Определение. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием

Законы Менделя - набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона, хотя «первый закон» не был открыт Менделем, а «гипотеза чистоты гамет» из всех открытых им закономерностей имеет наиболее общее значение и в наибольшей степени заслуживает названия «закона».

История

Следует отметить, что сам Мендель не формулировал свои выводы в качестве «законов» и не присваивал им никаких номеров. Более того, многие «открытые» им факты были давно и хорошо известны, на что сам Мендель указывает в своей работе.

К середине XIX века было открыто явление доминантности (О.Саржэ, Ш.Ноден и др.). Часто все гибриды первого поколения похожи друг на друга (единообразие гибридов) и по данному признаку все они идентичны одному из родителей (его признак доминирует). Они же показали, что рецессивные (не проявляющиеся у гибридов первого поколения) признаки не исчезают; при скрещивании гибридов между собой во втором поколении часть гибридов имеет рецессивные признаки («возврат к родительским формам»). Было также показано (Дж. Госс и др.), что среди гибридов второго поколения с доминантным признаком встречаются разные - дающие и не дающие расщепление при самоопылении. Однако никто из этих исследователей не смог дать своим наблюдениям теоретическое обоснование.

Главной заслугой Менделя было создание теории наследственности, которая объясняла изученные им закономерности наследования.

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два четко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило четко установить общие закономерности наследования.
  • Мендель спланировал и провел масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученных гибридов скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20.000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме самоопылитель, но легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Закон единообразия гибридов первого поколения

Схема первого и второго закона Менделя. 1) Растение с белыми цветками (две копии рецессивного аллеля w) скрещивается с растением с красными цветками (две копии доминантного аллеля R). 2) У всех растений-потомков цветы красные и одинаковый генотип Rw. 3) При самооплодотворении у 3/4 растений второго поколения цветки красные (генотипы RR + 2Rw) и у 1/4 - белые (ww).

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный ), всегда подавлял другой (рецессивный) .

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования - наследование групп крови системы АВО у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

Закон расщепления признаков

Определение

Закон расщепления, или второй закон Менделя .

Скрещивание организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание . Закон расщепления : при моногибридном скрещивании во втором поколении гибридов наблюдается расщепление по фенотипу в соотношении 3:1: около 3/4 гибридов второго поколения имеют доминантный признак, около 1/4 - рецессивный.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении

Объяснение

Закон чистоты гамет : в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Определение

Закон независимого наследования (третий закон Менделя) - каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9/16 были с пурпурными цветами и желтыми горошинами, 3/16 с белыми цветами и желтыми горошинами, 3/16 с пурпурными цветами и зелёными горошинами, 1/16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось. что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один

из них получен от отца, другой - от матери.

  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.

Основополагающие законы наследования были открыты во второй половине XIX века Грегором Менделем. В своих знаменитых опытах Г. Мендель скрещивал различные сорта гороха, различающиеся по семи стабильно наследующимся морфологическим признакам, касающимся, главным образом, формы и окраски семян или цветков. Затем на протяжении нескольких последующих поколений он проводил количественный учет растений отдельно по каждому из этих признаков. Оказалось, что при этих условиях все гибриды первого поколения были похожи на одного из родителей. Эти наблюдения явились основой для формулировки первого закона Менделя – закона единообразия гибридов первого поколения . Тот признак, который проявлялся у гибридов первого поколения, был назван Менделем доминантным , а не проявляющийся признак – рецессивным . В дальнейшем было показано, что этот закон относится к разряду общебиологических закономерностей. Следует подчеркнуть, что доминирование не всегда является абсолютным. Так, например, при скрещивании растений с красными и белыми цветками у гибридов может наблюдаться промежуточная, розовая окраска цветков. В этом случае говорят о неполном доминировании .

