Какие аппараты защищают от статического электричества. Статическое электричество и защита от его воздействия

Лекция 11. Защита от воздействия производственных излучений

Широкое использование во всех областях хозяйствен­ной деятельности диэлектрических материалов и органи­ческих соединений (полимеров, бумаги, твердых и жид­ких углеводородов, нефтепродуктов и т.п.) неизбежно сопровождается образованием зарядов статического электричества, которые не только осложняют проведение технологических процессов, но и зачастую становят­ся причиной пожаров и взрывов, приносящих боль­шой материальный ущерб. Нередко это приводит к гибе­ли людей.

Статическое электричество - это совокупность яв­лений, связанных с возникновением, сохранением и ре­лаксацией свободного электрического заряда на поверх­ности, или в объеме диэлектриков, или на изолированных проводниках (ГОСТ 12.1.018). Образование и накопление зарядов на перерабатываемом материале связано с двумя следующими условиями:

♦ наличие контакта поверхностей, в результате чего создается двойной электрический слой, возникновение

которого связано с переходом электронов в элементарных донорско-акцепторных актах на поверхности контакта. Знак заряда определяет неодинаковое сродство материала поверхностей к электрону;

♦ хотя бы одна из контактирующих поверхностей должна быть из диэлектрического материала.

Заряды будут оставаться на поверхностях после прек­ращения контакта только в том случае, если время разру­шения контакта меньше времени релаксации зарядов. Последнее в значительной степени определяет величину зарядов на разделенных поверхностях.

Смешанное заряжение наблюдается тогда, когда наэлектризованный мате­риал поступает в какие-ли­бо емкости, изолированные отземли. Этот вид заряжения наиболее часто встреча­ется при заливке горючих жидкостей в емкости, при подаче резиновых клеев, тканей, пленок в передвиж­ные емкости, тележки и т.д. Образование зарядов стати­ческого электричества при контакте жидкого тела с твердым или одного твердо­го тела с другим во многом зависит от плотности соприкос­новения трущихся поверхностей; их физического состоя­ния, скорости и коэффициента трения, давления в зоне контакта, микроклимата окружающей среды, наличия внешних электрических полей и т.д.

Заряды статического электричества могут накапли­ваться и на теле человека (при работе или контакте с на­электризованными материалами и изделиями). Высокое поверхностное сопротивление тканей человека затрудня­ет отекание зарядов, и человек может длительное время находиться под большим потенциалом.

Основной опасностью при электризации различных ма­териалов является возможность возникновения искрового разряда как с диэлектрической наэлектризованной по­верхности, так и с изолированного проводящего объекта.

Наряду с пожарной опасностью статическое электриче­ство представляет опасность и для работающих.

Легкие «уколы» при работе с сильно наэлектризован­ными материалами вредно влияют на психику работаю­щих и в определенных ситуациях могут способствовать травмам на технологическом оборудовании. Сильные иск­ровые разряды, возникающие, например, при затарива­нии гранулированных материалов, могут приводить к бо­левым ощущениям. Неприятные ощущения, вызываемые статическим электричеством, могут явиться причинами развития неврастении, головной боли, плохого сна, разд­ражительности, покалываний в области сердца и т.д. Кро­ме того, при постоянном прохождении через тело, челове­ка малых токов электризации возможны неблагоприят­ные физиологические Изменения в организме, приводящие к профессиональным заболеваниям. Систематиче­ское воздействие электростатического поля повышенной напряжённости может вызывать функциональные Изме­нения центральной нервной, сердечно-сосудистой и дру­гих систем организма.

Использование для одежды искусственных или синте­тических тканей приводит также к накоплению зарядов статического электричества на человеке. В ГОСТ 29191 (МЭК 801-2-91) приводятся сведения о том, что синтети­ческие ткани могут заряжаться до потенциала, равного 15 кВ. Поэтому ток, протекающий через тело человека, одетого в костюм или халат из синтетической ткани, мо­жет достигать 3 мкА. Прикосновение к заземленным участкам рабочего места или к незаряженному телу вызы­вает искровой разряд с силой тока до 30 А.

Статическое электричество сильно влияет также на ход технологических процессов получения и переработки мате­риалов и качество продукции. При больших плотностях за­ряда Может возникать электрический пробой тонких поли­мерных пленок электро- и радиотехнического назначения, что приводит к браку выпускаемой продукции. Особенно большой ущерб наносит вызванное электростатическим притяжением налипание пыли на полимерные пленки.

Электризация затрудняет такие процессы, как просеи­вание, сушку, пневмотранспорт, печатание, транспорти­ровку полимеров, диэлектрических жидкостей, формова­ние синтетических волокон, пленок и т.п., автоматическое дозирование мелкодисперсных материалов, посколь­ку они прилипают к стенкам технологического оборудова­ния и слипаются между собой.

Допустимые уровни напряженности электростатиче­ских полей устанавливаются ГОСТ 12.1.045 и СанПиН 11-16-94.

Средства защиты от статического электричества долж­ны применяться во всех взрыво- и пожароопасных поме­щениях и зонах открытых установок, отнесенных по клас­сификации ПУЭ к классам B-I, B-Ia, B-I6, В-1г, В-П, В-Ца, П-I, П-П.

При организации производства следует избегать про­цессов, сопровождающихся интенсивной генерацией за­рядов статического электричества. Для этого необходимо правильно подбирать поверхности трения и скорости дви­жения веществ, материалов, устройств, избегать процес­сов разбрызгивания, дробления, распыления, очищать го­рючие газы и жидкости от примесей и т.д.

Эффективным методом снижения интенсивности гене­рации статического электричества является метод кон­тактных пар. Большинство конструкционных материа­лов по диэлектрической проницаемости расположены в трибоэлектрические ряды в такой последовательности, что любой из них приобретает отрицательный заряд при соприкосновении с последующим в ряду материалом и положительный - с предыдущим. При этом с увеличени­ем расстояния в ряду между двумя материалами абсолют­ная величина заряда, возникающего между ними, возрас­тает.

Для предупреждения возможности накопления стати­ческого электричества на поверхностях оборудования, пе­рерабатываемых материалов, а также на теле работающих выше минимальной энергии зажигания горючих смесей не­обходимо, с учетом особенностей производства, обеспечить стекание возникающих зарядов с заряженных объектов.

В соответствии с ГОСТ 12.4.124 это достигается использо­ванием средств коллективной и индивидуальной защиты.

Средства коллективной защиты от статического элект­ричества по принципу действия делятся на следующие ви­ды: заземляющие устройства, нейтрализаторы, увлажня­ющие устройства, антиэлектростатические вещества, эк­ранирующие устройства.

Заземление относится к основным методам защиты от статического электричества и представляет собой предна­меренное электрическое соединение с землей или ее экви­валентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно является наиболее простым, но необходимым средством защиты в связи с тем, что энергия искрового разряда с проводящих незаземленных элементов технологического оборудования во много раз выше энергии разряда с диэлектриков.

Величина сопротивления заземляющего устройства, предназначенного исключительно для защиты от стати­ческого электричества, должна быть не выше 100 Ом.

Особое внимание необходимо уделять заземлению пе­редвижных объектов или вращающихся элементов обору­дования, не имеющих постоянного контакта с землей. Например, передвижные емкости, в которые насыпают или наливают электризующиеся материалы, должны быть перед заполнением установлены на заземленные ос­нования или присоединены к заземлителю специальным проводником до того, как будет открыт люк.

Нейтрализация зарядов статического электричества производится в тех случаях, когда не представляется воз­можным снизить интенсивность его образования техноло­гическими и иными способами.

В некоторых случаях эффективно использование луче­вых нейтрализаторов статического электричества, кото­рые обеспечивают ионизацию материала или среды под воздействием ультрафиолетового, лазерного, теплового, электромагнитного и других видов излучения.

Отвод зарядов статического электричества путем сни­жения удельного и поверхностного электрического сопро­тивления используют в тех случаях, когда заземление оборудования не предотвращает накопления зарядов до безопасной величины.

Для уменьшения удельного поверхностного электри­ческого сопротивления диэлектриков можно повысить от­носительную влажность воздуха до 65-70%, если это до­пустимо по условиям производства. Для этой цели приме­няют общее или местное увлажнение воздуха в помеще­нии при постоянном контроле его относительной влаж­ности. При этом на поверхности твердых материалов обра­зуется электропроводящая пленка воды, по которой отво­дятся заряды статического электричества на заземленное технологическое оборудование.

Для снижения удельного объемного электрического сопротивления в диэлектрические жидкости и растворы полимеров (клеев) вводят различные растворимые в них антиэлектростатические присадки (антистатики), в частности, соли металлов переменной валентности выс­ших карбоновых, нафтеновые и синтетические жирные кислоты. К таким присадкам относятся «Сигбол», АСП-1, АСП-2, а также присадки на основе олеатов хрома, ко­бальта, меди, нафтенатов этих металлов, солей хрома и т.д. За рубежом наибольшее применение нашли присадки, разработанные фирмами «Экко» и «Шелл» (присадка ASA-3).

Для этого используют электропро­водящие полы из материалов, у которых удельное объем­ное электрическое сопротивление не должно быть выше 10 6 Ом×м. К непроводящим покрытиям относятся ас­фальт, резина, линолеум и др. Проводящими покрытиями являются бетон, пенобетон, ксилолит и т.д. Заземленные помосты и рабочие площадки, ручки дверей, поручни лестниц, рукоятки приборов, машин, механизмов, аппа­ратов являются дополнительными средствами отвода за­рядов с тела человека.

К индивидуальным средствам защиты от статического электричества относятся специальные электростатиче­ские обувь и одежда. Для изготовления такой одежды должны применяться материалы с удельным поверхност­ным электрическим сопротивлением не более 10 7 Ом×м, а электрическое сопротивление между токопроводящим элементом антиэлектростатической одежды и землей должно быть от 10 6 до 10 8 Ом. Электрическое сопротивле­ние между подпятником и ходовой стороной подошвы обу­ви должно быть от 10 6 до 10 8 Ом.

В некоторых случаях непрерывный отвод зарядов ста­тического электричества с рук человека может осущес­твляться с помощью специальных заземленных браслетов и колец. При этом они должны обеспечивать электриче­ское сопротивление в цепи человек - земля от 10 6 до 10 7 Ом и свободу перемещения рук.

