули.

Главные оси инерции. Рассмотрим однородное тело, имеющее ось симметрии. Проведем координатные оси Охуz так, чтобы ось была направлена вдоль оси симметрии (рис. 279). Тогда в силу симметрии каждой точке тела с массой тк и координатами будет соответствовать точка с другим индексом, но с такой же массой и с координатами, равными . В результате получим, что так как в этих суммах все слагаемые попарно одинаковы по модулю и противоположны по знаку; отсюда, учитывая равенства (10), находим:

Таким образом, симметрия в распределении масс относительно оси z характеризуется обращением в нуль двух центробежных моментов инерции . Ось Oz, для которой центробежные моменты инерции содержащие в своих индексах наименование этой оси, равны нулю, называется главной осью инерции тела для точки О.

Из изложенного следует, что если тело имеет ось симметрии, то эта ось является главной осью инерции тела для любой своей точки.

Главная ось инерции не обязательно является осью симметрии. Рассмотрим однородное тело, имеющее плоскость симметрии (на рис. 279 плоскостью симметрии тела является плоскость ). Проведем в этой плоскости какие-нибудь оси и перпендикулярную им ось Тогда в силу симметрии каждой точке с массой и координатами будет соответствовать точка с такой же массой и координатами, равными . В результате, как и в предыдущем случае, найдем, что или откуда следует, что ось является главной осью инерции для точки О. Таким образом, если тело имеет плоскость симметрии, то любая ось, перпендикулярная этой плоскости, будет главной осью инерции тела для точки О, в которой ось пересекает плоскость.

Равенства (11) выражают условия того, что ось является главной осью инерции тела для точки О (начала координат).

Аналогино, если то ось Оу будет для точки О главной осью инерции. Следовательно, если все центробежные моменты инерции равны нулю, т. е.

то каждая из координатных осей является главной осью инерции тела для точки О (начала координат).

Например, на рис. 279 все три оси являются для точки О главными осями инерции (ось как ось симметрии, а оси Ох и Оу как перпендикулярные плоскостям симметрии).

Моменты инерции тела относительно главных осей инерции называются главными моментами инерции тела.

Главные оси инерции, построенные для центра масс тела, называют главными центральными осями инерции тела. Из доказанного выше следует, что если тело имеет ось симметрии, то эта ось является одной из главных центральных осей инерции тела, так как центр масс лежит на этой оси. Если же тело имеет плоскость симметрии, то ось, перпендикулярная этой плоскости и проходящая через центр масс тела, будет также одной из главных центральных осей инерции тела.

В приведенных примерах рассматривались симметричные тела, чего для решения задач, с которыми мы будем сталкиваться, достаточно. Однако можно доказать, что через любую точку какого угодно тела можно провести, по крайней мере, три такие взаимно перпендикулярные оси, для которых будут выполняться равенства (11), т. е. которые будут главными осями инерции тела для этой точки.

Понятие о главных осях инерции играет важную роль в динамике твердого тела. Если по ним направить координатные оси Охуz, то все центробежные моменты инерции обращаются в нули и соответствующие уравнения или формулы существенно упрощаются (см. § 105, 132). С этим понятием связано также решение задач о динамическом уравнении вращающихся тел (см. § 136), о центре удара (см. § 157) и др.


ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ.

Как показывает опыт, сопротивление стержня различным деформациям зависит не только от размеров поперечного сечения, но и от формы.

Размеры поперечного сечения и форма характеризуются различными геометрическими характеристиками: площадь поперечного сечения, статические моменты, моменты инерции, моменты сопротивления и др.

1. Статический момент площади (момент инерции первой степени).

Статический моментом инерции площади относительно какой-либо оси, называется сумма произведений элементарных площадок на расстояние до этой оси, распространенная на всю площадь (рис. 1)


Рис.1

Свойства статического момента площади:

1. Статический момент площади измеряется в единицах длинны третьей степени (например, см 3).

2. Статический момент может быть меньше нуля, больше нуля и, следовательно, равняться нулю. Оси, относительно которых статический момент равен нулю, проходят через центр тяжести сечения и называются центральными осями.

Если x c иy c – координаты цента тяжести, то

3. Статический момент инерции сложного сечения относительно какой-либо оси равен сумме статических моментов составляющих простых сечений относительно той же оси.

Понятие статического момента инерции в науке о прочности используется для определения положения центра тяжести сечений, хотя надо помнить, что в симметричных сечениях центр тяжести лежит на пересечении осей симметрии.

2. Момент инерции плоских сечений (фигур) (моменты инерции второй степени).

а) осевой (экваториальный) момент инерции.

