Отношения между множествами диаграммы эйлера венна. Диаграммы эйлера-венна

Диаграмма Венна. Впервые прием описан английским ученым Джоном Венном в книге «Символическая логика». Это графический способ, который используется, когда нужно сравнить два или более понятия, явления, способа, предмета. «Кольца Венна» помогают выявить общее в двух или нескольких явлениях, подчеркнуть различия и обобщить знание по заявленной теме.

Как работать с приемом «Диаграмма Венна»

1. На уроке выявляются два или более понятий, терминов, явлений, которые нужно сравнить.

Например, на уроке математики можно сравнить понятия разных геометрических фигур - квадрата, ромба, трапеции. На уроке литературы - героев произведения. Например, составить диаграмму Венна, сравнивая членов семьи Ростовых в романе «Война и мир». На уроке обществознания по теме «Мыслители эпохи Просвещения» можно сравнить идеи разных мыслителей, вычленяя общие идеи и уникальные для каждого.

2. Ученики рисуют кольца и заполняют графы.

3. На этапе осмысления (закрепления материала) происходит обсуждение составленных диаграмм (в парах, в группах).

Для каждого урока можно выбрать нужное количество колец - в зависимости от количества сравниваемых понятий, предметов.

Можно использовать для работы с несколькими текстами, сопоставляя точки зрения разных людей на одну и ту же проблему, находить общее и различное в них.

Для быстроты заполнения диаграммы Венна можно посоветовать инструмент .

ДИАГРАММА ВЕННА, схематическое представление отношений между математическими МНОЖЕСТВАМИ или логическими утверждениями, названное по имени английского логика Джона Венна (1834 1923). Множества изображаются в виде геометрических фигур, обычно… …

диаграмма Венна - Иллюстрирующая логические операции и операции булевой алгебры Boolean algebra Тематики нефтегазовая промышленность EN Venn diagram … Справочник технического переводчика

диаграмма Венна - Venn o diagrama statusas T sritis automatika atitikmenys: angl. Venn diagram vok. Venn Diagramm, n rus. диаграмма Венна, f pranc. diagramme de Venn, m ryšiai: sinonimas – Veno diagrama … Automatikos terminų žodynas

ДИАГРАММА ЭЙЛЕРА, простая диаграмма, используемая в логике для демонстрации силлогизмов. Классы предметов изображаются в виде кругов, и утверждения типа «Некоторое а находится в b» представляется двумя пересекающимися кругами, представляющими а и … Научно-технический энциклопедический словарь

Графический способ изображения формул математич. логики, прежде всего формул исчисления высказываний. В. д. ппеременных классич. логики высказываний представляет собой такой набор замкнутых контуров (го меоморфных окружностям), к рый разбивает… … Математическая энциклопедия

Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия

Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия

ДИАГРАММЫ ВEHHА графический способ задания и анализа логико математических теорий и их формул. Строятся путем разбиения части плоскости на ячейки (подмножества) замкнутыми контурами (кривьми Жордана). В ячейках представляется информация,… … Философская энциклопедия

Пример кругов Эйлера. Буквами обозначены, например, свойства: живое существо, человек, неживая вещь Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения … Википедия

Некоторые задачи удобно и наглядно решать с помощью диаграмм Эйлера-Венна. Например, задачи на множества. Если Вы не знаете, что такое диаграммы Эйлера-Венна и как их строить, то сначала прочтите .

Теперь разберем типовые задачи о множествах.

Задача 1.

В школе с углубленным изучением иностранных языков провели опрос среди 100 учащихся. Ученикам задали вопрос: "Какие иностранные языки вы изучаете?". Выяснилось, что 48 учеников изучают английский, 26 - французский, 28 - немецкий. 8 школьников изучают английский и немецкий, 8 - английский и французский, 13 - французский и немецкий. 24 школьника не изучают ни английский, ни французский, ни немецкий. Сколько школьников, прошедших опрос, изучают одновременно три языка: английский, французский и немецкий?

Ответ: 3.

Решение:

  • множество школьников, изучающих английский ("А");
  • множество школьников изучающих французский ("Ф");
  • множество школьников изучающих немецкий ("Н").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию.