Защита от электромагнитных полей (ЭМП)

В производстве широко применяются электромагнитные поля радиочастот и промышленной частоты, постоянные магнитные и электростатические поля, опасность воздействия которых усугубляется тем, что они не обнаруживаются органами чувств. Их используют для нагрева металла при плавке и ковке, получения плазменного состояния вещества, при термообработке различных материалов, в радиотехнических и электронных приборах. Степень и характер воздействия ЭМП на организм человека определяется плотностью потока энергии, частотой излучения, продолжительностью воздействия, режимов облучения (непрерывный, продолжительный), размером облучаемой поверхности тела, индивидуальными особенностями организма, комбинированным действием совместно с другими вредными факторами производственной среды (повышенная температура окружающей среды, наличие рентгеновского излучения, шум и другое).

В зоне действия ЭМП человек подвергается тепловому и биологическому воздействию: перегрев, облучение глаз, функциональные изменения центральной нервной и сердечно-сосудистой системы (головные боли, утомляемость, ухудшение самочувствия, нервно-психическое расстройство и др.) могут наблюдаться трофические расстройства: похудание, выпадение волос, ломкость ногтей, изменение в крови.

Средства и способы защиты: уменьшение параметров излучения непосредственно в самом источнике излучения, экранирование источников излучения, экранирование рабочего места, ограничение времени пребывания персонала в зоне действия ЭМП, увеличение расстояния между источником излучения и рабочим местом, применение предупредительной сигнализации, применение средств индивидуальной защиты и др.

15.1. Мероприятия по защите от статического электричества необходимо осуществлять в соответствии с действующими нормативами.

15.2. Разработка технологических процессов и оборудования должна проводиться с учетом предотвращения опасной электризации веществ при их производстве и применении. Основные мероприятия по предотвращению опасных проявлений статического электричества должны быть указаны в директивном технологическом процессе.

При пуске нового или реконструкции производства следует проверить наличие и достаточность действующих устройств защиты от статического электричества и при необходимости обеспечить дополнительную его защиту.

15.3. Технологический регламент должен содержать параметры обрабатываемых в производстве веществ, характеризующие их электрические свойства (удельные электрические сопротивления) и чувствительность к электростатическим разрядам (минимальную энергию воспламенения), и описание средств защиты от статического электричества, а в технологических инструкциях и инструкциях по технике безопасности должен быть описан порядок их применения.

15.4. Наиболее вероятно возникновение и накопление электростатических зарядов на таких операциях, как просеивание, измельчение, смешение, загрузка и выгрузка из аппаратов, пневмо- и вакуум-транспортирование. Допустимые параметры технологического процесса, обеспечивающие электростатическую безопасность переработки каждого из видов продуктов, устанавливаются разработчиком директивного технологического процесса и регламента технологического процесса.

15.5. Для предупреждения возможности возникновения опасных электростатических разрядов необходимо предусматривать с учетом особенностей производства следующие меры защиты:

Заземление электропроводящего оборудования и коммуникаций;

Применение нейтрализаторов;

Подбор пар контактирующих материалов, электризующихся зарядами разных знаков;

Увлажнение окружающей атмосферы;

Применение электропроводных материалов для оборудования;

Применение спецодежды.

15.6. Для снижения интенсивности возникновения зарядов статического электричества следует:

Всюду, где это технологически возможно, паро- и пылевоздушные смеси очищать от взвешенных жидких и твердых частиц, жидкости - от загрязнений твердыми и жидкими примесями;

Поддерживать концентрацию горючих сред вне пределов взрываемости;

Всюду, где этого не требует технология производства, исключить разбрызгивание, дробление, распыление веществ;

Технологические процессы вести в соответствии с установленными параметрами;

Уменьшать скорости транспортирования и переработки, турбулентность потоков пыле-парогазовых смесей и жидкостей;

Исключать конденсацию и кристаллизацию паров и газов при истечении из трубопроводов, шлангов, форсунок, сопел.

15.7. Все технологическое оборудование (аппараты, емкости, коммуникации, покрытия рабочих столов и стеллажей, оснастка и др.), где возможно образование и накопление зарядов статического электричества, должно быть изготовлено из металла или электропроводных материалов и заземлено (электропроводными материалами являются такие, удельное объемное электрическое сопротивление которых не превышает 1Е5 Ом. м).

Аппараты, емкости, агрегаты, трубопроводы, в которых происходит перемещение, дробление, распыление, разбрызгивание продуктов, отдельно стоящие машины, агрегаты, аппараты, соединенные трубопроводами с общей системой аппаратов и емкостей, должны быть присоединены к внутреннему контуру заземления при помощи отдельного ответвления независимо от заземления соединенных с ними коммуникаций.

Последовательное включение в заземляющую шину (провод) нескольких заземляющих аппаратов, агрегатов или трубопроводов не допускается.

Допускается объединение заземляющих устройств для защиты от статического электричества с защитным заземлением электрооборудования.

Заземление смесительно-зарядной машины перед загрузкой должно осуществляться в соответствии с п. 9.6 настоящих Правил.

15.8. В конструкторской документации на технологическое оборудование должны быть указаны места для присоединения заземляющих проводников и способ их крепления.

В каждом производственном здании должна быть составлена схема (карта) заземления, в которой должны быть перечислены все оборудование, оснастка, инвентарь и т.п., подлежащие заземлению.

15.9. Сопротивление заземления любой наиболее удаленной точки внутренней поверхности оборудования, изготовленного из электропроводных (неметаллических) материалов, относительно внутреннего контура заземления не должно превышать 1Е6 Ом.

Сопротивление заземляющего устройства, предназначенного только для защиты от статического электричества, должно быть не более 100 Ом.

15.10. Заземляющие проводники и контур заземления должны быть проложены открыто, чтобы обеспечить возможность их осмотра. При этом должна быть обеспечена их устойчивость к механическим и химическим воздействиям.

Заземлители, наружный и внутренний контуры заземления должны быть выполнены в соответствии с требованиями правил устройства электроустановок и норм и правил по устройству молниезащиты зданий и сооружений.

Заземляющие проводники, предназначенные для защиты от статического электричества, окрашиваются в черный цвет с нанесением в местах присоединения к технологическому оборудованию и внутреннему контуру заземления одной поперечной полосы шириной 15 мм красного цвета. Допускается в соответствии с оформлением помещения окрашивать заземляющие проводники в иные цвета (кроме красного) с маркировкой красной полосой, как указано выше.

15.11. Соединение элементов контура заземления, присоединение заземлителей и заземляемых конструкций должны быть выполнены сваркой. В случае невозможности применения сварки допускается присоединение заземляющих проводников с помощью надежного резьбового соединения. При этом заземляющие проводники должны иметь на концах неразрезанное кольцо, электрически соединенное с основной жилой. Резьбовые соединения должны быть защищены от коррозии.

15.12. Трубопроводы, расположенные параллельно на расстоянии до 0,1 м друг от друга, должны соединяться между собой перемычками через каждые 20 м. При пересечении трубопроводов друг с другом, с металлическими лестницами и конструкциями на расстоянии менее 0,1 м они должны также соединяться перемычками.

Защитное заземление трубопроводов, расположенных на наружных эстакадах, должно отвечать требованиям норм и правил по устройству молниезащиты зданий и сооружений.

Металлические воздуховоды вентиляции должны быть заземлены через каждые 20 м с помощью проводников из алюминиевых сплавов диаметром не менее 5 мм, ленты сечением не менее 24 мм2.

15.13. Способные электризоваться движущиеся части машин и аппаратов, контакт которых с заземленным корпусом может быть нарушен, должны иметь специальные устройства (токосъемники) для обеспечения заземления.

Аппараты, в которых имеет место интенсивная электризация веществ, а также подвижные узлы виброоборудования (вибролотки, сита с механическим приводом и т.п.) должны быть заземлены не менее, чем в двух точках.

15.14. Для уменьшения удельного поверхностного электрического сопротивления веществ, составов и конструкционных материалов там, где это допускается условиями технологического процесса, рекомендуется поддерживать относительную влажность воздуха не ниже 65%.

15.15. Пересыпание веществ следует производить с возможно малой высоты. Повсеместно следует систематически, в сроки, установленные инструкциями, влажным способом очищать от осевшей пыли оборудование, воздуховоды вентиляции и другие конструкции в помещении.

Запрещается загрузка сыпучих продуктов непосредственно из бумажных, полиэтиленовых, полихлорвиниловых и других электризующихся мешков в люки аппаратов, содержащих пары горючих жидкостей. В этом случае следует применять загрузочные устройства из проводящих материалов, обеспечивающие наименьшее пыление веществ.

Отбор проб сыпучего вещества, измерение технологических параметров посредством вносимых пробоотборников и приборов следует производить после осаждения пыли.

15.16. Измерение параметров электризации в условиях производства проводится периодически в соответствии с утвержденным графиком проведения измерений, но не реже двух раз в год. Для проведения измерений должны применяться приборы в искробезопасном и взрывозащищенном исполнении, допущенные к применению для данных производств, обеспечивающие электростатическую безопасность измерений и прошедшие государственные или ведомственные испытания.

15.17. Приемка в эксплуатацию устройств защиты от статического электричества должны производиться одновременно с приемкой технологического и энергетического оборудования.

В процессе эксплуатации устройств защиты от статического электричества необходимо:

Перед началом работы проверить надежность электрического контакта заземляющих проводников в местах соединения и непрерывность электрической цепи по всей длине;

Не допускать загрязнения, механических повреждений, длительного воздействия щелочей, кислот, органических растворителей на элетропроводные покрытия технологического оборудования, рабочих мест.

15.18. Осмотр и измерение электрических сопротивлений заземляющих устройств технологического оборудования, трубопроводов и т.п. рекомендуется проводить одновременно с проверкой заземления электрооборудования. Результаты проверочных испытаний, а также ревизий и ремонтов заземляющего устройства должны заноситься в паспорт. Результаты измерения сопротивления заземления технологических аппаратов, оборудования, подвижного оборудования, транспортных устройств, оснастки должны регистрироваться в специальном журнале.