Осевым моментом инерции площади фигуры относительно какой-либо оси называется сумма произведений элементарных площадок на квадрат расстояния до этой оси распространения на всю площадь (рис. 1)

Свойства осевого момента инерции.

1. Осевой момент инерции площади измеряется в единицах длинны четвертой степени (например, см 4).

2. Осевой момент инерции всегда больше нуля.

3. Осевой момент инерции сложного сечения относительно какой-либо оси равен сумме осевых моментов составляющих простых сечений относительно той же оси:

4. Величина осевого момента инерции характеризует способность стержня (бруса) определенного поперечного сечения сопротивляться изгибу.

б) Полярный момент инерции .

Полярным моментом инерции площади фигуры относительно какого-либо полюса называется сумма произведений элементарных площадок на квадрат расстояния до полюса, распространенная на всю площадь (рис. 1).

Свойства полярного момента инерции:

1. Полярный момент инерции площади измеряется в единицах длины четвертой степени (например, см 4).

2. Полярный момент инерции всегда больше нуля.

3. Полярный момент инерции сложного сечения относительно какого-либо полюса (центра) равен сумме полярных моментов составляющих простых сечений относительно этого полюса.

4. Полярный момент инерции сечения равен сумме осевых моментов инерции этого сечения относительно двух взаимно перпендикулярных осей, проходящих через полюс.

5. Величина полярного момента инерции характеризует способность стержня (бруса) определенной формы поперечного сечения сопротивляться кручению.

в) Центробежный момент инерции.

ЦЕНТРОБЕЖНЫМ МОМЕНТОМ ИНЕРЦИИ площади фигуры относительно какой-либо системы координат называется сумма произведений элементарных площадок на координаты, распространенная на всю площадь (рис. 1)

Свойства центробежного момента инерции:

1. Центробежный момент инерции площади измеряется в единицах длинны четвертой степени (например, см 4).

2. Центробежный момент инерции может быть больше нуля, меньше нуля, и равняться нулю. Оси, относительно которых центробежный момент инерции равен нулю, называются главными осями инерции. Две взаимно перпендикулярные оси, из которых хотя бы одна является осью симметрии, будут главными осями. Главные оси, проходящие через центр тяжести площади, называются главными центральными осями, а осевые моменты инерции площади – главными центральными моментами инерции.

3. Центробежный момент инерции сложного сечения в какой-либо системе координат равен сумме центробежных моментов инерции составляющих фигур в той же схеме координат.

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ПАРАЛЛЕЛЬНЫХ ОСЕЙ.


Рис.2

Дано: оси x, y – центральные;

т.е. осевой момент инерции в сечении относительно оси, параллельной центральной, равен осевому моменту относительно своей центральной оси плюс произведение площади на квадрат расстояния между осями. Отсюда следует, что осевой момент инерции сечения относительно центральной оси имеет минимальную величину в системе параллельных осей.

Сделав аналогичные выкладки для центробежного момента инерции, получим:

J x1y1 =J xy +Aab

т.е. центробежный момент инерции сечения относительно осей, параллельных центральной системе координат, равен центробежному моменту в центральной системе координат плюс произведение площади на расстояние между осями.

МОМЕНТЫ ИНЕРЦИИ В ПОВЕРНУТОЙ СИСТЕМЕ КООРДИНАТ

т.е. сумма осевых моментов инерции сечения есть величина постоянная, не зависит от угла поворота осей координат и равна полярному моменту инерции относительно начала координат. Центробежный момент инерции может менять свою величину и обращаться в «0».

Оси, относительно которых центробежный момент равен нулю будут главными осями инерции, а если они проходят через центр тяжести, то они называются главными осями инерции и обозначаются «u» и «».

Моменты инерции относительно главных центральных осей называются главными центральными моментами инерции и обозначаются , причем главные центральные моменты инерции имеют экстремальные значения, т.е. один «min», а другой «max».

Пусть угол «a 0 » характеризует положение главных осей, тогда:

по этой зависимости определяем положение главных осей. Величину же главных моментов инерции после некоторых преобразований, определяем по следующей зависимости:

ПРИМЕРЫ ОПРЕДЕЛЕНИЯ ОСЕВЫХ МОМЕНТОВ ИНЕРЦИИ, ПОЛЯРНЫХ МОМЕНТОВ ИНЕРЦИИ И МОМЕНТОВ СОПРОТИВЛЕНИЯ ПРОСТЕЙШИХ ФИГУР.

1. Прямоугольное сечение

Оси x и y – здесь и в других примерах – главные центральные оси инерции.

Определим осевые моменты сопротивления:

2. Круглое сплошное сечение. Моменты инерции.