Обозначим искомую область А=1, Ф=1, Н=1 как "х" (в таблице ниже область №7). Выразим остальные области через х.

0) Область А=0, Ф=0, Н=0 : 24 школьника - дано по условию задачи.

1) Область А=0, Ф=0, Н=1 : 28-(8-х+х+13-х)=7+х школьников.

2) Область А=0, Ф=1, Н=0 : 26-(8-х+х+13-х)=5+х школьников.

3) Область А=0, Ф=1, Н=1 : 13-х школьников.

4) Область А=1, Ф=0, Н=0 : 48-(8-х+х+8-х)=32+х школьников.

5) Область А=1, Ф=0, Н=1 : 8-х школьников.

6) Область А=1, Ф=1, Н=0 : 8-х школьников.


области
А
Ф
Н
Количество
школьников
0
0
0
0
24
1
0
0
1
7+х
2
0
1
0
5+х
3
0
1
1
13-х
4
1
0
0
32+х
5
1
0
1
8-х
6
1
1
0
8-х
7
1
1
1
х

Определим х:

24+7+(х+5)+х+(13-х)+(32+х)+(8-х)+(8-х)+х=100.

х=100-(24+7+5+13+32+8+8)=100-97=3.

Получили, что 3 школьника изучают одновременно три языка: английский, французский и немецкий.

Так будет выглядеть диаграмма Эйлера-Венна при известном х:


Задача 2.

На олимпиаде по математике школьникам предложили решить три задачи: одну по алгебре, одну по геометрии, одну по тригонометрии. В олимпиаде участвовало 1000 школьников. Результаты олимпиады были следующие: задачу по алгебре решили 800 участников, по геометрии - 700, по тригонометрии - 600. 600 школьников решили задачи по алгебре и геометрии, 500 - по алгебре и тригонометрии, 400 - по геометрии и тригонометрии. 300 человек решили задачи по алгебре, геометрии и тригонометрии. Сколько школьников не решило ни одной задачи?

Ответ: 100.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество задач по алгебре ("А");
  • множество задач по геометрии ("Г");
  • множество задач по тригонометрии ("Т").

Изобразим то, что нам надо найти:

Определим количество школьников для всех возможных областей.

Обозначим искомую область А=0, Г=0, Т=0 как "х" (в таблице ниже область №0).

Найдем остальные области:

1) Область А=0, Г=0, Т=1 : школьников нет.

2) Область А=0, Г=1, Т=0 : школьников нет.

3) Область А=0, Г=1, Т=1 : 100 школьников.

4) Область А=1, Г=0, Т=0 : школьников нет.

5) Область А=1, Г=0, Т=1 : 200 школьников.

6) Область А=1, Г=1, Т=0 : 300 школьников.

7) Область А=1, Г=1, Т=1 : 300 школьников.

Запишем значения областей в таблицу:


области
А
Г
Т
Количество
школьников
0
0
0
0
х
1
0
0
1
0
2
0
1
0
0
3
0
1
1
100
4
1
0
0
0
5
1
0
1
200
6
1
1
0
300
7
1
1
1
300

Изобразим значения для всех областей с помощью диаграммы:


Определим х:

х=U-(A V Г V Т), где U-универсум.

A V Г V Т=0+0+0+300+300+200+100=900.

Получили, что 100 школьников не решило ни одной задачи.

Задача 3.

На олимпиаде по физике школьникам предложили решить три задачи: одну по кинематике, одну по термодинамике, одну по оптике. Результаты олимпиады были следующие: задачу по кинематике решили 400 участников, по термодинамике - 350, по оптике - 300. 300 школьников решили задачи по кинематике и термодинамике, 200 - по кинематике и оптике, 150 - по термодинамике и оптике. 100 человек решили задачи по кинематике, термодинамике и оптике. Сколько школьников решило две задачи?

Ответ: 350.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество задач по кинематике ("К");
  • множество задач по термодинамике ("Т");
  • множество задач по оптике ("О").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию:

Изобразим то, что нам надо найти:

Определим количество школьников для всех возможных областей:

0) Область К=0, Т=0, О=0 : не определено.