5.1. Общие положения

5.1.1. Для предотвращения возможности возникновения опасных разрядов с поверхности оборудования, веществ, перерабатываются, а также с тела человека необходимо предусматривать, с учетом особенностей производства и меры, которые могут обеспечить отвод заряда:

Снижение интенсивности генерации заряда статического электричества;

Отвод заряда путем заземления оборудования и коммуникаций, а также обеспечение постоянного электрического контакта с заземлением тела человека;

Отвод заряда путем уменьшения удельного объемного и поверхностного электрического сопротивления;

Нейтрализация заряда путем использования различных средств защиты от статического электричества по ГОСТ 12.4.124-83.

5.1.2. Для снижения интенсивности возникновения заряда:

Везде, где это технологически возможно, горючие газы должны очищаться от взвешенных жидких и твердых частиц, жидкости - от загрязнения нерастворимыми твердыми и жидкостными примесями;

Везде, где этого не требует технология производства, должно быть исключено разбрызгивание, дробление, распыление веществ;

Скорость движения материалов в аппаратах и магистралях не должна превышать значений, предусмотренных проектом.

5.1.3. Снижение чувствительности объектов, окружающей и проникающего в них среды к зажигая воздействия разрядов статического электричества следует обеспечить регламентированием параметров производственных процессов (влагосодержания и дисперсности аерозависив, давления и температуры среды и др.), влияющих на W, и флегматизацию горючих сред.

5.1.4. В случае, когда невозможно обеспечить стекание возникающих зарядов, для предотвращения зажигания искровыми разрядами статического электричества среды внутри аппаратов при передавливание легковоспламеняющихся жидкостей, пневмотранспортуванни горючих мелкодисперсных и сыпучих материалов, продувке оборудования при запуске и т.п., необходимо исключить возникновение взрывоопасных смесей путем использования закрытых систем с избыточным давлением или инертных газов для заполнения аппаратов, емкостей, закрытых транспортных систем или другими способами.

5.1.5. В случае использования оборудования, которое изготовлено из материалов с удельным объемным электрическим сопротивлением более 10 5 Ом · м, необходимо руководствоваться требованиями раздела 5.8 настоящих Правил.

5.1.6. В случае переработки и транспортировки в электропроводном оборудовании (см. п.5.8.1) без распыления и разбрызгивания веществ, обладающих удельное объемное электрическое сопротивление менее 10 5 Ом · м, использование средств защиты от статического электричества в соответствии с этими Правил не нужно.

5.2. Отвод заряда путем заземления

5.2.1. Заземляющие устройства для защиты от статического электричества разрешается объединять с заземляющими устройствами для электрооборудования. Такие заземляющие устройства должны быть выполнены в соответствии с требованиями "Правил устройства электроустановок" (ПУЭ, раздел 1), и ГОСТ 12.1.030-81, ГОСТ 21130-75, СНиП 3.5.06-85 "Электротехнические устройства".

Сопротивление заземляющих устройств, которые предназначаются исключительно для защиты от статического электричества, допускается не выше 100 Ом.

5.2.2. Все металлические и электропроводные неметаллические части технологического оборудования должны быть заземлены независимо от того, принимаются другие меры защиты от статического электричества.

5.2.3. Неметаллическое оборудование считается электростатически заземленным, если сопротивление любой точки его внутренней поверхности относительно контура заземления не превышает 10 7 Ом.

Измерения этого сопротивления должны проводиться при относительной влажности окружающего воздуха 50 ± 5% и температуре 23 ± 2 ° C, причем площадь соприкосновения измерительного электрода с поверхностью оборудования не должна превышать 20 см 2, а располагаться при измерениях электрод должен в точках поверхности оборудования, наиболее удаленных от точек контакта этой поверхности с заземленными металлическими элементами, деталями, арматурой.

5.2.4. Металлическое и электропроводное оборудование, трубопроводы, вентиляционные короба и кожухи термоизоляции трубопроводов и аппаратов, расположенных в цехе, а также на наружных установках, эстакадах и каналах, должны представлять собой по всей длине непрерывную цепь, который в пределах цеха (отделения, установки) должен быть присоединен к контуру заземления через каждые 40-50 м, но не менее чем в двух точках.

5.2.5. Присоединению к контуру заземления при помощи отдельного ответвления (независимо от наличия заземления соединенных с ними коммуникаций и конструкций) подлежат объекты на поверхности и внутри которых может образовываться заряд: аппараты, емкости, агрегаты, в которых происходит дробление, распыление, разбрызгивание продуктов; футерованные и эмалированные аппараты (емкости); машины, которые стоят отдельно, агрегаты, аппараты, не соединенные трубопроводами с общей системой аппаратов и емкостей. Эти ответвления должны быть выполнены в соответствии со СНиП 3.05.06-85 "Электротехнические устройства".

5.2.6. Резервуары и емкости объемом более 50 м 3, за исключением вертикальных резервуаров диаметром до 2,5 м, должны быть присоединены к заземлителю с помощью не менее двух заземляющих проводников в диаметрально противоположных точках.

5.2.7. Фланцевые соединения трубопроводов, аппаратов, корпусов с крышкой и соединения на розбортуванни, не окрашенные неэлектропроводных красками, имеют достаточный для отвода заряда статического электричества сопротивление (не более 10 Ом), не требуют дополнительных мер по созданию непрерывной электрической цепи, например, установки специальных перемычек.

В этих соединениях запрещается применение шайб, изготовленных из диэлектрических материалов и окрашенных неэлектропроводных красками.

5.2.8. Заземления трубопроводов, расположенных на внешних эстакадах, должно быть выполнено в соответствии с действующей "Инструкции по устройству молниезащиты зданий и сооружений" РД 34.21.122-87.

5.2.9. Наливные стояки эстакад для заполнения железнодорожных цистерн должны быть заземлены. Рельсы железнодорожных путей в пределах сливного-наливного фронта должны быть электрически соединены между собой и присоединены к заземляющему устройству, не связан заземлением электротяговый сети.

5.2.10. Автоцистерны, а также танки наливных судов, находящихся под наливом и сливом сжиженных газов и пожароопасных жидкостей, в течение всего времени заполнения и опорожнения должны быть присоединены к заземляющему устройству.

Контактные устройства для присоединения заземляющих проводников от автоцистерны и наливных судов должны быть установлены вне взрывоопасной зоны.

Гибкие заземляющие проводники поперечным сечением не менее 6 мм 2 должны быть постоянно присоединены к металлическим корпусам автоцистерн и танков наливных судов и иметь на конце струбцину или наконечник под болт М10 для присоединения к заземляющему устройству.При отсутствии постоянно присоединенных проводников заземления автоцистерн и наливных судов должно проводиться инвентарными проводниками в следующем порядке: заземляющий проводник сначала присоединяется к корпусу цистерны или танка), затем к заземляющего устройства.

Возможно использование во взрывоопасной зоне заземляющих устройств, имеющих соответствующий уровень взрывозащиты.

5.2.11. Открытие люков автоцистерн и танков наливных судов и погружение в них шлангов должно производиться только после присоединения заземляющих проводников к заземляющему устройству.

5.2.12. Резиновые или другие шланги из неэлектропроводных материалов с металлическими наконечниками, используемые для налива жидкостей в железнодорожные цистерны, автоцистерны, наливные суда и другие передвижные сосуды и аппараты, должны быть обвиты медной проволокой диаметром не менее 2 мм (или медным тросиком сечением не менее 4 мм 2) с шагом витка 100-150 мм.Один конец проволоки (или тросика) соединяется пайкой (или под болт) с металлическими заземленными частями продуктопровода, а другой - с наконечником шланга.

При использовании армированных шлангов или антиелектростатичних рукавов их обвивка не требуется при условии обязательного соединения арматуры или электропроводного резинового слоя с заземленным продуктопроводом и металлическим наконечником шланга.

Наконечники шлангов должны быть изготовлены из меди или других металлов, которые не дают механической искры.

5.3. Рассеивание заряда путем уменьшения удельного объемного и поверхностного электрического сопротивления

5.3.1. В тех случаях, когда заземление оборудования не предотвращает накопление опасного количества статического электричества, нужно принимать меры для уменьшения удельного объемного или поверхностного электрического сопротивления материалов, перерабатываются с помощью использования увлажняющих устройств или антиелектростатичних веществ.

5.3.2. Для уменьшения удельного поверхностного электрического сопротивления диэлектриков рекомендуется увеличивать относительную влажность воздуха до 55-80% (если это допускается условиями производства). Для этого нужно применять общее или местное увлажнение воздуха в помещении при постоянном контроле его относительной влажности.

Примечание.

Способ уменьшения удельного поверхностного электрического сопротивления путем повышения относительной влажности воздуха и создания тем самым адсорбированного слоя влаги на поверхности материала не эффективен в случаях, когда:

Когда материал, электризуется, гидрофобный;

Когда температура материала, электризуется, выше температуры окружающей среды;

Когда время движения материала в зоне влияния увлажняющего воздуха меньше, чем время образования адсорбированных влажной пленки;

Когда температура воздуха в рабочее зоне выше температуры, при которой пленка влаги может удержаться на материале.

5.3.3. Для местного увеличения относительной влажности воздуха в зоне, где происходит электризация материалов, рекомендуется:

Подача в зону водяного пара (при этом электропроводящие предметы, которые находятся в зоне, должны быть заземлены;

Охлаждение поверхностей наелектризувалися, до температуры на 10 ° C ниже температуры окружающей среды;

Распыление воды;

Свободное испарение воды с больших поверхностей.

Для общего увеличения влажности в помещении может быть использована система приточной вентиляции с промывкой воздуха в оросительной камере.

5.3.4. Для уменьшения удельного поверхностного электрического сопротивления, в случаях, когда повышение относительной влажности окружающей среды неэффективно, возможно дополнительно рекомендовать применение антиелектростатичних веществ (Приложения 5, 6, 7).

Нанесения их на поверхность материалов, электризуются, может осуществляться погружением, пропиткой или напылением с последующей сушкой, обтиранием поверхности изделия тканью, которая пропитана антиелектростатичним раствором.

Примечание.

Действие антиелектростатичних веществ при поверхностном нанесении их непродолжительная (до одного месяца) за неустойчивости к промыванию растворителями, долговременного хранения и трения.

Продолжительность антиелектростатичнои действия можно повысить введением в состав материалов, перерабатываются, различных полимерных связующих (например, поливинилацетат) или применением высокомолекулярных антиелектростатичних средств с пленкообразующими свойствами.