Во втором поколении при самоопылении гибридов появлялись растения, как с доминантным, так и с рецессивным признаком, в среднем, в соотношении 3:1. Это второй закон Менделя – закон расщепления признаков . Конечно, этот закон реализуется только на больших выборках. Если мы ограничимся анализом одной семьи, то есть исследуем потомство от скрещивания всего лишь двух гибридных растений, то соотношения по признакам могут оказаться любыми. Для получения этой закономерности необходимо суммировать результаты анализа потомства от скрещивания многих гибридных растений, причем, чем больше будет исследованная выборка потомков, тем точнее реальное распределение по признакам будет приближаться к гипотетическому значению 3:1. Для обнаружения этой закономерности Менделю пришлось подсчитать более 10 000 растений. Заметим, что при неполном доминировании во втором поколении будут наблюдаться все формы растений: первая родительская, гибридная и вторая родительская, в среднем, в соотношении 1:2:1 соответственно.

Наблюдаемые закономерности позволили Менделю высказать гипотезу о существовании двух дискретных наследственных факторов, ответственных за каждый из исследуемых признаков – доминантного, который он обозначил заглавной буквой А , и рецессивного – а . Следующее предположение заключалось в том, что только один из этих факторов попадает в зародышевые клетки или гаметы . Таким образом, исходные сорта гороха несут два одинаковых наследственных фактора, ответственных за изучаемый признак, в одном сорте это АА, а в другом – аа. Гибриды первого поколения несут оба наследственных фактора – Аа . И хотя рецессивный фактор (а ) не проявляется в присутствии доминантного (А ), но он и не исчезает. Эти два дискретных наследственных фактора не сливаются друг с другом, и каждый из них с равной вероятностью попадает в различные половые клетки. Более того, гаметы как с доминантным, так и с рецессивным факторами в равной степени участвуют в оплодотворении. В результате образуются растения трех типов: АА , Аа и аа в соотношении 1:2:1.

В дальнейшем для упрощения понимания закономерностей наследования было предложено использовать так называемую решетку Пеннета – таблицу, в первой строке и первом столбце которой записываются типы женских и мужских гамет, а на их пересечении типы образующихся потомков. В нашем случае эта таблица выглядит следующим образом:

Таблица 1.

Решетка Пеннета для моногибридного скрещивания

Гаметы ♀/♂

Поскольку рецессивный наследственный фактор не проявляется в присутствии доминантного, растения АА и Аа внешне будут идентичны друг другу, и по признаку будет наблюдаться расщепление 3:1. Эти гениальные предположения Менделя получили название гипотезы чистоты гамет . Заметим, что при неполном доминировании распределения по наследственным факторам и по признакам совпадают.

При описании схемы скрещивания в генетике используются следующие обозначения: родители – P (от лат. parentes – родитель), особи женского пола – ♀ (зеркало Венеры), мужского – ♂ (щит и копье Марса), скрещивание – х (знак умножения), потомство от скрещивания – F (от лат. filialis – сыновний) с цифровым индексом: F 1 – первое поколение, F 2 – второе и т.д. Черточка, стоящая справа от доминантного фактора, (A _) означает то, что на этом месте может стоять как доминантный, так и рецессивный фактор. Запишем в этих обозначениях схему скрещивания, использованную Менделем, которая в дальнейшем получила название моногибридного скрещивания – рис. 1.

P: AA х aa

гаметы: А а

потомство F 1 : Aa

F 1: Aa х Aa

гаметы: А а А а

F 2 , расщепление по генотипу:

1AA : 2Aa : 1 aa

F 2 , расщепление по признаку:

3A_ : 1aa

Рисунок 1. Моногибридное скрещивание

Подчеркнем еще раз, что успех этих опытов в значительной степени был предопределен тем, что Мендель вел количественный учет растений отдельно по каждому из признаков. Подобная методология скрещиваний, позволяющая получать и анализировать гибриды называется гибридологическим анализом . При изучении наследования сразу двух признаков (дигибридное скрещивание), оказывалось, что каждый из них ведет себя независимо друг от друга. Это приводит к тому, что во втором поколении наблюдаются 4 группы растений: имеющих одновременно оба доминантных признака или только один из двух доминантных признаков или не имеющих доминантных признаков, в соотношении 9:3:3:1. Разберем эту ситуацию более подробно. Обозначим доминантный и рецессивный наследственный фактор, ответственный за первый признак - А и а , а за второй признак – B и b , соответственно. В этих обозначениях исходные родительские сорта будут иметь наследственные факторы ААBB и aabb , а схема дигибридного скрещивания будет выглядеть следующим образом:

P: AABB х aabb

гаметы: АB аb

потомство F 1: AaBb

F 1: AaBb х AaBb

гаметы: АB Ab аB ab АB Ab аB ab

F 2 , расщепление по генотипу:

1AABB : 2 AABb : 2AaBB : 4AaBb : 1AAbb : 2Aabb : 1aaBB : 2aaBb :1aabb

F 2 , расщепление по признакам:

9A_ B _ : 3A_ bb : 3aa B _ : 1aabb

Рисунок 2. Дигибридное скрещивание

Таблица 2.

Решетка Пеннета для дигибридного скрещивания

Гаметы ♀/♂

При тригибридном скрещивании количество различных комбинаций признаков в F 2 увеличивается до 8, и соотношения становятся еще более сложными (27:9:9:9:3:3:3:1). Попробуйте нарисовать схему тригибридного скрещивания и решетку Пеннета для этой схемы, и Вы убедитесь в справедливости этих соотношений.

На основании своих наблюдений Мендель сформулировал закон независимого комбинирования признаков . Однако этот закон оказался справедлив далеко не для всех признаков, определяемых одним наследственным фактором. Он соблюдается только в том случае, если эти наследственные факторы находятся в разных хромосомах. Но об этом речь будет идти позднее.

К сожалению, работы Грегора Менделя остались незамеченными современниками, и его законы были независимо вновь открыты в самом начале XX века тремя исследователями, один из которых В. Иогансен предложил назвать постулированные Менделем наследственные факторы генами , совокупность генов – генотипом , а совокупность признаков организма – фенотипом . Варианты наследственных факторов или альтернативные состояния генов (доминантный, рецессивный) носят названия аллелей . Генотип может быть гомозиготным при наличии двух одинаковых аллелей (АА или аа ) или гетерозиготным , если аллели разные (Аа ). В некоторых случаях отношения доминантности и рецессивности отсутствуют и оба аллеля проявляются в фенотипе. Этот тип взаимоотношения аллелей называется кодоминированием .

Аллели или состояния генов влияют на характер развития признаков, что и служит основой для фенотипической изменчивости. Конечно, не менее важную роль в этом играют факторы окружающей среды. Если эта изменчивость не выходит за пределы нормы, то соответствующие аллели называют нормальными или аллелями дикого типа . Нормальные аллели, обычно, имеют широкое распространение, однако их частоты в разных популяциях и этнических группах могут существенно различаться. Те аллели, частоты которых в популяции превышают определенный уровень, например 5%, называют полиморфными аллелями или полиморфизмами . Аллели, приводящие к патологическому развитию признака, называют мутантными аллелями или мутациями . В популяциях они встречаются гораздо реже, так как оказывают отрицательное влияние на общую жизнеспособность и потому подвергаются давлению естественного отбора. Мутации разных генов ассоциированы с наследственными болезнями человека. Сочетания нормальных и мутантных аллелей различных генов определяют индивидуальную наследственную конституцию каждого человека. Таким образом, люди отличаются между собой не по наборам генов, а по их состояниям, то есть по наследственной конституции.

Законы Менделя справедливы для моногенных признаков , которые также называют менделирующими . Чаще всего, их проявления носят качественный альтернативный характер: коричневый или голубой цвет глаз, темная или светлая окраска кожи, наличие или отсутствие какого-то наследственного заболевания и т. д. В формировании других признаков, таких как рост, вес, характер телосложения или тип поведения, могут участвовать десятки или даже сотни генов. Степень выраженности подобных признаков у отдельных особей часто может быть измерена количественно, и потому такие признаки называют количественными .

