Описание молекул методом молекулярных орбиталей. Основы метода молекулярных орбиталей (МО)

Метод ВС широко используется химиками. В рамках этого метода большая и сложная молекула рассматривается как состоящая из отдельных двухцентровых и двухэлектронных связей. Принимается, что электроны, обусловливающие химическую связь, локализованы (расположены) между двумя атомами. К большинству молекул метод ВС может быть применен с успехом. Однако имеется ряд молекул, к которым этот метод неприменим или его выводы находятся в противоречии с опытом.

Установлено, что в ряде случаев определяющую роль в образовании химической связи играют не электронные пары, а отдельные электроны. На возможность химической связи при помощи одного электрона указывает существование иона H 2 + . При образовании этого иона из атома водорода и иона водорода выделяется энергия в

255 кДж (61 ккал). Таким образом, химическая связь в ионе H­ 2 + довольно прочная.

Если попробовать описать химическую связь в молекуле кислорода по методу ВС, то придем к заключению, что, во-первых, она должна быть двойной (σ- и p-связи), во-вторых, в молекуле кислорода все электроны должны быть спарены, т.е. молекула О 2 должна быть диамагнитна (у диамагнитных веществ атомы не обладают постоянным магнитным моментом и вещество выталкивается из магнитного поля). Парамагнитным веществом называется то, атомы которого или молекулы обладают магнитным моментом, и оно обладает свойством втягиваться в магнитное поле. Экспериментальные данные показывают, что по энергии связь в молекуле кислорода действительно двойная, но молекула является не диамагнитной, а парамагнитной. В ней имеется два неспаренных электрона. Метод ВС бессилен объяснить это факт.

Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей (ЛКАО). Метод МО ЛКАО основан на следующих правилах.

1) При сближении атомов до расстояний химических связей из атомных орбиталей (АО) образуются молекулярные.

2) Число полученных молекулярных орбиталей равно числу исходных атомных.

3) Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей , а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей .

4) При перекрывании атомных орбиталей возможно образование и σ-связи (перекрывание по оси химической связи), и π-связи (перекрывание по обе стороны от оси химической связи).

5) Молекулярная орбиталь, не участвующая в образовании химической связи, носит название несвязывающей . Ее энергия равна энергии исходной АО.



6)На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов.

7)Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

8)Заполнение вырожденных (с одинаковой энергией) орбиталей происходит последовательно по одному электрону на каждую из них.

Метод молекулярных орбиталей исходит из того, что каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. Например, в молекуле водорода в образовании МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО, представляющие собой сумму и разность атомных орбиталей 1s 1 и 1s 2 – МО ± = C 1 1s 1 ±C 2 1s 2 .

Электронная плотность этих двух состояний пропорциональна |MO ± | 2 . Поскольку в молекуле водорода взаимодействие возможно только по оси молекулы, то каждая из MO ± может быть переобозначена как σ св = 1s 1 + 1s 2 и σ* = 1s 1 – 1s 2 и названа соответственно связывающей (σ св) и разрыхляющей (σ*) молекулярными орбиталями.

Из рис. 10 видно, что электронная плотность посередине между ядрами для σ св значительна, а для σ* равна нулю. Отрицательно заряженное электронное облако, сконцентрированное в межъядерном пространстве, притягивает положительно заряженные ядра и соответствует связывающей молекулярной орбитали σ св. А МО с нулевой плотностью в межъядерном пространстве соответствует разрыхляющей орбитали σ*. Состояния σ св и σ* отвечают разным уровням энергии, причем молекулярная орбиталь σ св имеет более низкую энергию по сравнению с исходными АО двух невзаимодействующих атомов водорода 1s 1 и 1s 2 .

Переход двух электронов на МО σ св способствует понижению энергии системы; этот энергетический выигрыш равен энергии связи между атомами в молекуле водорода H–H. Даже удаление одного электрона с МО (σ св) 2 c образованием (σ св) 1 в молекулярном ионе Н 2 + оставляет эту систему более устойчивой, чем отдельно существующие атом H и ион H + .