Введение антиелектростатичних веществ в состав материалов, перерабатываются, менее эффективно, однако свое действие эти вещества содержатся в течение нескольких лет.

Введение антиелектростатичних веществ может быть осуществлено различными способами:

Добавлением к мономеров перед их полимеризации;

Введением непосредственно в момент самой полимеризации;

Введением при вальцовке, экструзии или смешивании в смесителе.

5.3.5. Для уменьшения удельного объемного сопротивления диэлектрических жидкостей и растворов полимеров (клеев) может быть применена введения различных растворенных в них антиелектростатичних присадок, в частности, солей металлов переменной валентности, высших карбоновых, нафтеновых и синтетических жирных кислот (см. Приложения 8, 9).

5.3.6. Введение поверхностно-активных веществ и других антиелектростатичних добавок и присадок допустимо только в тех случаях, когда есть разрешение органов санитарного надзора и применение не влечет нарушений технических требований, предъявляемых к выпускаемой продукции.

5.4. Нейтрализация заряда на поверхности твердых диэлектрических материалов

5.4.1. В случаях, когда опасное воздействие электризации ограничивается каким-либо местом или небольшим количеством мест в технологическом процессе, или когда нельзя достичь отвода заряда статического электричества с помощью более простых средств (див.розд. 5.2, 5.3), рекомендуется осуществлять нейтрализацию путем ионизации воздуха в непосредственной близости от поверхности заряженного материала. С этой целью могут быть использованы нейтрализаторы статического электричества (ГОСТ 12.4.124-83), типы и основные технические характеристики которых приведены в Приложении 10.

5.4.2. Для нейтрализации зарядов статического электричества во взрывоопасных помещениях всех классов следует применять радиоизотопные нейтрализаторы, если они не запрещены другими нормативными документами. Их установка и эксплуатация осуществляется в соответствии с требованиями инструкций, к ним прилагаются.

Выбор необходимого типа радиоизотопных нейтрализаторов осуществляется согласно отраслевым методикам и рекомендациями.

Примечание.

При изготовлении продукции санитарно-гигиенического и бытового назначения (салфетки, тампоны, папиросная и мундштучный бумага, ткани и т.п.), а также тетрадных продукции применения радиоизотопных нейтрализаторов запрещается.

5.4.3. В случаях, когда материал (пленка, ткани, лента, лист) электризуется настолько сильно, что применение радиоизотопных нейтрализаторов не обеспечивает нейтрализацию заряда статического электричества, допускается установка комбинированных (индукционно-радиоизотопных) или взрывозащитных индукционных и высоковольтных (постоянной и переменной напряжения) нейтрализаторов.

5.4.4. Во всех случаях, когда позволяет характер технологического процесса и конструкция машин, следует применять индукционные нейтрализаторы.

Устанавливаться они должны таким образом, чтобы расстояние между их коронирующих электродами (иглами, струнами, лентами) и заряженной поверхностью было минимальным и не превышало 20-50 мм (в зависимости от конструкции нейтрализатора). Во взрывоопасных помещениях при этом необходимо принимать меры, исключающие возможность возникновения искрового разряда между заряженной поверхностью и коронирующих электродами.

5.4.5. В случае невозможности применения индукционных нейтрализаторов или недостаточной их эффективности в помещении, которое не является взрывоопасным, необходимо применять высоковольтные нейтрализаторы и ней-трализаторы скользящего разряда.

Примечание.

В случае использования игольчатых индукционных и высоковольтных нейтрализаторов необходимо предусмотреть меры, предупреждающие возможность травмирования обслуживающего персонала иглами нейтрализаторов.

5.4.6. Для нейтрализации заряда статического электричества в труднодоступных местах, на поверхности объектов, имеющих сложную конфигурацию, меняют непрерывно геометрические размеры, т.е. там, где невозможна установка нейтрализаторов в непосредственной близости от заряженной поверхности, следует применять аэродинамические нейтрализаторы с принудительной подачей ионов струей воздуха.

В случае, когда этот способ нейтрализации применяется в взрывоопасном помещении, ионизаторы (кроме радиоизотопных) должны быть взрывозащищенными или располагаться в соседних помещениях, не являющихся взрывоопасными.

Примечание.

В случае, когда на заряженном материале существуют как положительно, так и отрицательно заряженные участки, или когда знак заряда неизвестен, необходимо применять ионизаторы, обеспечивающих образование в воздушном потоке как положительных, так и отрицательных ионов.

Когда материал заряженный преимущественно зарядом одного знака, желательно обеспечить униполярные ионизацию воздушного потока (ионами противоположного знака). В этом случае степень ионизации воздушного потока уменьшается медленнее, чем при биполярной ионизации, что позволяет устанавливать ионизатор на большем расстоянии.

5.5. Предотвращение опасных разрядам из жидкостей

5.5.1. Когда в трубопроводах и технологической аппаратуре, в которых содержатся жидкие продукты, исключена возможность образования взрывоопасных концентраций паровоздушных смесей (температура жидкости ниже нижнего температурного предела взрываемости, среда не содержит окислителей и находится под избыточным давлением; аппараты и коммуникации заполнены инертными газами), скорости транспортировки жидкостей по трубопроводам и истечения их в аппараты не ограничиваются.

В других случаях скорость движения жидкостей по трубопроводам и истечения их в аппараты (резервуары) необходимо ограничить таким образом, чтобы плотность заряда, потенциал, напряженность поля в резервуаре (аппарате), которая заполняется, не превышали значения, при котором возможно возникновение искрового разряда с энергией, не превышает 0,4 минимальной энергии зажигания окружающей среды.

Максимально безопасные скорости движения жидкостей по трубопроводам и истечения их в аппараты (резервуары) определяются в каждом отдельном случае в зависимости от свойств жидкости и содержания в ней нерастворимых примесей, размера, свойств материала стенок трубопровода (аппарата), давления и температуры в аппарате, который заполняется. При этом явно безопасным является транспортировка по заземленных металлических трубопроводах жидкостей с удельным объемным электрическим сопротивлением до 10 5 Ом · м со скоростями до 10 м / с, а жидкостей с удельным объемным электрическим сопротивлением до 10 9 Ом · м - со скоростями до 5м / с.

Для жидкостей с удельным объемным электрическим сопротивлением более 10 9 Ом · м допустимые скорости транспортировки и истечения устанавливаются для каждой жидкости отдельно, безопасной скоростью истечения таких жидкостей из заземленных металлических трубопроводов в заземленные металлические резервуары (аппараты) является 1,0 м / с.

5.5.2. Для снижения до безопасного значения плотности заряда в потоке жидкости, имеющей удельное объемное электрическое сопротивление более 10 9 Ом · м, при необходимости транспортировки ее по трубопроводам со скоростями, превышающими безопасны, необходимо применять специальные устройства для отвода заряда.

Устройства для отвода заряда из жидкого продукта должны устанавливаться на загрузочном трубопроводе непосредственно у входа в аппарат (резервуар), которая заполняется так, чтобы при максимальной скорости транспортировки время движения продукта по загрузочному трубопроводе после выхода из устройства до истечения его в аппарат не превышал 10% постоянной времени релаксации заряда в жидкости. Когда это условие конструктивно не может быть выполнена, отвод возникающего в загрузочном патрубке заряда должно быть обеспечено в середине аппарата, заполняется (резервуара) до выхода заряженного потока на поверхность жидкости, которая есть в аппарате.

5.5.3. Как устройства для отвода заряда из жидкого продукта могут использоваться:

Индукционные нейтрализаторы со струнами или иглами;

Релаксационные емкости, которые представляют собой горизонтальный участок трубопровода увеличенного диаметра.

При этом диаметр этого участка трубопровода должен быть не менее:

где Д р - диаметр релаксационной емкости, м;

Д т - диаметр трубопровода, м;

V т - скорость жидкости в трубопроводе, м / с.

Длина его (м) должна быть не менее

где e - диэлектрическая постоянная жидкости;

r v - удельное объемное электрическое сопротивление жидкости, Ом · м.

5.5.4. Как устройство для отвода заряда внутри аппарата (резервуара), которая заполняется, возможно применять:

Клетки с заземленной металлической сетки, охватывающие некоторый объем около конца загрузочного патрубка таким образом, чтобы заряженный поток из патрубка поступал Внутри клетки.

При этом объем клетки должен быть не менее

где V - объем клетки, м 3;

Q - производительность перекачки жидкости (расходы), м 3 / ч;

t = ee 0 r v - постоянная времени релаксации заряда в жидкости, с;

e - диэлектрическая проницаемость жидкости, безразмерная;

e 0 - электрическая постоянная, равна 8,854 · 10 -12 ф / м;

r v - удельное объемное электрическое сопротивление жидкости, Ом · м;

Специальные насадки на конце загрузочного патрубка, которые так формируют и направляют заряженный струю, вытекающую, чтобы обеспечить максимальное время распространения его на поверхности днища и стенок аппарата (резервуара), которая заполняется;

Нейтрализаторы погружного типа, которые представляют собой толстостенную трубу из диэлектрика с установленными в ней протяженными электродами-струнами.

5.5.5. Для обеспечения отвода заряда из потока жидкости электризуется, в широком диапазоне изменений удельного объемного электрического сопротивления от 10 9 до 13 Октябрь Ом · м может использоваться автономная система устройств защиты от статического электричества, которые состоят из индукционного струнного нейтрализатора и устройства для обеспечения релаксации.

5.5.6. Для предотвращения опасных искровых разрядов нужно не допускать наличия на поверхности горючих и легковоспламеняющихся жидкостей в аппаратах и резервуарах незаземленным электропроводных плавающих предметов.

Понтоны из электропроводящих материалов, предназначенных для уменьшения потери жидкости от испарения, должны быть заземлены с помощью не менее двух гибких заземляющих проводников, присоединенных к понтону в диаметрально противоположных точках.

Примечания:

1. При применении поплавковых или буйкових уровнемеров их поплавки должны быть изготовлены из электропроводного материала и при любом положении иметь надежный контакт с заземлением.

2. В случае, когда при существующей технологии производства невозможно предотвратить наличие на поверхности жидкости незаземленным плавающих предметов, необходимо принять меры, исключающие возможность создания над ней взрывоопасной среды.

