Методы приведения формы к каноническому виду. Приведение квадратичных форм к каноническому виду

А с матрицей .

Это симметрическое преобразование можно записать в виде:

y 1 = a 11 x 1 + a 12 x 2

y 2 = a 12 x 1 + a 22 x 2

где у 1 и у 2 - координаты вектора в базисе .

Очевидно, что квадратичная форма может быть записана в виде:

Ф(х 1 , х 2) = х 1 у 1 + х 2 у 2 .

Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х 1 и х 2 - скалярное произведение .

Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.

Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:

При переходе к новому базису от переменных х 1 и х 2 мы переходим к переменным и . Тогда:

Выражение называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.

Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.

Пример. Привести к каноническому виду квадратичную форму

Ф(х 1 , х 2) = 27.

Коэффициенты : а 11 = 27, а 12 = 5, а 22 = 3.

Составим характеристическое уравнение : ;

(27 - l)(3 - l) - 25 = 0

l 2 - 30l + 56 = 0

l 1 = 2; l 2 = 28;

Пример. Привести к каноническому виду уравнение второго порядка:

17x 2 + 12xy + 8y 2 - 20 = 0.

Коэффициенты а 11 = 17, а 12 = 6, а 22 = 8. А =

Составим характеристическое уравнение:

(17 - l)(8 - l) - 36 = 0

136 - 8l - 17l + l 2 - 36 = 0

l 2 - 25l + 100 = 0

l 1 = 5, l 2 = 20.

Итого: - каноническое уравнение эллипса.

Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l 1 = 2, l 2 = 6.

Найдем координаты собственных векторов:

Собственные векторы :

Каноническое уравнение линии в новой системе координат будет иметь вид:

Пример . Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Решение : Составим характеристическое уравнение квадратичной формы : при


Решив это уравнение, получим l 1 = 1, l 2 = 11.

Найдем координаты собственных векторов:

полагая m 1 = 1, получим n 1 =

полагая m 2 = 1, получим n 2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

При использовании компьютерной версии “Курса высшей математики ” возможно запустить программу, которая решает рассморенные выше примеры для любых начальных условий.

Для запуска программы дважды щелкните на значке:

В открывшемся окне программы введите коэффициенты квадратичной формы и нажмите Enter.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

Данный метод состоит в последовательном выделении в квадратичной форме полных квадратов.

Пусть дана квадратичная форма

Напомним, что, ввиду симметричности матрицы

,

Возможны два случая:

1. Хотя бы один из коэффициентовпри квадратах отличен от нуля. Не нарушая общности, будем считать(этого всегда можно добиться соответствующей перенумерацией переменных);

2. Все коэффициенты,

но есть коэффициент , отличный от нуля (для определённости пусть будет).

В первом случае преобразуем квадратичную форму следующим образом:

,

а через обозначены все остальные слагаемые.

представляет собой квадратичную форму от (n-1) переменных .

С ней поступают аналогичным образом и так далее.

Заметим, что

Второй случай заменой переменных

сводится к первому.

Пример 1:Квадратичную форму привести к каноническому виду посредством невырожденного линейного преобразования.

Решение. Соберём все слагаемые, содержащие неизвестное , и дополним их до полного квадрата

.

(Так как .)

или

(3)

или


(4)

и от неизвестных
формапримет вид. Далее полагаем

или

и от неизвестных
формапримет уже канонический вид

Разрешим равенства (3) относительно
:

или

Последовательное выполнение линейных преобразований
и
, где

,

имеет матрицей

Линейное преобразование неизвестных
приводит квадратичную форму к каноническому виду (4). Переменные
связаны с новыми переменными
соотношениями

С LU - разложением мы познакомились в практикуме 2_1

Вспомним утверждения из практикума 2_1

Утверждения (см.Л.5, стр. 176)


Данный скрипт призван понять роль LU в методе Лагранжа, с ним нужно работать в блокноте EDITOR с помощью кнопки F9.

А в прилагаемых ниже заданиях лучше создать свои М-функции, помогающие вычислению и осознанию задач линейной алгебры (в рамках данной работы)

Ax=X."*A*X % получаем квадратичную форму

Ax=simple(Ax) % упрощаем ее

4*x1^2 - 4*x1*x2 + 4*x1*x3 + x2^2 - 3*x2*x3 + x3^2

% найдем LU разложение без перестановки строк матрицы A

% При преобразовании матрицы к ступенчатому виду

%без перестановок строк, мы получим матрицу M1 и U3

% U получается из A U3=M1*A,

% вот такой матрицей элементарных преобразований

0.5000 1.0000 0

0.5000 0 1.0000

%мы получим U3=M1*A, где

4.0000 -2.0000 2.0000

% из M1 легко получить L1, поменяв знаки

% в первом столбце во всех строках кроме первой.

0.5000 1.0000 0

0.5000 0 1.0000

% L1 такое, что

A_=L1*U % вот это и есть нужное нам LU разложение

% Элементы, стоящие на главной диагонали U -

% это коэффициенты при квадратах y i ^2

% в преобразованной квадратичной форме

% в нашем случае, есть один только коэффициент

% значит, в новых координатах будет только 4y 1 2 в квадрате,

% при остальных 0y 2 2 и 0y 3 2 коэффициенты равны нулю

% столбцы матрицы L1 - это разложение Y по X

% по первому столбцу видим y1=x1-0.5x2+0.5x3

% по второму видим y2=x2; по третьему y3=x3.

% если транспонировать L1,

% то есть T=L1."