Применим метод МО ЛКАО и разберем строение молекулы водорода. Изобразим на двух параллельных диаграммах энергетические уровни атомных орбиталей исходных атомов водорода

Видно(см.рис.11 и 12), что имеется выигрыш в энергии по сравнению с несвязанными атомами. Свою энергию понизили оба электрона, что соответствует единице валентности в методе валентных связей (связь образуется парой электронов).
Метод МО ЛКАО позволяет наглядно объяснить образование ионов Н 2 + и Н 2 - (см.рис.13 и 14), что вызывает трудности в методе валентных связей. На σ-связывающую молекулярную орбиталь катиона Н 2 + переходит один электрон атома H с выигрышем энергии. Образуется устойчивое соединение с энергией связи 255кДж/моль. Кратность связи равна ½. Молекулярный ион парамагнитен. Молекула обычного водорода содержит уже два электрона с противоположными спинами на σ cв 1s-орбитали: Энергия связи в Н 2 больше, чем в H 2 + - 435 кДж/моль. В молекуле Н 2 имеется одинарная связь, молекула диамагнитна.

В анионе Н 2 - на двух молекулярных орбиталях необходимо разместить уже три электрона.

Если два электрона, опустившись на связывающую орбиталь, дают выигрыш в энергии, то третьему электрону приходится повысить свою энергию. Однако энергия, выигранная двумя электронами, больше, чем проигранная одним. Такая частица может существовать.,
Известно, что щелочные металлы в газообразном состоянии существуют в виде двухатомных молекул. Попробуем убедиться в возможности существования двухатомной молекулы Li 2 , используя метод МО ЛКАО(рис.15). Исходный атом лития содержит электроны на двух энергетических уровнях – первом и втором (1s и 2s ).

Перекрывание одинаковых 1s -орбиталей атомов лития даст две молекулярные орбитали (связывающую и разрыхляющую), которые согласно принципу минимума энергии будут полностью заселены четырьмя электронами. Выигрыш в энергии, получаемый в результате перехода двух электронов на связывающую молекулярную орбиталь, не способен компенсировать ее потери при переходе двух других электронов на разрыхляющую молекулярную орбиталь. Вот почему вклад в образование химической связи между атомами лития вносят лишь электроны внешнего (валентного) электронного слоя.
Перекрывание валентных 2s -орбиталей атомов лития приведет также к образованию одной σ-связывающей и одной разрыхляющей молекулярных орбиталей. Два внешних электрона займут связывающую орбиталь, обеспечивая общий выигрыш в энергии (кратность связи равна 1).
Используя метод МО ЛКАО, рассмотрим возможность образования молекулы He 2 .

В этом случае два электрона займут связывающую молекулярную орбиталь, а два других – разрыхляющую. Выигрыша в энергии такое заселение двух орбиталей электронами не принесет. Следовательно, молекулы He 2 не существует.
Заполнение молекулярных орбиталей происходит при соблюдении принципа Паули и правила Хунда по мере увеличения их энергии в такой последовательности:

σ1s < σ*1s < σ2s < σ*2s < σ2p z < π2p x = π2p y < π*2p x =π*2p y < σ*2p z

Значения энергии σ2p и π2p близки и для некоторых молекул(В 2 ,С 2 ,N 2) соотношение обратное приведённому: сначала π2p потом σ2p

Таблица 2 Энергия и порядок связи в молекулах элементов 1 периода

Согласно методу МО порядок связи в молекуле определяется разностью между числом связывающих и разрыхляющих орбиталей, деленный на два. Порядок связи может быть равен нулю (молекула не существует), целому или дробному положительному числу. При нулевой кратности связи,как в случае Не 2 ,молекула не образуется.

На рисунке 17 изображена энергетическая схема образования молекулярных орбиталей из атомных для двухатомных гомоядерных (одного и того же элемента) молекул элементов второго периода. Число связывающих и разрыхляющих электронов зависит от их числа в атомах исходных элементов.

Рис.17 Энергетическая диаграмма образования двухатомных молекул

элементов 2 периода

Следует отметить, что при образовании молекул В 2 , С 2 и N 2 энергия связывающей s 2 p x -орбитали больше энергии связывающих p 2 p y - и p 2 p z -орбиталей, тогда как в молекулах О 2 и F 2 , наоборот, энергия связывающих p 2 p y - и p 2 p z -орбиталей больше энергии связывающей s 2 p x -орбитали. Это нужно учитывать при изображении энергетических схем соответствующих молекул.

Подобно электронным формулам, показывающим распределение электронов в атоме по атомным орбиталям, в методе МО составляются формулы молекул, отражающие их электронную конфигурацию. По аналогии с атомными s -, p -, d -, f - орбиталями молекулярные орбитали обозначаются греческими буквами s, p, d,j.