3. Использование неэлектропроводных плавающих устройств и предметов (понтонов, пластмассовых шаров и др.), которые предназначены для уменьшения потерь жидкости от испарения, разрешается только по согласованию со специализированной организацией.

5.5.7. Жидкости должны подаваться в аппараты, резервуары, тару полным сечением трубы таким образом, чтобы не допускать их разбрызгивания, распыления.

5.5.8. Налива жидкости свободно падающей струей не разрешается. Расстояние от конца загрузочной трубы до дна приемной сосуда не должно превышать 200 мм, а когда это невозможно, то струя должен быть направлен вдоль стенки. При этом форма конца трубы и скорость подачи жидкости должны быть выбраны таким образом, чтобы предотвратить ее разбрызгивание.

При верхнем наливе аппарата, резервуара, цистерны и т.д. с помощью резинового шланга необходимо предусмотреть его вертикальное расположение.

Исключение составляют лишь случаи, когда гарантирована невозможность возникновения в приемной сосуде взрывоопасных концентраций парогазовых смесей.

5.5.9. Жидкости должны поступать в резервуары ниже уровня остатка жидкости в них находится.

В начале заполнения пустого резервуара жидкости, имеющие удельное объемное электрическое сопротивление более 10 5 Ом · м, должны подаваться в него со скоростью не более 0,5 м / с до момента погружения конца загрузочной трубы.

При дальнейшем заполнении скорость надо выбирать с учетом требований п.5.5.1.

5.5.10. Ручной отбор жидкости из резервуаров и емкостей, а также измерение уровня с помощью разного рода мерных линеек и метр-штоков через люки разрешается только по истечении времени, превышающего 3 (см. п.5.5.4) после прекращения движения жидкости, когда она находится в состоянии покоя. При этом устройства для проведения измерений должны быть изготовлены из материала с удельным объемным электрическим сопротивлением менее 10 5 Ом · м и заземлены.

В случае изготовления этих устройств из диэлектрических материалов должны соблюдать условия электростатической искробезопасности согласно ГОСТ 12.1.018-93.

5.6. Предотвращение опасных разрядам в газовых потоках

5.6.1. Для предотвращения возникновения опасных искровых разрядов при перемещении газов и паров по трубопроводам и аппаратах необходимо везде, где это технологически возможно, принять меры по исключению присутствия в газовых потоках твердых и жидких частиц.

5.6.2. Конденсация паров и газов при большом перепаде давлений вызывает сильную электризацию газовых струй при утечки через неплотности. Это требует повышенного внимания к герметизации оборудования, которое удерживает пары и газы под высоким давлением.

5.6.3. Не допускается присутствие в газовом потоке незаземленным металлических частей и деталей оборудования.

5.7. Отвод заряда при переработке сыпучих и мелкодисперсных материалов

5.7.1. Переработку сыпучих (в особенности мелкодисперсных) материалов предстоит вести в металлическом или электропроводном (см. п.5.8.1) неметаллической оборудовании.

Особенно важно соблюдать это требование в установках по транспортировке, сушке и размоле материалов в газовых потоках (струях.

5.7.2. В случаях применения для переработки сыпучих материалов антиелектростатичного или диэлектрического оборудования и трубопроводов (см. пп.5.8.2, 5.8.3) для улучшения условий стекания заряда с перероблюемого материала надлежит обращать особое внимание на тщательное выполнение требований, изложенных в пп. 5.8.5, 5.8.6, 5.8.8, 5.8.10, 5.8.11.

Для уменьшения электризации при пневмотранспортуванни гранулированных, измельченных и порошкообразных полимерных материалов по неметаллических трубопроводах принадлежит применить трубы из того же или близкого по составу полимерного материала (например, транспортировка порошкообразного или гранулированного полиэтилена лучше вести по полиэтиленовых трубах).

5.7.3. В установках по транспортированию и размола материалов в воздушных потоках (струях) воздуха, подаваемого должен быть увлажнен до такой степени, чтобы относительная влажность воздуха на выходе из пневмотранспорта, а также в месте размола материалов в мельницах, составляла не менее 65%.

Когда за технологическими условиями увеличение относительной влажности воздуха не допустимо, то рекомендуется применять его ионизацию (см. розд.5.4). При этом наиболее подходящими для использования в бункерах, циклонах, на конечных участках пневмотранспортных трубопроводов есть специальные устройства со стержневыми, иголочными или струнными заземленными электродами (индукционные нейтрализаторы).

5.7.4. В случае, когда указанные в п.5.7.3 меры по каким причинам не могут быть применены, перечисленные процессы должны проводиться в потоке инертного газа.

Примечание.

Применение воздуха допускается только в случае, когда результаты непосредственных измерений степени электризации материалов в действующем оборудовании подтверждают безопасность ведения процесса.

5.7.5. С целью улучшения условий стекания заряда с тканевых рукавов, применяемых для затаривания гранулированных и других сыпучих материалов и соединение подвижных элементов оборудования с неподвижными, а также с рукавными фильтрами, принадлежит пропитывать их соответствующими растворами поверхностно-активных веществ (см. Приложение 5) с последующим просушкой, обеспечивая при креплении надежный контакт с заземленными металлическими элементами оборудования.

Для рукавных фильтров следует выбирать пропитку, которая не снижает после просушки фильтрующих свойств ткани.

Допускается применение металлизированной ткани.

5.7.6. Запрещается загрузка сыпучих продуктов непосредственно из бумажных, полиэтиленовых, полихлорвиниловых и других мешков в люки аппаратов, в которых содержатся жидкости при температуре выше их температуры вспышки.

В этом случае следует применять металлические шнековые, секторные и другие питатели.

5.7.7. Для предотвращения взрывов пыли от искровых разрядов необходимо:

Избегать образование взрывоопасных пылевоздушных смесей;

Не позволять падения и сброса пыли, образования клубов пыли и ее завихрения;

Очищать систематически оборудование и строительные конструкции в помещениях от пыли, осевший в сроки, установленные действующими нормами и правилами.

5.8. Защита футерованные и неметаллического оборудования

5.8.1. Электропроводным считается оборудования, в котором поверхности, имеющие контакт с веществами (сырья, полупродуктов, готовой продукцией), что перерабатываются, изготовленные из материалов с удельным объемным электрическим сопротивлением не более 10 5 Ом · м.

5.8.2. Антиелектростатичним считается оборудования, в котором поверхности, имеющие контакт с веществами, перерабатываются, изготовленные из материалов с удельным объемным электрическим сопротивлением не более 10 8 Ом · м.

5.8.3. Диэлектрической считается оборудования, в котором поверхности, имеющие контакт с веществами, перерабатываются, изготовленные из материалов с удельным объемным электрическим сопротивлением более 10 8 Ом · м.

5.8.4. Защита от статического электричества электропроводного неметаллического оборудования и оборудования с электропроводной футеровкой должна осуществляться методами, предусмотренными настоящими Правилами для металлического оборудования (см. разд. 5.2).

5.8.5. В случае использования антиелектростатичного и диэлектрического неметаллического оборудования не допускается наличие в них металлических частей и деталей, имеющих сопротивление относительно земли более 100 Ом.

5.8.6. Внешняя поверхность диэлектрических трубопроводов, по которым транспортируются вещества и материалы с удельным объемным электрическим сопротивлением более 10 5 Ом · м, должна метализуватися или краситься электропроводными эмалями и лаками (см.Приложение 11). При этом должен быть обеспечен электрический контакт между электропроводным слоем и заземленной металлической арматурой.

Вместо электропроводных покрытий допускается обматывать указанные трубопроводы металлической проволокой сечением не менее 4 мм 2 шагом намотки 100-150 мм, который должен быть присоединен к заземленной металлической арматуры.

Электропроводное покрытия (или обертывание) внешних поверхностей, сплошные электропроводные основы, отдельные электропроводящие элементы и арматура диэлектрических трубопроводов должны составлять по всей длине сплошное электрическую цепь, который в пределах цеха (отделения, установки) должен быть подсоединен к контуру заземления через каждые 20-30 м, но не менее чем в двух точках.

5.8.7. Для обеспечения необходимого контакта с заземлением антиелектростатичних неметаллических трубопроводов достаточно обвивкы их металлической проволокой согласно п.5.8.6 или укладки их на сплошной электропроводные основе.

5.8.8. Опоры трубопроводов из полимерных материалов должны быть изготовлены из электропроводных материалов и заземлены, или иметь заземлены прокладки из электропроводных материалов в местах, где на них опираются трубопроводы.

5.8.9. Жидкости с удельным объемным сопротивлением не более 10 9 Ом · м практически не электризуются при движении со скоростью до:

2 м / с - в трубопроводах и аппаратах с диэлектрических материалов и с диэлектрической футеровкой;

5 м / с - в трубопроводах и аппаратах с антиелектростатичного материала и с антиелектростатичною футеровкой.

5.8.10. Неметаллические антиелектростатични и диэлектрические емкости и аппараты должны покрываться снаружи (а когда позволяет имеющееся в аппарате среду, то и внутри) электропроводными лаками и эмалями при условии обеспечения надежного их контакта с заземленной металлической арматурой.

Надежный контакт электропроводного покрытия с заземлением может быть обеспечен путем окраски сплошным слоем электропроводной эмали всех внутренних и внешних поверхностей аппаратов (емкостей) с установкой под его опоры заземленных металлических (или электропроводящих неметаллических) прокладок.

При невозможности покрытия сплошным слоем внутренней и внешней поверхностей аппарата заземления внутреннего электропроводящего слоя допускается путем применения дополнительных электродов или проводников.

5.8.11. Для отвода статического электричества от веществ, которые находятся в середине диэлектрического оборудования и способны накапливать заряды при контактном или индуктивном воздействии от наэлектризованной поверхности этого оборудования, допускается ввод не менее двух заземленных электродов, стойких к данной среды.

При этом не должна нарушаться герметичность оборудования и электроды, которые вводятся, не должны выступать над внутренней поверхностью. Эти меры оказываются достаточными, когда удельное объемное электрическое сопротивление среды в аппарате не превышает 10 9 Ом · м для жидких сред и 10 8 Ом · м - для сыпучих.

