Перпендикулярность прямых в пространстве. Визуальный гид (2019)


В этой статье мы поговорим о перпендикулярности прямой и плоскости. Сначала дано определение прямой, перпендикулярной к плоскости, приведена графическая иллюстрация и пример, показано обозначение перпендикулярных прямой и плоскости. После этого сформулирован признак перпендикулярности прямой и плоскости. Далее получены условия, позволяющие доказывать перпендикулярность прямой и плоскости, когда прямая и плоскость заданы некоторыми уравнениями в прямоугольной системе координат в трехмерном пространстве. В заключении показаны подробные решения характерных примеров и задач.

Навигация по странице.

Перпендикулярные прямая и плоскость – основные сведения.

Рекомендуем для начала повторить определение перпендикулярных прямых , так как определение прямой, перпендикулярной к плоскости, дается через перпендикулярность прямых.

Определение.

Говорят, что прямая перпендикулярна к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости.

Также можно сказать, что плоскость перпендикулярна к прямой, или прямая и плоскость перпендикулярны.

Для обозначения перпендикулярности используют значок вида «». То есть, если прямая c перпендикулярна к плоскости , то можно кратко записать .

В качестве примера прямой, перпендикулярной к плоскости, можно привести прямую, по которой пересекаются две смежных стены комнаты. Эта прямая перпендикулярна к плоскости и к плоскости потолка. Канат в спортивном зале можно также рассматривать как отрезок прямой, перпендикулярной к плоскости пола.

В заключении этого пункта статьи отметим, что если прямая перпендикулярна к плоскости, то угол между прямой и плоскостью считается равным девяноста градусам.

Перпендикулярность прямой и плоскости - признак и условия перпендикулярности.

На практике часто возникает вопрос: «Перпендикулярны ли заданные прямая и плоскость»? Для ответа на него существует достаточное условие перпендикулярности прямой и плоскости , то есть, такое условие, выполнение которого гарантирует перпендикулярность прямой и плоскости. Это достаточное условие называют признаком перпендикулярности прямой и плоскости. Сформулируем его в виде теоремы.

Теорема.

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Доказательство признака перпендикулярности прямой и плоскости Вы можете посмотреть в учебнике геометрии за 10 -11 классы.

При решении задач на установление перпендикулярности прямой и плоскости также часто применяется следующая теорема.

Теорема.

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к плоскости.

В школе рассматривается много задач, для решения которых применяется признак перпендикулярности прямой и плоскости, а также последняя теорема. Здесь мы не будем на них останавливаться. В этом пункте статьи основное внимание сосредоточим на применении следующего необходимого и достаточного условия перпендикулярности прямой и плоскости.

Это условие можно переписать в следующем виде.

Пусть - направляющий вектор прямой a , а - нормальный вектор плоскости . Для перпендикулярности прямой a и плоскости необходимо и достаточно, чтобы выполнялось и : , где t – некоторое действительное число.

Доказательство этого необходимого и достаточного условия перпендикулярности прямой и плоскости основано на определениях направляющего вектора прямой и нормального вектора плоскости.

Очевидно, это условие удобно использовать для доказательства перпендикулярности прямой и плоскости, когда легко находятся координаты направляющего вектора прямой и координаты нормального вектора плоскости в зафиксированной в трехмерном пространстве. Это справедливо для случаев, когда заданы координаты точек, через которые проходят плоскость и прямая, а также для случаев, когда прямую определяют некоторые уравнения прямой в пространстве , а плоскость задана уравнением плоскости некоторого вида.

Рассмотрим решения нескольких примеров.

Пример.

Докажите перпендикулярность прямой и плоскости .

Решение.

Нам известно, что числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора этой прямой. Таким образом, - направляющий вектор прямой .

Коэффициенты при переменных x , y и z в общем уравнении плоскости являются координатами нормального вектора этой плоскости, то есть, - нормальный вектор плоскости .

Проверим выполнение необходимого и достаточного условия перпендикулярности прямой и плоскости.

Так как , то векторы и связаны соотношением , то есть, они коллинеарны. Следовательно, прямая перпендикулярна плоскости .

Пример.

Перпендикулярны ли прямая и плоскость .

Решение.

Найдем направляющий вектор заданной прямой и нормальный вектор плоскости, чтобы проверить выполнений необходимого и достаточного условия перпендикулярности прямой и плоскости.