Является ли признак моногенным и подчиняется ли характер его наследственной передачи в ряду поколений законам Менделя, легко установить экспериментально, проводя определенные схемы скрещивания между растениями или животными. Но термин скрещивание не применим к человеку, так как браки между людьми заключаются на добровольной основе. Мы можем только изучать последствия этих браков, то есть составлять родословные человека, анализ которых и дает нам возможность судить о том, является ли тот или иной признак моногенным и подчиняется ли он законам Менделя.

Приведем пример подобного анализа. В качестве альтернативного признака выберем карюю и голубую окраску глаз. В русском селе на протяжении нескольких поколений дети во всех семьях голубоглазые, а в осетинском селе – кареглазые. Русский юноша женился на осетинке, а ее односельчанин женился на голубоглазой русской девушке. В каждой из этих двух семей родилось по пятеро детей, и все они оказались кареглазыми. На этом этапе мы с большой уверенностью можем утверждать, что каряя окраска глаз доминирует над голубой. Дети этих двух семей воспитывались вместе, и два брата из первой семьи женились на двух сестрах из второй семьи. У первого брата родилось шестеро детей, и все оказались кареглазыми. У второго брата родилось семеро детей, из них один мальчик и одна девочка оказались голубоглазыми. Очевидно, что первый брат либо его супруга являются гомозиготами по карей окраске глаз. А второй брат и его супруга оба гетерозиготны по гену, контролирующему окраску глаз. Два сына первого брата женились на голубоглазых девушках. У первого сына пятеро детей оказались кареглазыми, а у второго трое из шестерых детей оказались голубоглазыми. Очевидно, что либо отец, либо мать этих двух сыновей гетерозиготны в отношении окраски глаз, первый сын гомозиготен по карей окраске, а второй гетерозиготен.

Для того чтобы облегчить анализ наследственной передачи признака в семье строят ее родословную. При этом используют символы, представленные на рис. 3. На одной линии должны быть размещены все родственники, относящиеся к одному поколению. Поколения обозначают римскими цифрами, а отдельных членов каждого поколения – арабскими. В этом случае каждый член семьи будет иметь свой индивидуальный номер из одной римской и одной арабской цифры. Нарисуем родословную нашей семьи и постараемся определить возможные генотипы ее участников (рис. 4):

I 1 (АА ) – осетинская девушка, I 2 (аа ) – русский юноша (первая семья);

I 3 (аа ) – русская девушка, I 4 (АА ) – осетинский юноша (вторая семья).

II 1-3 (А_) – неженатые дети первой семьи;

II 4 (Аа ) и II 9 (Аа ) – семья первого брата;

II 5 и II 6 – семья второго брата, один из супругов АА , а другой Аа;

II 7, 8, 10 (А_ ) – неженатые дети второй семьи.

III 1 (аа ) – голубоглазая девушка, вышедшая замуж за первого сына – III 2 (АА );

III 3-6 (А_ ) – неженатые дети первого сына;

III 7 (Аа ) – второй сын, женившийся на голубоглазой девушке – III 8 (аа );

III 9 (аа ) – голубоглазый сын первого брата;

III 10-13,15 (А_ ) – кареглазые дети первого брата;

III 9 (аа ) – голубоглазая дочь первого брата.

Таким образом, голубоглазые люди являются рецессивными гомозиготами (аа ), а кареглазые могут быть либо доминантными гомозиготами (АА ), либо гетерозиготами (Аа ). У двух голубоглазых родителей дети всегда голубоглазые. А у двух кареглазых родителей могут родиться голубоглазые дети с вероятностью 25% в том случае, если они оба гетерозиготны (Аа ). Если хотя бы один из родителей гомозиготен по карей окраске глаз (АА ), все дети будут кареглазыми, но голубоглазым может оказаться кто-то из внуков. Если в браке кареглазого супруга с голубоглазым часть детей оказываются голубоглазыми, значит кареглазый супруг гетерозиготен по гену, контролирующему окраску глаз (Аа ).



Какой признак называют доминантным, а какой - рецессивным?

Доминантным называют признак, проявляющийся у гибридов первого поколения и подавляющий развитие другого признака. В примере с окраской семян гороха доминантный признак - желтая окраска. Рецессивным является признак родительского организма, подавляемый доминантным признаком и отсутствующий у гибридов первого поколения (зеленая окраска семян гороха).