5.9. Отвод заряда, возникающего на людях, передвижных емкостях и аппаратах

5.9.1. Передвижные аппараты и сосуды, особенно для транспортировки диэлектрических горючих и легковоспламеняющихся жидкостей, следует выполнять из электропроводящих материалов (см. пп. 5.8.1, 5.8.2). Транспортироваться по цехам предприятия они должны на металлических тележках с колещатамы из электропроводящих материалов, причем должен быть обеспечен контакт сосуда или аппарата с корпусом тележки.

При транспортировке взрывоопасных веществ, электризуются, на тележках или электрокарах с неэлектропроводных покрышками колес допускается обеспечение контакта тележки или электрокары с землей и электропроводной полом (см. п. 5.9.7) с помощью присоединенного к корпусу цепочки из меди или другого металла, который не дает механической искры, имеет такую длину, чтобы несколько колец при транспортировке постоянно находились на земле или на полу.

Примечание.

Для уменьшения шума при движении металлических тележек их колеса могут быть покрыты электропроводной резиной (см. Приложение 12).

5.9.2. В местах заполнения передвижных сосудов пол должен быть электропроводной (см. п.5.9.7) или на ней должны быть положены заземленные металлические листы, на которые устанавливаются сосуды при заполнении; допускается заземление передвижных сосудов с помощью присоединения их к заземляющему устройству медным тросиком со струбциной.

5.9.3. При заполнении передвижных сосудов наконечник шланга должен быть опущен до дна сосуда на расстояние не более 200 мм.

Когда диаметр горловины сосуда вместимостью более 10 л не позволяет опустить шланг внутрь, необходимо использовать заземленную воронку из меди или другого электропроводящие материала, который не дает механической искры, конец которой должен находиться на расстоянии не более 200 мм от дна сосуда.

В случае использования короткой воронки, к концу ее должен быть присоединен цепочку из электропроводящего материала, не дает механической искры, устойчивого к переливаемои жидкости который при опускании воронки в сосуд должен ложиться на дно.

5.9.4. Для предотвращения опасных искровых разрядов, возникающих вследствие накопления на теле человека заряда статического электричества при контактном или индуктивном влиятельные наэлектризованного материала или элементов одежды, электризуются при трении друг о друга, во взрывоопасных производствах необходимо обеспечить стекание этого заряда в землю.

Основным методом выполнения этого требования является обеспечение электростатической проводимости пола и использование антиелектростатичного обуви.

Примечание.

В связи с большим распространением одежды из синтетических материалов, который сильно электризуется при движении и приводит к быстрому накоплению заряда на теле человека, устройство заземленных рукояток, перил, подмостей следует рассматривать как дополнительное средство отвода заряда с тела человека.

5.9.5. Антиелектростатични свойства обуви определяются отечественными и международными стандартами и техническими условиями на эту обувь.

В отдельных случаях для предоставления обуви антиелектростатичних свойств допускается прошивать или пробивать подошву электропроводными материалами, которые не дают механической искры, и получаются стельку.

Использование носков из шерстяной и синтетической пряжи не допускается, так как они препятствуют стоку заряда с тела человека.

5.9.6. В случае, когда работник выполняет работу в неэлектропроводных обуви сидя, заряд статического электричества, накопившегося на его теле, рекомендуется отводить с помощью антиелектростатичного халата в сочетании с электропроводной подушкой стула или с помощью электропроводных браслетов, которые легко снимаются, соединенных с землей через сопротивление 10 5 - 10 7 Ом.

5.9.7. Для обеспечения непрерывного отвода заряда с тела человека, с передвижных сосудов и аппаратов во взрывоопасных помещениях полы должны быть электростатически ведущей.

Примечания:

1. Покрытие пола считается электростатически ведущим, когда электрическое сопротивление между металлической пластиной площадью 20 см 2, положенной на пол и прижатой к ней силой в 5 кгс, и контуром заземления не превышает 10 6 Ом.

2. Рассеивающая пол - это пол, который характеризуется электрическим сопротивлением от 10 6 Ом до 10 9 Ом.

3. Астатическая пол - это пол, который характеризуется электрическим сопротивлением более 10 9 Ом и в какой сведено к минимуму возникновение зарядов при разделении контакта поверхностей или при трении с другим материалом, а именно подошвы обуви или колес.

4. Удельное объемное электрическое сопротивление некоторых покрытий пола приведена в Приложении 13.

5.9.8. Запрещается проведение работ внутри емкостей и аппаратов, где возможно образование взрывоопасных паро-, газо-и пылевоздушных смесей, в комбинезонах, куртках и другом верхней одежде из материалов, электризуются.

Примечание.

Для предоставления верхней одежде антиелектростатичних свойств рекомендуется пропитывать его растворами поверхностно-активных веществ с последующей просушкой, применение которых согласовано с органами Госсаннадзора Украине.

5.9.9. В случае, когда обслуживающий персонал при работе находится постоянно в электростатическом поле, созданном зарядом на материале, электризуется, или диэлектрическом оборудовании, в том числе дисплейных терминалах, напряженность электростатического поля на рабочих местах не должна превышать предельно допустимых значений, установленных ГОСТ 12.1. 045-84.

5.10. Отвод заряда от вращающихся и ременных передач

5.10.1. Способны электризоваться или заряжаться от наэлектризованного материала электропроводные части машин и аппаратов, которые вращаются и контакт которых с заземленным корпусом может быть нарушено благодаря наличию слоя смазки в подшипниках или применению диэлектрических антифрикционных материалов, должны иметь специальные устройства для обеспечения надежного заземления. Следует избегать применения во взрывоопасных помещениях подшипников или вкладышей к ним с неэлектропроводных материалов.

Лучшим средством для обеспечения контакта в электропроводных подшипниках является применение электропроводящих смазок.

В случае, когда нет возможности обеспечить отвод заряда от вращающихся, проще методами, допустимо применение нейтрализаторов (см. разд. 5.4).

5.10.2. В взрыво-и пожароопасных цехах рекомендуется непосредственно соединять электродвигатель с исполнительным механизмом или использовать редукторы и другие типы передач, изготавливаемых из металла и обеспечивают электрический контакт оси двигателя и исполнительного механизма.

5.10.3. При необходимости применения ременных передач они и все части установки должны изготавливаться из материалов, имеющих удельное объемное электрическое сопротивление не более 10 5 Ом · м, в частности, антиелектростатични клиновые ремни, а вся установка (ограждение и другие металлические предметы вблизи паса) должна заземляться.

5.10.4. В случае использования ремней, изготовленных из материалов с удельным объемным электрическим сопротивлением более 10 5 Ом · м следует применять одно из средств предотвращения опасной электризации:

Увеличение относительной влажности воздуха в местах расположения ременной передачи не менее чем до 70%;

Электропроводящие покрытия (смазки) пасов;

В особых условиях - ионизация воздуха с помощью нейтрализаторов установленных с внутренней стороны ремня, как можно ближе к точке его схода со шкива.

Примечания:

1. Как электропроводное покрытия для кожаных и резиновых ремней рекомендуется масло такого состава: на 100 ваг.ч. глицерина 40 ваг.ч. сажи. Эта смазка имеет наноситься на внешнюю поверхность с помощью щетки при остановке механизма в сроки, которые устанавливает администрация предприятия, но не реже одного раза в неделю.

2. Нужно принимать меры по недопущению загрязнения ремней маслом и другими жидкими и твердыми веществами, которые имеют удельное объемное сопротивление более 10 5 Ом · м.

5.10.5. Запрещается смазка ремней канифолью, воском и другими веществами, которые увеличивают поверхностное сопротивление во взрывоопасных помещениях всех классов.

Если электрические заряды свободно перемещаются по проводнику, это называется электрическим током. Если они останавливаются без движения, начинают накапливаться на чем-либо, следует говорить о статическом электричестве. В соответствии с ГОСТом, статикой называют совокупность возникновения, сохранения и свободного накопления электрического заряда на внешней поверхности диэлектризованных материалов или на изоляторах.

Возникновение статического электричества

Когда физическое тело находится в обычном нейтральном состоянии, баланс отрицательно и положительно заряженных частиц в нем соблюдается. Если же он нарушается, в теле образуется электрозаряд с тем или иным знаком, возникает поляризация – заряды приходят в движение.

Дополнительная информация. Каждый физический объект способен производить заряды либо положительного, либо отрицательного направления, чем и характеризуются по трибоэлектрической шкале.

Например:

  • позитивные: воздух, шкура, асбест, стекло, кожа, слюда, шерсть, мех, свинец;
  • негативные: эбонит, тефлон, селен, полиэтилен, полиэстер, латунь, медь, никель, латекс, янтарь;
  • нейтральные: бумага, хлопок, древесина, сталь.

Статическая электризация предметов может происходить вследствие различных причин. Главными из них являются следующие:

  • непосредственный контакт между телами с последующим разделением: трение (между диэлектриками или диэлектриком и металлом), наматывание, разматывание, перемещение слоев материала друг относительно друга и другие подобные манипуляции;
  • мгновенное изменение температуры окружения: резкое охлаждение, помещение в духовку и др.;
  • радиационное воздействие, облучение ультрафиолетом или рентгеновскими лучами, наведение сильных электрических полей;
  • процессы резания – на станках для раскроя или разрезания бумажных листов;
  • специальное направленное наведение статистическим разрядом.

На молекулярном уровне возникновение статического электричества происходит вследствие сложных процессов, когда электроны и ионы со сталкивающихся неоднородных поверхностей с разными атомарными связями поверхностного притягивания начинают перераспределяться. Чем быстрее материалы или жидкости перемещаются друг относительно друга, ниже их удельное сопротивление, больше площади, вступающие в контакт и усилия взаимодействия, тем выше будут степень электризации и электрический потенциал.

Источниками возникновения электростатики, как в бытовых, так и в промышленных условиях, являются компьютерная и офисная техника, телевизоры и прочие агрегаты и приборы, питающиеся от электрического тока. Например, у самого простого компьютера имеется пара вентиляторов для охлаждения системного блока. При разгоне воздуха частички пыли, содержащиеся в нем, электризуются и, сохраняя заряд, оседают на окружающих предметах, коже и волосах людей и даже проникают в легкие.

Также статика в большом количестве накапливается на экранах мониторов. В домах и производственных помещениях электростатические заряды образуются на полах, покрытых линолеумом или ПВХ-плиткой, на людях (в волосах и на синтетической одежде).