Направляющим вектором прямой является

На этом уроке мы рассмотрим перпендикулярность прямых в пространстве, перпендикулярность прямой и плоскости и параллельные прямые, которые перпендикулярны к плоскости.
Вначале дадим определение двух перпендикулярных прямых в пространстве и их обозначение. Рассмотрим и докажем лемму о параллельных прямых, перпендикулярных третьей прямой. Далее дадим определение прямой, перпендикулярной к плоскости, и рассмотрим свойство такой прямой, при этом вспомнив взаимное расположение прямой и плоскости. Далее докажем прямую и обратную теорему о двух параллельных прямых, перпендикулярных к плоскости.
В конце урока решим две задачи на перпендикулярность прямых в параллелепипеде и тетраэдре.

Тема: Перпендикулярность прямой и плоскости

Урок: Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости

На этом уроке мы рассмотрим перпендикулярность прямых в пространстве, перпендикулярность прямой и плоскости и параллельные прямые, которые перпендикулярны к плоскости .

Определение . Две прямые называются перпендикулярными, если угол между ними равен 90°.

Обозначение . .

Рассмотрим прямые а и b . Прямые могут пересекаться, скрещиваться, быть параллельными. Для того, чтобы построить угол между ними нужно выбрать точку и через нее провест а, и прямую , параллельную прямойb . Прямые и пересекаются. Угол между ними и есть угол между прямыми а и b. Если угол равен 90°, то прямые а и b перпендикулярны.

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Доказательство :

Пусть даны две параллельные прямые а и b, и прямая с ,причем . Нужно доказать, что .

Возьмем произвольную точку М . Через точку М проведем прямую , параллельную прямой а и прямую , параллельную прямой c (рис. 2). Тогда угол АМС равен 90°.

Прямая b параллельна прямой а по условию, прямая параллельна прямой а по построению. Значит, прямые и b параллельны.

Имеем, прямые и b параллельны, прямые с и параллельны по построению. Значит, угол между прямыми b и с - это угол между прямыми и, то есть угол АМС , равный 90°. Значит, прямые b и с перпендикулярны, что и требовалось доказать.

Определение . Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Обозначение. .

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 5, 6, 7 стр. 54

2. Дайте определение перпендикулярности прямых в пространстве.

3. Равные стороны АВ и CD четырехугольника ABCD перпендикулярны некоторой плоскости. Определите вид четырехугольника.

4. Сторона треугольника перпендикулярна некоторой прямой а. Докажите, что одна из средних линий треугольника перпендикулярна прямой а .

Занятие 3.2.1

Перпендикулярность прямых.

Перпендикуляр и наклонная.

Теорема о трех перпендикулярах.

Определение: Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90 градусов.

Обозначение . .

Рассмотрим прямые а и b .

Прямые могут пересекаться, скрещиваться, быть параллельными. Для того, чтобы построить угол между ними нужно выбрать точку и через нее провести прямую a`, параллельную прямой а, и прямую b` , параллельную прямой b .

Прямые a` и b` пересекаются. Угол между ними и есть угол между прямыми а и b. Если угол равен 90°, то прямыеа и b перпендикулярны.

Лемма: Если одна из двух прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Доказательство:

Возьмем произвольную точку М . Через точку М проведем прямую a` , параллельную прямой а и прямую c` , параллельную прямой c . Тогда угол АМС равен 90°.

Прямая b параллельна прямой а по условию, прямая a` параллельна прямой а по построению. Значит, прямые a` и b параллельны.

Имеем, прямые и b параллельны, прямые с и параллельны по построению. Значит, угол между прямыми b и с – это угол междупрямыми a` и b`, то есть угол АМС , равный 90°. Значит, прямые b и с перпендикулярны, что и требовалось доказать.

Перпендикулярность прямой и плоскости.

Определение: Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Свойство: Если прямая перпендикулярна к плоскости, то она пересекает эту плоскость.

(Если a ┴ α, тоa ∩ α.)

Напоминание . Прямая и плоскость или пересекаются в одной точке, или параллельны, или прямая лежит в плоскости.

Свойства перпендикулярных прямых и плоскости:

Теорема: Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

На первом занятии мы изучали Лемму – если одна из параллельных прямых пересекает плоскость, то и другая параллельная прямая пересекает плоскость. Прямая а пересекаетподуглом 90 0 , т.е перпендикулярна, то и другаяпараллельнаяпрямая – перпендикулярна

Теорема: Если две прямые перпендикулярны к плоскости, то они параллельны.