1) Область К=0,Т=0, О=1 : 50 школьников.

2) Область К=0, Т=1, О=0 : школьников нет.

3) Область К=0, Т=1, О=1 : 50 школьников.

4) Область К=1, Т=0, О=0 : школьников нет.

5) Область К=1, Т=0, О=1 : 100 школьников.

6) Область К=1, Т=1, О=0 : 200 школьников.

7) Область К=1, Т=1, О=1 : 100 школьников.

Запишем значения областей в таблицу:


области
К
Т
О
Количество
школьников
0
0
0
0
-
1
0
0
1
50
2
0
1
0
0
3
0
1
1
50
4
1
0
0
0
5
1
0
1
100
6
1
1
0
200
7
1
1
1
100

Изобразим значения для всех областей с помощью диаграммы:


Определим х.

х=200+100+50=350.

Получили, 350 школьников решило две задачи.

Задача 4.

Среди прохожих провели опрос. Был задан вопрос: "Какое домашнее животное у Вас есть?". По результатам опроса выяснилось, что у 150 человек есть кошка, у 130 - собака, у 50 - птичка. У 60 человек есть кошка и собака, у 20 - кошка и птичка, у 30 - собака и птичка. У 70 человек вообще нет домашнего животного. У 10 человек есть и кошка, и собака, и птичка. Сколько прохожих приняли участие в опросе?

Ответ: 300.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество людей, у которых есть кошка ("К");
  • множество людей, у которых есть собака ("С");
  • множество людей, у которых есть птичка ("П").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию:

Изобразим то, что нам надо найти:


Определим количество человек для всех возможных областей:

0) Область К=0, С=0, П=0 : 70 человек.

1) Область К=0, С=0, П=1 : 10 человек.

2) Область К=0, С=1, П=0 : 50 человек.

3) Область К=0, С=1, П=1 : 20 человек.

4) Область К=1, С=0, П=0 : 80 человек.

5) Область К=1, Т=0, О=1 : 10 человек.

6) Область К=1, Т=1, О=0 : 50 человек.

7) Область К=1, Т=1, О=1 : 10 человек.

Запишем значения областей в таблицу:


области
К
C
П
Количество
человек
0
0
0
0
70
1
0
0
1
10
2
0
1
0
50
3
0
1
1
20
4
1
0
0
80
5
1
0
1
10
6
1
1
0
50
7
1
1
1
10

Изобразим значения для всех областей с помощью диаграммы:


Определим х:

х=U (универсум)

U=70+10+50+20+80+10+50+10=300.

Получили, что 300 человек приняли участие в опросе.

Задача 5.

На одну специальность в одном из ВУЗов поступало 120 человек. Абитуриенты сдавали три экзамена: по математике, по информатике и русскому языку. Математику сдали 60 человек, информатику - 40. 30 абитуриентов сдали математику и информатику, 30 - математику и русский язык, 25 - информатику и русский язык. 20 человек сдали все три экзамена, а 50 человек - провалили. Сколько абитуриентов сдали русский язык?

История

Определение 1

Леонарду Эйлеру задали вопрос: можно ли, прогуливаясь по Кенигсбергу, обойти через все мосты города, дважды не проходя ни через один из них. План города с семью мостами прилагался.

В письме знакомому итальянскому математику Эйлер дал краткое и красивое решение проблемы кенигсбергских мостов: при таком расположении задача неразрешима. При этом он указал, что вопрос показался ему интересным, т.к. «для его решения недостаточны ни геометрия, ни алгебра...» .

При решении многих задач Л. Эйлер изображал множества с помощью кругов, поэтому они и получили название «круги Эйлера» . Этим методом ещё ранее пользовался немецкий философ и математик Готфрид Лейбниц, который использовал их для геометрического объяснения логических связей между понятиями, но при этом чаще использовал линейные схемы. Эйлер же достаточно основательно развил метод. Особенно знаменитыми графические методы стали благодаря английскому логику и философу Джону Венну, который ввел диаграммы Венна и подобные схемы часто называют диаграммами Эйлера-Венна . Используются они во многих областях, например, в теории множеств, теории вероятности, логике, статистике и информатике.