В природе очень мощным бывает статическое электричество, возникающее при перемещении облачных масс: между ними возникают огромные потенциалы электроэнергии, что проявляется в грозовых разрядах.

В промышленности часто встречается образование статических зарядов в случаях:

  • трения лент транспортеров о валы, ремней проводов – о шкивы (особенно в случаях буксовки и застревания);
  • при прохождении горючих жидкостей по трубопроводам;
  • заполнении цистерн бензином и прочими жидкими нефтяными фракциями;
  • попадания и продвижения пылинок в воздухопроводах с большой скоростью;
  • во время размалывания, перемешивания и отсеивания сухих веществ;
  • во время взаимного сжимания диэлектрических материалов разного рода и консистенции;
  • обработке пластических масс механическим способом;
  • прохождении сжиженного газа (особенно содержащего суспензии или пыль) по трубопроводам;
  • перемещения тележек с прорезиненными шинами по изолирующему половому покрытию.

Опасность статического электричества

Наибольшую опасность накопившееся статическое электричество представляет на промышленном производстве. Может произойти неожиданное воспламенение горючего материала искрами от прикосновения оператора с оборудованием на заземлении и последующим взрывом. Энергия электростатических разрядом иногда составляет около 1,4 джоулей – это более чем достаточно для приведения смесей пыли, пара, газа и воздуха, присутствующих в любых горючих веществах, в состояние горения. По ГОСТу наибольшая энергия накопленных зарядов на поверхности промышленного объекта не должна быть более 40 процентов от наименьшей энергии для загорания материала.

При протекании некоторых технологических операций, например:

  • пересыпании и перевозке песка в грузовиках;
  • прокачке топлива по трубопроводам;
  • переливании спирта, бензола, эфира в незаземленные цистерны с большой скоростью;
  • при транспортерных работах и др. генерируются электрические потенциалы от 3 до 80 киловольт.

Обратите внимание! Для того чтобы взорвались бензиновые пары, достаточно 300 вольт, горючие газы – 3 киловольта, а горючие пыли – около 5 киловольт.

Статика также негативно отражается на работе всех точных и сверхточных приборов, радиосвязном оборудовании, создает большие проблемы в функционировании средств автоматики и телевизионной механики. Многие детали сложных электронных приборов просто не рассчитаны на такие высокие значения напряжения, образуемые статическим разрядом. Он выводит эти детали из строя, в результате чего у приборов теряется точность работы.

На людях также могут скапливаться заряженные частицы, если они носят обувь с подошвами, не проводящими ток, шерстяную, шелковую или синтетическую одежду. Электризация происходит при движении (если половое покрытие не проводит электроток) и взаимодействии с диэлектрическими предметами.

Воздействие статики на человеческое тело осуществляется в виде продолжительно протекающего электротока слабого напряжения или же моментного разряда, что вызывает легкие и не всегда приятные покалывания на коже (иногда они оцениваются как умеренные или даже сильные уколы). В целом, такое воздействие потенциалом не выше 7 джоулей считается неопасным для здоровья, однако, даже слабый разряд тока может привести к рефлекторному сокращению мышц, что чревато различными производственными травмами (попадание в рабочие зоны механизмов, захват частей тела или одежды неогороженными двигающимися элементами машин, падение с высоты).

Если рассматривать действие статического электричества на человеческий организм на клеточном уровне, то в результате срабатывания нейрорефлекторного механизма происходит раздражение кожных нейронов и мельчайших капилляров. Это приводит к изменениям в ионном составе тканей нашего тела, что проявляется в повышенной утомляемости в течение дня, постоянному раздраженному психическому состоянию, нарушению ритма сна и другим проблемам в функционировании центральной нервной системы. Общая работоспособность снижается. Провоцируемые постоянным воздействием статического электричества спазмы кровеносных сосудов могут стать причиной брадикардии – уменьшения частоты сокращений сердечной мышцы и повышенного кровяного давления.

Способы защиты от статики на производстве

Против вредного и опасного проявления накопленного статического электротока в производственных условиях разрабатывается и применяется комплекс защитных мероприятий. В их основе лежат следующие методы:

  • повышение проводящих свойств материалов и окружающей рабочей среды, что приводит к рассеиванию в пространстве периодически появляющихся электрозарядов статики;
  • снижение скоростей обработки и перемещения материалов, что значительно уменьшает возможности генерирования статических электрозарядов;
  • полномасштабное применение грамотно устроенного заземления, что помогает исключить накопление опасных потенциалов;
  • повышение устойчивости самих машин и механизмов к действию статистических разрядов;
  • недопущение проникновения электрического тока в рабочую зону.

Все способы, применяемые для предотвращения статических электрических разрядов, разделяют на конструкционные, технологические, химические, физические и механические. Три последних направлены главным образом на снижение активности генерирования электрозарядов и быстрейшему их уходу в почву. В то же время первые из перечисленных методов с заземлением не связаны.

В качестве высоконадежного средства защиты от статического электричества выступает так называемая клетка Фарадея. Она выполняется в виде мелкоячеистой сетки, ограждающей машины по всей площади, у нее имеется подключение к контуру заземления.

Благодаря такой конструкции, поля электричества не проникают внутрь клетки Фарадея, а на магнитное поле она никак не влияет. Электрические кабели, покрытые предварительно экраном из металлического листа, защищаются по таким же принципам.

Электростатический заряд можно оптимально уменьшить посредством возрастания токопроводимости промышленных материалов и проведением коронирования (т.е. создания на поверхности материалов воздушной плазмы коронным разрядом комнатной температуры). Достигается это с помощью специального подбора материалов, имеющих повышенную объемную проводимость, наращиванием рабочих площадей и повышением ионизации воздуха вокруг защищаемых механизмов. Специальные агрегаты – ионизаторы, генерируют положительно и отрицательно заряженные ионы, которые притягиваются к противоположно заряженным диэлектрикам и нейтрализуют их заряды.

Важно! Для веществ с высоким электросопротивлением такие способы защиты от статики не подходят.

Обязательным в перечне мероприятий по защите от статического электричества является заземление. В состав заземляющего устройства входит заземлитель (проводящий элемент) и проводник заземления между заземляющей точкой на почве и заземлителем. Достаточным заземление против электростатики считается при сопротивлении в любой точке оборудования не выше 1 мегаОм. Для оборудования часто используются проводящие пленки, покрывающие рабочую поверхность.

В рабочих помещениях настилаются антистатические полы, операторы должны работать в антистатической одежде и обуви (при этом сопротивление материала подошв не выше 100 ом).

Защита от статического электричества в быту

В бытовых условиях существует комплекс мер и мероприятий, помогающих предотвратить образование электростатических разрядов:

  • влажная уборка, проводимая каждый день, снижает объем циркулирующей в воздухе пыли;
  • недопущение пересыхания воздуха, ежедневное проветривание помещений;
  • применение в уборке антистатических щеток;

  • использование антистатических предметов мебели;
  • отделка дома материалами, которые хорошо снимают статику: древесина, антистатический линолеум и другие;
  • что касается одежды, шерстяную одежду снимать медленными движениями, а для снятия эффекта прилипания шелковых вещей – использовать антистатические спреи;
  • не гладить шерсть животных при холодном и сухом воздухе;
  • волосы расчесывать расческами из дерева или металла вместо пластиковых гребней.

Не стоит забывать о защите личных автомобилей от образования статики на кузове машины, особенно перед заправкой его бензином. Делается это с помощью простой антистатической полоски под днищем кузова.

Статическое электричество – это свободные электрические заряды, собираемые на различных диэлектриках. И в промышленности, и в быту происходит накопление совсем неполезного статического электричества, и необходима защита от него, поскольку такие заряды способны нанести вред как машинам, механизмам, так и промышленным объектам и здоровью человека. Только надежные методы способны свести на нет или же совсем не допустить этого отрицательного явления.

Видео

Повседневная деятельность любого человека связана с его перемещением в пространстве. При этом он не только ходит пешком, но и ездит на транспорте.

Во время любого движения происходит перераспределение статических зарядов, изменяющих баланс внутреннего равновесия между атомами и электронами каждого вещества. Он связан с процессом электризации, образованием статического электричества.

У твердых тел распределение зарядов происходит за счет перемещения электронов, а у жидких и газообразных - как электронов, так и заряженных ионов. Все они в комплексе создают разность потенциалов.

Причины образования статического электричества

Наиболее распространенные примеры проявления сил статики объясняют в школе на первых уроках физики, когда натирают стеклянные и эбонитовые палочки о шерстяную ткань и демонстрируют притяжение к ним мелких кусочков бумаги.

Также известен опыт по отклонению тонкой струи воды под действием статических зарядов, сконцентрированных на эбонитовом стержне.

В быту статическое электричество проявляется чаще всего:

    при ношении шерстяной или синтетической одежды;

    хождении в обуви с резиновой подошвой или в шерстяных носках по коврам и линолеуму;

    пользовании пластиковыми предметами.


Ситуацию усугубляют:

    сухой воздух внутри помещений;

    железобетонные стены, из которых выполнены многоэтажные здания.

Как создается статический заряд

Обычно физическое тело содержит в себе равное количество положительных и отрицательных частиц, за счет чего в нем создан баланс, обеспечивающий его нейтральное состояние. Когда оно нарушается, то тело приобретает электрический заряд определённого знака.

Под статикой подразумевают состояние покоя, когда тело не движется. Внутри его вещества может происходить поляризация - перемещение зарядов с одной части на другую или перенос их с рядом расположенного предмета.

Электризация веществ происходит за счет приобретения, удаления или разделения зарядов при:

    взаимодействии материалов за счет сил трения или вращения;

    резком температурном перепаде;

    облучении различными способами;

    разделении или разрезании физических тел.

Распределяются по поверхности предмета или на удалении от нее в несколько междуатомных расстояний. У незаземленных тел они распространяются по площади контактного слоя, а у подключенных к контуру земли стекают на него.

Приобретение статических зарядов телом и их стекание происходит одновременно. Электризация обеспечивается тогда, когда тело получает бо́льший потенциал энергии, чем расходует во внешнюю среду.

Из этого положения вытекает практический вывод: для защиты тела от статического электричества необходимо с него отводить приобретаемые заряды на контур земли.