Признак перпендикулярности прямой и плоскости

Теорема: Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к плоскости


Теорема: Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости и притом только одна.

Видеоурок 2: Теорема о трех перпендикулярах. Теория

Видеоурок 3: Теорема о трех перпендикулярах. Задача

Лекция: Перпендикулярность прямой и плоскости, признаки и свойства; перпендикуляр и наклонная; теорема о трёх перпендикулярах

Перпендикулярность прямой и плоскости

Давайте вспомним, что такое вообще перпендикулярность прямых. Перпендикулярны те прямые, которые пересекаются под углом, равным 90 градусов. При этом угол между ними может быть, как в случае пересечения в некоторой точке, так и в случае скрещивания. Если некоторые прямые скрещиваются под прямым углом, то их тоже можно назвать перпендикулярными прямыми в том случае, если благодаря параллельному переносу прямая переносится в точку на второй прямой.


Определение: Если же прямая перпендикулярная любой прямой, которая принадлежит плоскости, то её можно считать перпендикулярной к этой плоскости.


Признак: Если на некоторой плоскости имеются две перпендикулярные прямые и некоторая третья прямая перпендикулярна каждой из них, то эта третья прямая перпендикулярна плоскости.



Свойства:

  • Если некоторые прямые перпендикулярны одной плоскости, то они взаимно параллельны друг другу.
  • Если имеются две параллельных плоскости, а так же некоторая прямая, которая перпендикулярна одной из плоскостей, то она перпендикулярна и второй.
  • Так же можно и высказать обратное утверждение: если некоторая прямая перпендикулярна двум различным плоскостям, то такие плоскости обязательно параллельны.

Наклонная


Если некоторая прямая соединяет произвольную точку, которая не лежит на плоскости с любой точкой плоскости, то такая прямая будет называется наклонной .

Обратите внимание, наклонная она только в том случае, если угол между ней и плоскостью не 90 градусов.

На рисунке АВ – это наклонная к плоскости α. При этом точка В называется основанием наклонной.


Если же провести отрезок из точки А к плоскости, который будет составлять угол 90 градусов с плоскостью, то этот отрезок будет называться перпендикуляром. Перпендикуляром еще называют наименьшее расстояние до плоскости.

АС – перпендикуляр, проведенный из точки А к плоскости α. При этом точка С называется основанием перпендикуляра.


Если же на данном чертеже провести отрезок, который будет соединять основание перпендикуляра (С) с основанием наклонной (В), то полученный отрезок будет называться проекцией .


В результате несложных построений мы получили прямоугольный треугольник. В данном треугольнике угол АВС называется углом между наклонной и проекцией.


Теорема о трёх перпендикулярах

Определение. Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна данной плоскости.
Доказательство. Пусть а – прямая перпендикулярная прямым b и с , принадлежащим плоскости a . А – точка пересечения прямых. В плоскости a через точку А проведем прямую d , не совпадающую с прямыми b и с . Теперь в плоскости a проведем прямую k , пересекающую прямые d и с и не проходящую через точку А. Точки пересечения соответственно D, В и С. Отложим на прямой а в разные стороны от точки А равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, т.к. высота АС является так же и медианой (признак 1), т.е. А 1 С=СА 2 . Подобно в треугольнике А 1 ВА 2 равны стороны А 1 В и ВА 2 . Следолвательно, треугольники А 1 ВС и А 2 ВС равны по третьему признаку Поэтому равны углы А 1 ВD и А 2 ВD. Значит, равны и треугольники А 1 ВD и А 2 ВD по первому признаку . Поэтому А 1 D и А 2 D. Отсюда треугольник А 1 DА 2 равнобедренный по определению. В равнобедренном треугольнике А 1 D А 2 D А – медиана (по построению), а значит и высота, то есть угол А 1 АD прямой, а значит прямая а перпендикулярна прямой d . Таким образом можно доказать, что прямая а перпендикулярна любой прямой проходящей через точку А и принадлежащей плоскости a . Из определения следует, что прямая а перпендикулярна плоскости a .