Принцип построения диаграмм

До сих пор диаграммы Эйлера-Венна широко используют для схематичного изображения всех возможных пересечений нескольких множеств. На диаграммах изображают все $2^n$ комбинаций n свойств. Например, при $n=3$ на диаграмме изображают три круга с центрами в вершинах равностороннего треугольника и одинаковым радиусом, который приближенно равен длине стороны треугольника.

Логические операции задают таблицы истинности. На диаграмме изображается круг с названием множества, которое он представляет, например, $A$. Область в середине круга $A$ будет отображать истинность выражения $A$, а область вне круга -- ложь. Для отображения логической операции заштриховывают только те области, в которых значения логической операции при множествах $A$ и $B$ истинны.

Например, конъюнкция двух множеств $A$ и $B$ истинна только в том случае, когда оба множества истинны. В таком случае на диаграмме результатом конъюнкции $A$ и $B$ будет область в середине кругов, которая одновременно принадлежит множеству $A$ и множеству $B$ (пересечению множеств).

Рисунок 1. Конъюнкция множеств $A$ и $B$

Использование диаграмм Эйлера-Венна для доказательства логических равенств

Рассмотрим, как применяется метод построения диаграмм Эйлера-Венна для доказательства логических равенств.

Докажем закон де Моргана, который описывается равенством:

Доказательство:

Рисунок 4. Инверсия $A$

Рисунок 5. Инверсия $B$

Рисунок 6. Конъюнкция инверсий $A$ и $B$

После сравнения области для отображения левой и правой части видим, что они равны. Из этого следует справедливость логического равенства. Закон де Моргана доказан с помощью диаграмм Эйлера-Венна.

Решение задачи поиска информации в Интернет с помощью диаграмм Эйлера-Венна

Для осуществления поиска информации в Интернет удобно использовать поисковые запросы с логическими связками, аналогичными по смыслу союзам "и", "или" русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью диаграмм Эйлера-Венна.

Пример 1

В таблице приведены примеры запросов к поисковому серверу. Каждый запрос имеет свой код -- буква от $A$ до $B$. Нужно расположить коды запросов в порядке убывания количества найденных страниц по каждому запросу.

Рисунок 7.

Решение:

Построим для каждого запроса диаграмму Эйлера-Венна:

Рисунок 8.

Ответ: БВА.

Решение логической содержательной задачи с помощью диаграмм Эйлера-Венна

Пример 2

За зимние каникулы из $36$ учеников класса $2$ не были ни в кино, ни в театре, ни в цирке. В кино сходило $25$ человек, в театр -- $11$, в цирк -- $17$ человек; и в кино, и в театре -- $6$; и в кино и в цирк -- $10$; и в театр и в цирк -- $4$.

Сколько человек побывало и в кино, и в театре, и в цирке?

Решение:

Обозначим количество ребят, побывавших и в кино, и в театре, и в цирке -- $x$.

Построим диаграмму и узнаем количество ребят в каждой области:

Рисунок 9.

Не были ни в театре, ни в кино, ни в цирке -- $2$ чел.

Значит, $36 - 2 = 34$ чел. побывали на мероприятиях.

В кино и театр сходило $6$ чел., значит, только в кино и театр ($6 - x)$ чел.

В кино и цирк сходило $10$ чел., значит, только в кино и цирк ($10 - x$) чел.

В театр и цирк сходило $4$ чел., значит, только в театре и цирк ($4 - x$) чел.

В кино сходило $25$ чел., значит, из них только в кино сходило $25 - (10 - x) - (6 - x) - x = (9+x)$.

Аналогично, только в театр сходило ($1+x$) чел.

Только в цирк сходило ($3+x$) чел.

Итак, сходили в театр, кино и цирк:

$(9+x)+(1+x)+(3+x)+(10-x)+(6-x)+(4-x)+x = 34$;

Т.е. только один человек сходил и в театр, и в кино, и в цирк.