Способы оценки статического электричества

Физические вещества по способности образовывать электрические заряды разных знаков при взаимодействии трением с другими телами, характеризуют по шкале трибоэлектрического эффекта. Часть их показана на картинке.


В качестве примера их взаимодействия можно привести следующие факты:

    хождение в шерстяных носках или обуви с резиновой подошвой по сухому ковру может зарядить человеческое тело до 5÷-6 кВ;

    корпус автомобиля, едущего по сухой дороге, приобретает потенциал до 10 кВ;

    ремень привода, вращающий шкив, заряжается до 25 кВ.

Как видим, потенциал статического электричества достигает очень больших величин даже в бытовых условиях. Но он не причиняет нам большого вреда потому, что не обладает высокой мощностью, а его разряд проходит через высокое сопротивление контактных площадок и измеряется в долях миллиампера или чуть больше.

К тому же его значительно уменьшает влажность воздуха. Ее влияние на величину напряжения тела при контакте с различными материалами показано на графике.


Из его анализа следует вывод: во влажной среде статическое электричество проявляется меньше. Поэтому для борьбы с ним используют различные увлажнители воздуха.

В природе статическое электричество может достигать огромных величин. При перемещении облаков на дальние расстояния между ними скапливаются значительные потенциалы, которые проявляются молниями, энергии которых бывает достаточно для того, чтобы расколоть вдоль ствола вековое дерево или сжечь жилое здание.

При разряде статического электричества в быту мы чувствуем «пощипывания» пальцев, видим искры, исходящие от шерстяных вещей, ощущаем снижение бодрости, работоспособности. Ток, действию которого подвергается наш организм в быту, отрицательно сказывается на самочувствии, состоянии нервной системы, но он не приносит явных, видимых повреждений.

Производители измерительного промышленного оборудования выпускают приборы, позволяющие точно определить величину напряжения накопленных статических зарядов как на корпусах оборудования, так и на теле человека.


Как защититься от действия статического электричества в быту

Каждый из нас должен понимать процессы, которые образуют статические разряды, представляющие угрозу для нашего организма. Их следует знать и ограничивать. С этой целью проводятся различные обучающие мероприятия, включая популярные телепередачи для населения.


На них доступными средствами показываются способы создания статического напряжения, принципы его замера и методы выполнения профилактических мероприятий.

Например, учитывая трибоэлектрический эффект, лучше всего для расчесывания волос использовать расчески из натурального дерева, а не металла или пластика, как делает большинство людей. Древесина обладает нейтральными свойствами и при трении по волосам не образует заряды.


Для снятия статического потенциала с корпуса автомобиля при его движении по сухой дороге служат специальные ленты с антистатиком, крепящиеся к днищу. Различные их виды широко представлены в продаже.


Если такой защиты на автомобиле нет, то потенциал напряжения можно снимать кратковременным заземлением корпуса через металлический предмет, например, ключ зажигания автомобиля. Особенно важно выполнять эту процедуру перед заправкой топливом.

Когда на одежде из синтетических материлов накапливается статический заряд, то снять его можно обработкой паров из специального баллончика с составом «Антистатика». А вообще лучше меньше пользоваться подобными тканями и носить натуральные материалы из льна или хлопка.

Обувь с прорезиненной подошвой тоже споосбствует накапливанию зарядов. Достаточно положить в нее антистатические стельки из натуральных материалов, как вредное воздействие на организм будет снижено.

Влияние сухого воздуха, характерного для городских квартир в зимнее время, уже обговорено. Специальные увлажнители или даже небольшие куски смоченной материи, положенные на бытарею, улучшают обстановку, снижают процесс образования статического электричества. А вот регулярное выполнение влажной уборки в помещениях позволяет своевременно удалять наэлектризованные частички и пыль. Это один из лучших способов защиты.

Бытовые электрические приборы при работе тоже накапливают на корпусе статические заряды. Снижать их воздействие призвана система уравнивания потенциалов, подключаемая к общему контуру заземления здания. Даже простая акрилловая ванна или старая чугунная конструкция с такой же вставкой подвержена статике и требует защиты подобным способом.

Как выполняется защита от действия статического электричества на производстве

Факторы, снижающие работоспособность электронного оборудования

Разряды, возникающе при изготовлении полупроводниковых материалов, способны причинить большой вред, нарущить электрические характеристики приборов или вообще вывести их из строя.

В условиях производства разряд может носить случайный характер и зависеть от ряда различных факторов:

    величин образовавшейся емкости;

    энергии потенциала;

    электрического сопротивления контактов;

    вида переходных процессов;

    других случайностей.

При этом в начальный момент порядка десяти наносекунд происходит возрастание тока разряда до максимума, а затем он снижается в течение 100÷300 нс.

Характер возникновения статического разряда на полупроводниковый прибор через тело оператора показан на картинке.

На величину тока оказывают влияние: емкость заряда, накопленного человеком, сопротивление его тела и контактных площадок.

При производстве электротехнического оборудования статический разряд может создаться и без участия оператора за счет образования контактов через заземленные поверхности.

В этом случае на ток разряда влияет емкость заряда, накопленная корпусом прибора и сопротивление образовавшихся контактных площадок. При этом на полупроводник в первоначальный момент одновременно влияют наведенный потенциал высокого напряжения и разрядный ток.

За счет такого комплексного воздействия повреждения могут быть:

1. явными, когда работоспособность элементов уменьшена до такой степени, что они становятся непригодными к эксплуатации;

2. скрытыми - за счет снижения выходных параметров, иногда даже укладывающихся в рамки установленных заводских характеристик.

Второй вид неисправностей обнаружить сложно: они сказываются чаще всего потерей работоспособности во время эксплуатации.

Пример подобного повреждения от действия высокого напряжения статики демонстрируют графики отклонения вольт амперных характеристик применительно к диоду КД522Д и интегральной микросхеме БИС КР1005ВИ1.


Коричневая линия под цифрой 1 показывает параметры полупроводниковых приборов до испытаний повышенным напряжением, а кривые с номером 2 и 3 - их снижение под действием увеличенного наведенного потенциала. В случае №3 оно имеет большее воздействие.

Причинами повреждений могут быть действия от:

    завышенного наведенного напряжения, которое пробивает слой диэлектрика полупроводниковых приборов или нарушает структуру кристалла;

    высокой плотности протекающего тока, вызывающей большую температуру, приводящую к расплавлению материалов и прожигу оксидного слоя;

    испытания, электротермотренировки.

Скрытые повреждения могут сказаться на работоспособности не сразу, а через несколько месяцев или даже лет эксплуатации.

Способы выполнения защит от статического электричества на производстве

В зависимости от типа промышленного оборудования используют один из следующих методов сохранения работоспособности или их сочетания:

1. исключение образования электростатических зарядов;

2. блокирование их попадания на рабочее место;

3. повышение стойкости приборов и комплектующих приспособлений к действию разрядов.

Способы №1 и №2 позволяют выполнять защиту большой группы различных приборов в комплексе, а №3 - используется для отдельных устройств.

Высокая эффективность сохранения работоспособности оборудования достигается помещением его внутрь клетки Фарадея - огражденного со всех сторон пространства мелкоячеистой металлической сеткой, подключенной к контуру заземления. Внутри нее не проникают внешние электрические поля, а статическое магнитное - присутствует.

По этому принципу работают кабели с экранированной оболочкой.

Защиты от статики классифицируют по принципам исполнения на:

    физико-механические;

    химические;

    конструкционно-технологические.

Первые два способа позволяют предотвратить или уменьшить процесс образования статических зарядов и увеличить скорость их стекания. Третий прием защищает приборы от воздействия зарядов, но он не влияет на их сток.

Улучшить стекание разрядов можно за счет:

    создания коронирования;

    повышения проводимости материалов, на которых накапливаются заряды.

Решают эти вопросы:

    ионизацией воздуха;

    повышением рабочих поверхностей;

    подбором материалов с лучшей объемной проводимостью.

За счет их реализации создают подготовленные заранее магистрали для стекания статических зарядов на контур заземления, исключения их попадания на рабочие элементы приборов. При этом учитывают, что общее электрическое сопротивление созданного пути не должно превышать 10 Ом.

Если материалы обладают большим сопротивлением, то защиту выполняют другими способами. Иначе на поверхности начинают скапливаться заряды, которые могут разрядиться при контакте с землей.

Пример выполнения комплексной электростатической защиты рабочего места для оператора, занимающегося обслуживанием и наладкой электронных приборов, показан на картинке.


Поверхность стола через соединительный проводник и токопроводящий коврик подключена к контуру заземления с помощью специальных клемм. Оператор работает в специальной одежде, носит обувь с токопроводящей подошвой и сидит на стуле со специальным сидением. Все эти мероприятия позволяют качественно отводить скапливающиеся заряды на землю.

Работающие ионизаторы воздуха регулируют влажность, снижают потенциал статического электричества. При их использовании учитывают, что повышенное содержание паров воды в воздухе отрицательно влияет на здоровье людей. Поэтому ее стараются поддерживать на уровне порядка 40%.

Также эффективным способом может быть регулярное проветривание помещения или использование в нем системы вентиляции, когда воздух проходит через фильтры, ионизируется и смешивается, обеспечивая таким образом нейтрализацию возникающих зарядов.

Для снижения потенциала, накапливаемого телом человеком, могут применяться браслеты, дополняющие комплект антистатической одежды и обуви. Они состоят из токопроводящей полосы, которая крепится на руке с помощью пряжки. Последняя подключена к проводу заземления.

При этом способе ограничивают ток, протекающий через человеческий организм. Его величина не должна превышать один миллиампер. Бо́льшие значения могут причинять боль и создавать электротравмы.

Во время стекания заряда на землю важно обеспечить скорость его ухода за одну секунду. С этой целью применяют покрытия пола с малым электрическим сопротивлением.

При работе с полупроводниковыми платами и электронными блоками защита от повреждения статическим электричеством обеспечивается также:

    принудительным шунтированием выводов электронных плат и блоков во время проверок;

    использованием инструмента и паяльников с заземлёнными рабочими головками.

Емкости с легковоспламеняющимися жидкостями, расположенные на транспорте, заземляются с помощью металлической цепи. Даже фюзеляж самолета снабжается металлическими тросиками, которые при посадке работают защитой от статического электричества.