% T - матрица перехода от {X} к {Y}: Y=TX

0.5000 1.0000 0

1.0000 -0.5000 0.5000

% A2 – матрица преобразованной квадратичной формы

% Заметим U=A2*L1." и A=L1* A2*L1."

4.0000 -2.0000 2.0000

1.0000 -0.5000 0.5000

% Итак, мы получили разложение A_=L1* A2*L1." или A_=T."* A2*T

% показывающее замену переменных

% y1=x1-0.5x2+0.5x3

% и представление квадратичной формы в новых координатах

A_=T."*A2*T % T=L1." матрица перехода от {X} к {Y}: Y=TX

isequal(A,A_) % должно совпасть с исходной A

4.0000 -2.0000 2.0000

2.0000 1.0000 -1.5000

2.0000 -1.5000 1.0000

Q1=inv(T) % находим матрицу перехода от {Y} к {X}

% Найдем преобразование,

% приводящее квадратичную форму Ax=X."*A*X

% к новому виду Ay=(Q1Y)."*A*Q1Y=Y." (Q1."*A*Q1)*Y=Y." (U)*Y

Ay =4*y1^2 - y2*y3

x1 - x2/2 + x3/2

% матрица второго преобразования,

% которая составляется значительно проще.

4*z1^2 - z2^2 + z3^2

% R=Q1*Q2, X=R*Z

R=Q1*Q2 % невырожденное линейное преобразование

% приводящее матрицу оператора к каноническому виду.

det(R) % определитель не равен нулю - преобразование невырожденное

4*z1^2 - z2^2 + z3^2 ok

4*z1^2 - z2^2 + z3^2


Сформулируем алгоритм приведения квад ратичной формы к каноническому виду ортогональным преобразованием:


Приведение квадратичных форм

Рассмотрим наиболее простой и чаще используемый на практике способ приведения квадратичной формы к каноническому виду, называемый методом Лагранжа . Он основан на выделении полного квадрата в квадратичной форме.

Теорема 10.1 (теорема Лагранжа).Любую квадратичную форму (10.1):

при помощи неособенного линейного преобразования (10.4) можно привести к каноническому виду (10.6):

□ Доказательство теоремы проведем конструктивным способом, используя метод Лагранжа выделения полных квадратов. Задача заключается в том, чтобы найти неособенную матрицу такую, чтобы в результате линейного преобразования (10.4) получилась квадратичная форма (10.6) канонического вида. Эта матрица будет получаться постепенно как произведение конечного числа матриц специального типа.

Пункт 1(подготовительный).

1.1. Выделим среди переменных такую, которая входит в квадратичную форму в квадрате и в первой степени одновременно (назовем ее ведущей переменной ). Перейдем к пункту 2.

1.2. Если в квадратичной форме нет ведущих переменных (при всех : ), то выберем пару переменных, произведение которых входит в форму с отличным от нуля коэффициентом и перейдем к пункту 3.

1.3. Если в квадратичной форме отсутствуют произведения разноименных переменных, то данная квадратичная форма уже представлена в каноническом виде (10.6). Доказательство теоремы завершено.

Пункт 2 (выделение полного квадрата).

2.1. По ведущей переменной выделим полный квадрат. Без ограничения общности предположим, что ведущей переменной является переменная . Группируя слагаемые, содержащие , получаем

Выделяя полный квадрат по переменной в , получим

Таким образом, в результате выделения полного квадрата при переменной получим сумму квадрата линейной формы

в которую входит ведущая переменная , и квадратичной формы от переменных , в которую ведущая переменная уже не входит. Сделаем замену переменных (введем новые переменные )

получим матрицу

() неособенного линейного преобразования , в результате которого квадратичная форма (10.1) примет следующий вид

С квадратичной формой поступим также, как и в пункте 1.

2.1. Если ведущей переменной является переменная , то можно поступить двумя способами: либо выделять полный квадрат при этой переменной, либо выполнить переименование (перенумерацию ) переменных:

с неособенной матрицей преобразования:

Пункт 3 (создание ведущей переменной). Выбранную пару переменных заменим на сумму и разность двух новых переменных, а остальные старые переменные заменим на соответствующие новые переменные. Если, например, в пункте 1 было выделено слагаемое



то соответствующая замена переменных имеет вид

и в квадратичной форме (10.1) будет получена ведущая переменная.

Например, в случае замены переменных:

матрица этого неособенного линейного преобразования имеет вид

В результате приведенного алгоритма (последовательного применения пунктов 1, 2, 3) квадратичная форма (10.1) будет приведена к каноническому виду (10.6).

Заметим, что в результате производимых преобразований над квадратичной формой (выделение полного квадрата, переименование и создание ведущей переменной) мы использовали элементарные неособенные матрицы трех типов (они являются матрицами перехода от базиса к базису). Искомая матрица неособенного линейного преобразования (10.4), при котором форма (10.1) имеет канонический вид (10.6), получается путем произведения конечного числа элементарных неособенных матриц трех типов. ■

Пример 10.2. Привести квадратичную форму

к каноническому виду методом Лагранжа. Указать соответствующее неособенное линейное преобразование. Выполнить проверку.

Решение. Выберем ведущей переменную (коэффициент ). Группируя слагаемые, содержащие , и выделяя по ней полный квадрат, получим

где обозначено

Сделаем замену переменных (введем новые переменные )

Выразив старые переменные через новые :

получим матрицу

Вычислим матрицу неособенного линейного преобразования (10.4). Учитывая равенства

получим, что матрица имеет вид

Выполним проверку проведённых вычислений. Матрицы исходной квадратичной формы и канонической формы имеют вид

Убедимся в справедливости равенства (10.5).