Разделы: Информатика

1. Введение

В курсе Информатики и ИКТ основной и старшей школы рассматриваются такие важные темы как “Основы логики” и “Поиск информации в Интернет”. При решении определенного типа задач удобно использовать круги Эйлера (диаграммы Эйлера-Венна).

Математическая справка. Диаграммы Эйлера-Венна используются прежде всего в теории множеств как схематичное изображение всех возможных пересечений нескольких множеств. В общем случае они изображают все 2 n комбинаций n свойств. Например, при n=3 диаграмма Эйлера-Венна обычно изображается в виде трех кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

2. Представление логических связок в поисковых запросах

При изучении темы “Поиск информации в Интернет” рассматриваются примеры поисковых запросов с использованием логических связок, аналогичным по смыслу союзам “и”, “или” русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью графической схемы – кругов Эйлера (диаграмм Эйлера-Венна).

3. Связь логических операций с теорией множеств

С помощью диаграмм Эйлера-Венна можно наглядно представить связь логических операций с теорией множеств. Для демонстрации можно воспользоваться слайдами в Приложение 1.

Логические операции задаются своими таблицами истинности. В Приложении 2 подробно рассматриваются графические иллюстрации логических операций вместе с их таблицами истинности. Поясним принцип построения диаграммы в общем случае. На диаграмме – область круга с именем А отображает истинность высказывания А (в теории множеств круг А – обозначение всех элементов, входящих в данное множество). Соответственно, область вне круга отображает значение “ложь” соответствующего высказывания. Что бы понять какая область диаграммы будет отображением логической операции нужно заштриховать только те области, в которых значения логической операции на наборах A и B равны “истина”.

Например, значение импликации равно “истина” в трех случаях (00, 01 и 11). Заштрихуем последовательно: 1) область вне двух пересекающихся кругов, которая соответствует значениям А=0, В=0; 2) область, относящуюся только к кругу В (полумесяц), которая соответствует значениям А=0, В=1; 3) область, относящуюся и к кругу А и к кругу В (пересечение) – соответствует значениям А=1, В=1. Объединение этих трех областей и будет графическим представлением логической операции импликации.

4. Использование кругов Эйлера при доказательстве логических равенств (законов)

Для того, чтобы доказать логические равенства можно применить метод диаграмм Эйлера-Венна. Докажем следующее равенство ¬(АvВ) = ¬А&¬В (закон де Моргана).

Для наглядного представления левой части равенства выполним последовательно: заштрихуем оба круга (применим дизъюнкцию) серым цветом, затем для отображения инверсии заштрихуем область за пределами кругов черным цветом:

Рис.3 Рис.4

Для визуального представления правой части равенства выполним последовательно: заштрихуем область для отображения инверсии (¬А) серым цветом и аналогично область ¬В также серым цветом; затем для отображения конъюнкции нужно взять пересечение этих серых областей (результат наложения представлен черным цветом):

Рис.5 Рис.6 Рис.7

Видим, что области для отображения левой и правой части равны. Что и требовалось доказать.

5. Задачи в формате ГИА и ЕГЭ по теме: “Поиск информации в Интернет”

Задача №18 из демо-версии ГИА 2013.

В таблице приведены запросы к поисковому серверу. Для каждого запроса указан его код – соответствующая буква от А до Г. Расположите коды запросов слева направо в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

Код Запрос
А (Муха & Денежка) | Самовар
Б Муха & Денежка & Базар & Самовар
В Муха | Денежка | Самовар
Г Муха & Денежка & Самовар

Для каждого запроса построим диаграмму Эйлера-Венна:

Запрос А Запрос Б

Запрос В

Запрос Г

Ответ: ВАГБ.

Задача В12 из демо-версии ЕГЭ-2013.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц (в тысяч)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Ф – количество страниц (в тысячах) по запросу Фрегат ;

Э – количество страниц (в тысячах) по запросу Эсминец ;

Х – количество страниц (в тысячах) по запросу, в котором упоминается Фрегат и не упоминается Эсминец ;

У – количество страниц (в тысячах) по запросу, в котором упоминается Эсминец и не упоминается Фрегат.