Гомозиготные и гетерозиготные организмы

Охарактеризуйте с генетических позиций понятия «гомозиготный» и «гетерозиготный» организм.

Гомозиготным называют организм, гомологичные хромосомы которого несут одинаковые аллели одного гена - два доминантных или два рецессивных. Гомозиготные организмы при скрещивании внутри чистой линии не дают в последующих поколениях расщепления по признаку, кодируемому данным геном.

Гомологичные хромосомы гетерозиготного организма несут разные (доминантный и рецессивный) аллели. Гетерозиготные организмы при взаимном скрещивании дают расщепление по признаку в последующих поколениях. Потомки, у которых проявляется рецессивный фенотип, гомозиготны (аа). Потомки, у которых проявляется доминантный фенотип, могут быть как гомозиготными (АА), так и гетерозиготными (Аа).

Закон расщепления

Сформулируйте закон расщепления. Почему он так называется?

Закон расщепления, или второй закон Менделя, звучит следующим образом: при скрещивании чистых линий во втором поколении гибридов (F2) появляются особи с доминантными и рецессивными признаками, причем их соотношение равно 3:1. Этот закон имеет всеобщий характер для диплоидных организмов, размножающихся половым путем.

Закон называется так потому, что потомство однородных по рассматриваемому признаку гибридов первого поколения демонстрирует неоднородность (расщепление) в проявлении этого признака.

Чистота гамет

Что такое чистота гамет? На каком явлении основан закон чистоты гамет?

Чистота гамет - это наличие в гамете только одного наследственного фактора - гена из пары. При слиянии гамет число генов удваивается (восстанавливается двойной набор). Если происходит слияние гамет, несущих рецессивный аллель, то формируется организм с рецессивным признаком, при любом другом варианте слияния (рецессивный и доминантный или доминантный и доминантный) образуется организм с доминантным признаком.

В основе закона чистоты гамет лежит мейоз. При мейозе из диплоидных клеток, содержащих пары гомологичных хромосом, образуются гаплоидные гаметы, несущие лишь по одной хромосоме из каждой пары.

Дигибридное скрещивание

Какое скрещивание называется дигибридным?

Дигибридное скрещивание - это тип скрещивания, при котором прослеживают наследование двух пар альтернативных признаков.

Закон независимого наследования

Сформулируйте закон независимого наследования. Для каких аллельных пар справедлив этот закон?

Закон независимого наследования звучит следующим образом: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки передаются потомству независимо друг от друга и комбинируются во всех возможных сочетаниях. Данный закон справедлив лишь для аллельных пар генов, расположенных в разных (негомологичных) хромосомах.

Анализирующее скрещивание

Что такое анализирующее скрещивание?

Анализирующее скрещивание - это скрещивание, которое используют, если необходимо определить генотип особи с доминантным фенотипом. Для этого исследуемую особь скрещивают с особью, гомозиготной по рецессивному аллелю (аа). Если исследуемая особь гомозиготна (АА), то в первом поколении не будет наблюдаться расщепления и все потомки будут иметь доминантный фенотип. Если же особь гетерозиготна (Аа), то в первом поколении будет наблюдаться расщепление на два фенотипа - доминантный и рецессивный в соотношении 1: 1 (им соответствуют генотипы Аа и аа).

Независимое распределение признаков

При каких условиях в дигибридном скрещивании наблюдается независимое распределение признаков в потомстве?

Независимое распределение признаков наблюдается в том случае, если гены, определяющие развитие данных признаков, расположены в разных (негомологичных) хромосомах. Кроме того, должно выполняться правило «один ген - один признак», т. е. отсутствовать взаимодействие генов.

Сцепленное наследование

Что такое сцепленное наследование?

Сцепленное наследование - это совместное наследование генов, находящихся в одной хромосоме (т. е. в одной молекуле ДНК). Например, у душистого горошка гены, определяющие окраску цветков и форму пыльцы, расположены именно таким образом. Они наследуются сцепленно, поэтому при скрещивании у гибридов второго поколения образуются родительские фенотипы в соотношении 3:1, а расщепление 9:3:3:1, характерное для дигибридного скрещивания при независимом наследовании, не проявляется.