Построение прямой перпендикулярной данной плоскости из точки, взятой вне этой плоскости.
Пусть a - плоскость, А – точка, из которой надо опустить перпендикуляр. В плоскости проведем некоторую прямую а . Через точку А и прямую а проведем плоскость b (прямая и точка определяют плоскость, причем только одну). В плоскости b из точки А опустим на прямую а перпендикуляр АВ. Из точки В в плоскости a восстановим перпендикуляр и обозначим прямую, на которой лежит этот перпендикуляр за с . Через отрезок АВ и прямую с проведем плоскость g (две пересекающиеся прямые определяют плоскость, причем только одну). В плоскости g из точки А опустим на прямую с перпендикуляр АС. Докажем, что отрезок АС – перпендикуляр к плоскости b . Доказательство. Прямая а перпендикулярна прямым с и АВ (по построению), а значит она перпендикулярна и самой плоскости g , в которой лежат эти две пересекающиеся прямые (по признаку перпендикулярности прямой и плоскости). А раз она перпендикулярна этой плоскости, то она перпендикулярна и любой прямой в этой плоскости, значит прямая а перпендикулярна АС. Прямая АС перпендикулярна двум прямым, лежащим в плоскости α : с (по построению) и а (по доказанному), значит она перпендикулярна плоскости α (по признаку перпендикулярности прямой и плоскости)

Теорема 1 . Если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они тоже перпендикулярны.
Доказательство. Пусть а и b - перпендикулярные прямые, а 1 и b 1 - параллельные им пересекающиеся прямые. Докажем, что прямые а 1 и b 1 перпендикулярны.
Если прямые а , b , а 1 и b 1 лежат в одной плоскости, то они обладают указанным в теореме свойством, как это известно из планиметрии.
Допустим теперь, что наши прямые не лежат в одной плоскости. Тогда прямые а и b лежат в некоторой плоскости α , а прямые а 1 и b 1 - в некоторой плоскости β . По признаку параллельности плоскостей плоскости α и β параллельны. Пусть С - точка пересечения прямых а и b , а С 1 - пересечения прямых а 1 и b 1 . Проведем в плоскости параллельных прямых а и а а и а 1 в точках А и А 1 . В плоскости параллельных прямых b и b 1 прямую, параллельную прямой СС 1 . Она пересечет прямые b и b 1 в точках B и B 1 .
Четырехугольники САА 1 С 1 и СВВ 1 С 1 - параллелограммы, так как у них противолежащие стороны параллельны. Четырехугольник АВВ 1 А 1 также параллелограмм. У него стороны АА 1 и ВВ 1 параллельны, потому что каждая из них параллельна прямой СС 1 .Таким образом четырехугольник лежит в плоскости, проходящей через параллельные прямые АА 1 и ВВ 1 . А она пересекает параллельные плоскости α и β по параллельным прямые АВ и А 1 В 1 .
Так как у параллелограмма противолежащие стороны равны, то АВ=А 1 В 1 , АС=А 1 С 1 , ВС=В 1 С 1 . По третьему признаку равенства треугольники АВС и А 1 В 1 С 1 равны. Итак, угол А 1 С 1 В 1 , равный углу АСВ, прямой, т.е. прямые а 1 и b 1 перпендикулярны. Ч.т.д.

Свойства перпендикулярных прямой и плоскости.
Теорема 2 . Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство. Пусть а 1 и а 2 - две параллельные прямые и α - плоскость, перпендикулярна прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 .
Проведем через точку А 2 пересечения прямой а 2 с плоскостью α произвольную прямую с 2 в плоскости α . Проведем в плоскости α через точку А 1 пересечения прямой а 1 с плоскостью α прямую с 1 , параллельную прямой с 2 . Так как прямая а 1 перпендикулярна плоскости α , то прямые а 1 и с 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и с 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой с 2 в плоскости α . А это значит, что прямая а 2 перпендикулярна плоскости α . Теорема доказана.

Теорема 3 . Две прямые, перпендикулярные одной и той же плоскости, параллельны между собой.
Имеем плоскость α и две перпендикулярные ей прямые а и b . Докажем, что а || b .
Через точки пересечения прямыми плоскости проведем прямую с . По признаку получаем а ^ c и b ^ c . Через прямые а и b проведем плоскость (две параллельные прямые определяют плоскость и притом только одну). В этой плоскости мы имеем два параллельные прямые а и b и секущую с . Если сумма внутренних односторонних углов равна 180 о, то прямые параллельны. У нас как раз такой случай - два прямых угла. Поэтому а || b .