Построим диаграммы Эйлера-Венна для каждого запроса:

Запрос Диаграмма Эйлера-Венна Количество страниц
Фрегат | Эсминец Рис.12

3400
Фрегат & Эсминец Рис.13

900
Фрегат Рис.14 2100
Эсминец Рис.15 ?

Согласно диаграммам имеем:

  1. Х+900+У = Ф+У = 2100+У = 3400. Отсюда находим У = 3400-2100 = 1300.
  2. Э = 900+У = 900+1300= 2200.

Ответ: 2200.

6. Решение логических содержательных задач методом диаграмм Эйлера-Венна

В классе 36 человек. Ученики этого класса посещают математический, физический и химический кружки, причем математический кружок посещают 18 человек, физический - 14 человек, химический - 10. Кроме того, известно, что 2 человека посещают все три кружка, 8 человек - и математический и физический, 5 и математический и химический, 3 - и физический и химический.

Сколько учеников класса не посещают никаких кружков?

Для решения данной задачи очень удобным и наглядным является использование кругов Эйлера.

Самый большой круг – множество всех учеников класса. Внутри круга три пересекающихся множества: членов математического (М ), физического (Ф ), химического (Х ) кружков.

Пусть МФХ – множество ребят, каждый из которых посещает все три кружка. МФ¬Х – множество ребят, каждый из которых посещает математический и физический кружки и не посещает химический. ¬М¬ФХ - множество ребят, каждый из которых посещает химический кружок и не посещает физический и математический кружки.

Аналогично введем множества: ¬МФХ, М¬ФХ, М¬Ф¬Х, ¬МФ¬Х, ¬М¬Ф¬Х.

Известно, что все три кружка посещают 2 человека, следовательно, в область МФХ впишем число 2. Т.к. 8 человек посещают и математический и физический кружки и среди них уже есть 2 человека, посещающих все три кружка, то в область МФ¬Х впишем 6 человек (8-2). Аналогично определим количество учащихся в остальных множествах:

Просуммируем количество человек по всем областям: 7+6+3+2+4+1+5=28. Следовательно, 28 человек из класса посещают кружки.

Значит, 36-28 = 8 учеников не посещают кружки.

После зимних каникул классный руководитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников класса двое не были ни в кино. ни в театре, ни в цирке. В кино побывало 25 человек, в театре - 11, в цирке 17 человек; и в кино, и в театре - 6; и в кино и в цирке - 10; и в театре и в цирке - 4.

Сколько человек побывало и в кино, и в театре, и в цирке?

Пусть х – количество ребят, которые побывали и в кино, и в театре, и в цирке.

Тогда можно построить следующую диаграмму и посчитать количество ребят в каждой области:

В кино и театре побывало 6 чел., значит, только в кино и театре (6-х) чел.

Аналогично, только в кино и цирке (10-х) чел.

Только в театре и цирке (4-х) чел.

В кино побывало 25 чел., значит, из них только в кино были 25 - (10-х) – (6-х) – х = (9+х).

Аналогично, только в театре были (1+х) чел.

Только в цирке были (3+х) чел.

Не были в театре, кино и цирке – 2 чел.

Значит, 36-2=34 чел. побывали на мероприятиях.

С другой стороны можем просуммировать количество человек, которые были в театре, кино и цирке:

(9+х)+(1+х)+(3+х)+(10-х)+(6-х)+(4-х)+х = 34

Отсюда следует, что только один человек побывал на всех трех мероприятиях.

Таким образом, круги Эйлера (диаграммы Эйлера-Венна) находят практическое применение при решении задач в формате ЕГЭ и ГИА и при решении содержательных логических задач.

Литература

  1. В.Ю. Лыскова, Е.А. Ракитина. Логика в информатике. М.: Информатика и Образование, 2006. 155 с.
  2. Л.Л. Босова. Арифметические и логические основы ЭВМ. М.: Информатика и образование, 2000. 207 с.
  3. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 8 класса: БИНОМ. Лаборатория знаний, 2012. 220 с.
  4. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 9 класса: БИНОМ. Лаборатория знаний, 2012. 244 с.
  5. Сайт ФИПИ: http://www.fipi.ru/