Группа сцепления

Что представляют собой группы сцепления генов?

Группа сцепления - это совокупность генов, расположенных в одной хромосоме. Так как в гомологичных хромосомах содержатся одни и те же гены, то число групп сцепления равно гаплоидному числу хромосом (23 у человека, 7 у гороха, 4 у дрозофилы).

Проработав эти темы, Вы должны уметь:

  1. Дать определения: ген, доминантный признак; рецессивный признак; аллель; гомологичные хромосомы; моногибридное скрещивание, кроссинговер, гомозиготный и гетерозиготный организм, независимое распределение, полное и неполное доминирование, генотип, фенотип.
  2. С помощью решетки Пеннета проиллюстрировать скрещивание по одному или двум признакам и указать, каких численных отношений генотипов и фенотипов следует ожидать в потомстве от этих скрещиваний.
  3. Изложить правила наследования, расщепления и независимого распределения признаков, открытие которых было вкладом Менделя в генетику.
  4. Объяснить как мутации могут повлиять на белок, кодируемым тем или иным геном.
  5. Указать возможные генотипы людей с группами крови А; В; АВ; О.
  6. Привести примеры полигенных признаков.
  7. Указать хромосомный механизм определения пола и типы наследования сцепленных с полом генов млекопитающих, использовать эти сведения при решении задач.
  8. Объяснить, в чем заключается различие между признаками, сцепленными с полом и признаками, зависимыми от пола; привести примеры.
  9. Объяснить, как наследуются такие генетические заболевания человека как гемофилия, дальтонизм, серповидно-клеточная анемия.
  10. Назвать особенности методов селекции растений, животных.
  11. Указать основные направления биотехнологии.
  12. Уметь решать по данному алгоритму простейшие генетические задачи:

    Алгоритм решения задач

    • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А - доминантный а - рецессивный.
    • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
    • Запишите генотип гибридов F1.
    • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
    • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Схема оформления задач.

Буквенные обозначения:
а) доминантный признак _______________
б) рецессивный признак _______________

Гаметы

F1 (генотип первого поколения)

гаметы
? ?

Решетка Пеннета

F2
гаметы ? ?
?
?

Соотношение фенотипов в F2: _____________________________
Ответ:_________________________

Примеры решения задач на моногибридное скрещивание.

Задача. "В семье Ивановых двое детей: кареглазая дочь и голубоглазый сын. Мама этих детей голубоглазая, но ее родители имели карие глаза. Как наследуется окраска глаз у человека? Каковы генотипы всех членов семьи? Окраска глаз - моногенный аутосомный признак".

Признак окраски глаз контролируется одним геном (по условию). Мама этих детей голубоглазая, а ее родители имели карие глаза. Это возможно только в ТОМслучае, если оба родителя были гетерозиготны, следовательно, карие глаза доминируют над голубыми. Таким образом, бабушка, дедушка, папа и дочь имели генотип (Аа), а мама и сын - аа.

Задача. "Петух с розовидным гребнем скрещен с двумя курицами, тоже имеющими розовидный гребень. Первая дала 14 цыплят, все с розовидным гребнем, а вторая - 9 цыплят, из них 7 с розовидным и 2 с листовидным гребнем. Форма гребня - моногенный аутосомный признак. Каковы генотипы всех трех родителей?"

До определения генотипов родителей необходимо выяснить характер наследования формы гребня у кур. При скрещивании петуха со второй курицей появились 2 цыпленка с листовидным гребнем. Это возможно при гетерозиготности родителей, следовательно, можно предположить, что розовидный гребень у кур доминирует над листовидным. Таким образом, генотипы петуха и второй курицы - Аа.

При скрещивании этого же петуха с первой курицей расщепления не наблюдалось, следовательно, первая курица была гомозиготной - АА.

Задача. "В семье кареглазых праворуких родителей родились разнояйцевые близнецы, один из которых кареглазый левша, а другой голубоглазый правша. Какова вероятность рождения следующего ребенка, похожим на своих родителей?"

Рождение у кареглазых родителей голубоглазого ребенка свидетельствует о рецессивности голубой окраски глаз, соответственно рождение у праворуких родителей леворукого ребенка указывает на рецессивность лучшего владения левой рукой по сравнению с правой. Введем обознанения аллелей: А - карие глаза, а - голубые глаза, В - правша, в - левша. Определим генотипы родителей и детей:

Р АаВв х АаВв
F, А_вв, ааВ_

А_вв - фенотипический радикал, который показывает, что данный ребенок с левша с карими глазами. Генотип этого ребенка может быть - Аавв, ААвв.

Дальнейшее решение этой задачи осуществляется традиционным способом, путем построения решетки Пеннета.

АВ Ав аВ Ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ АаВв
ав АаВв Аавв ааВв Аавв

Подчеркнуты 9 вариантов потомков, которые нас интересуют. Всего возможных вариантов 16, поэтому вероятность рождения ребенка, похожим на своих родителей равна 9/16.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 10. "Моногибридное и дигибридное скрещивание." §23-24 стр. 63-67
  • Тема 11. "Генетика пола." §28-29 стр. 71-85
  • Тема 12. "Мутационная и модификационная изменчивость." §30-31 стр. 85-90
  • Тема 13. "Селекция." §32-34 стр. 90-97

Моногибридное скрещивание. Для иллюстрации закона единообразия первого поколения – первого закона Менделя, воспроизведём его опыты по моногибридному скрещиванию растений гороха. Моногибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Например, признак – цвет семян, варианты – жёлтый или зелёный. Все остальные признаки, свойственные данным организмам, во внимание не принимаются. Если скрестить растения гороха с жёлтыми и зелёными семенами, то у всех полученных в результате этого скрещивания потомков – гибридов семена будут жёлтыми. Такая же картина наблюдается при скрещивании растений, имеющих гладкую и морщинистую форму семян – все семена у гибридов будут гладкими. Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не проявляется. Преобладание у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, противоположный, т.е. подавляемый признак – рецессивным. Доминантный признак принято обозначать прописной буквой (А), рецессивный – строчной (а). Мендель использовал в опытах растения, относящиеся к разным чистым линиям, или сортам, потомки которых в длинном ряду поколений были сходны с родителями. Следовательно, у этих растений оба аллельных гена одинаковы. Таким образом, если в генотипе организма есть два одинаковых аллельных гена, т.е. два абсолютно идентичных по последовательности нуклеотидов гена, такой организм называется гомозиготным. Организм может быть гомозиготным по доминантным (АА) или рецессивным (аа) генам. Если же аллельные гены отличаются друг от друга по последовательности нуклеотидов, например, один доминантный, а другой рецессивный (Аа) такой организм называется гетерозиготным. Первый закон Менделя называют также законом доминирования или единообразия, так как все особи первого поколения имеют одинаковое проявление признака, присущего одному из родителей.

Формулируется он так:

При скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозигот), отличающихся друг от друга по паре альтернативных признаков, всё первое поколение гибридов (F 1) окажется единообразным и будет нести признак одного родителя. В отношении окраски Мендель установил, что красный или чёрный цвет будет доминировать над белым, промежуточными цветами будут розовый и серый, разной насыщенности.

Мендель предложил графические обозначения признаков:

Р – родители,

♂–мужскаяособь,

♀–женскаяособь,

, – гаметы,

X – скрещивание,

F 1 , F 2 , F n – потомство.

Первый закон Менделя представлен на рисунке 1.

Рисунок 1. Первый закон Менделя

Всё потомство имеет одинаковую промежуточную окраску, что не противоречит первому закону Менделя.

Контрольные вопросы

1. Биологический материал Менделя.

2. Альтернативные признаки в опытах Менделя.

3. Чистые линии и их определение.

4. Сущность гибридиологического метода.

5. Моногибридное скрещивание.

6. Доминантные и рецессивные признаки.

7. Аллельные гены.

8. Первый закон Менделя. Закон единообразия.