Образование молекул из атомов элементов II периода может быть записано следующим образом (К – внутренние электронные слои):

Li 2

Be 2 молекула не обнаружена, как и молекула Не 2

B 2 молекула парамагнитна

O 2 молекула парамагнитна

Ne 2 молекула не обнаружена

Методом МО ЛКАО легко продемонстрировать парамагнитные свойства молекулы кислорода. С тем чтобы не загромождать рисунок, не будем рассматривать перекрывание 1s -орбиталей атомов кислорода первого (внутреннего) электронного слоя. Учтем, что p -орбитали второго (внешнего) электронного слоя могут перекрываться двумя способами. Одна из них перекроется с аналогичной с образованием σ-связи.

Две других p -АО перекроются по обе стороны от оси x с образованием двух π-связей.

Энергии молекулярных орбиталей могут быть определены по данным спектров поглощения веществ в ультрафиолетовой области. Так, среди молекулярных орбиталей молекулы кислорода, образовавшихся в результате перекрывания p -АО, две π-связывающие вырожденные (с одинаковой энергией) орбитали обладают меньшей энергией, чем σ-связывающая, впрочем, как и π*-разрыхляющие орбитали обладают меньшей энергией в сравнении с σ*-разрыхляющей орбиталью.

В молекуле O 2 два электрона с параллельными спинами оказались на двух вырожденных (с одинаковой энергией) π*-разрыхляющих молекулярных орбиталях. Именно наличием неспаренных электронов и обусловлены парамагнитные свойства молекулы кислорода, которые станут заметными, если охладить кислород до жидкого состояния.
Так, электронная конфигурация молекул О 2 описывается следующим образом:О 2 [КК(σ s) 2 (σ s *) 2 (σ z) 2 (π x) 2 (π y) 2 (π x *) 1 (π y *) 1 ]

Буквами КК показано, что четыре 1 s -электрона (два связывающих и два разрыхляющих) практически не оказывают влияния на химическую связь.

Среди двухатомных молекул одной из наиболее прочных является молекула CO. Метод МО ЛКАО легко позволяет объяснить этот факт.

Энергии АО атома кислорода лежат ниже энергий соответствующих орбиталей углерода (1080 кДж/моль), они расположены ближе к ядру. Результатом перекрывания p -орбиталей атомов O и C является образование двух вырожденных π-связывающих и одной σ-связывающей орбитали. Эти молекулярные орбитали займут шесть электронов. Следовательно, кратность связи равна трем. Электронная конфигурация такая же, как и у N 2:
[КК(σ s) 2 (σ s *) 2 (σ z) 2 (π x) 2 (π y) 2 (σ z) 2 ] . Прочность связи в молекулах СО(1021кДж/моль) и N­ 2 (941кДж/моль) близки.

При удалении одного электрона,который уходит со связывающей орбиты (образование иона CO +)б прочность связи уменьшается до 803 кДж/моль. Кратность связи становится равной 2,5.

Метод МО ЛКАО можно использовать не только для двухатомных молекул, но и для многоатомных. Разберем в качестве примера в рамках данного метода строение молекулы аммиака.

Поскольку три атома водорода имеют только три 1s -орбитали, то суммарное число образованных молекулярных орбиталей будет равно шести (три связывающих и три разрыхляющих). Два электрона атома азота окажутся на несвязывающей молекулярной орбитали (неподеленная электронная пара).

Наилучшим способом квантовомеханической трактовки химической связи в настоящее время считается метод молекулярных орбиталей (МО). Однако он гораздо сложнее метода ВС и не столь нагляден, как последний.

Существование связывающих и разрыхляющих МО подтверждается физическими свойствами молекул. Метод МО позволяет предвидеть, что если при образовании молекулы из атомов электроны в молекуле попадают на связывающие орбитали, то потенциалы ионизации молекул должны быть больше, чем потенциалы ионизации атомов, а если электроны попадают на разрыхляющие орбитали, то наоборот.Так, потенциалы ионизации молекул водорода и азота (связывающие орбитали) – 1485 и 1500 кДж/моль соответственно – больше, чем потенциалы ионизации атомов водорода и азота – 1310 и 1390 кДж/моль, а потенциалы ионизации молекул кислорода и фтора (разрыхляющие орбитали) – 1170 и 1523 кДж/моль – меньше, чем у соответствующих атомов – 1310 и 1670 кДж/моль. При ионизации молекул прочность связи уменьшается, если электрон удаляется со связывающей орбитали (H 2 и N 2), и увеличивается, если электрон удаляется с разрыхляющей орбитали(О 2 и F 2).

Рассмотрим образование МО в молекуле фтористого водорода HF. Поскольку потенциал ионизации фтора (17,4 эВ или 1670 кДж/моль) больше, чем у водорода (13,6 эВ или 1310 кДж/моль), то 2р-орбитали фтора имеют меньшую энергию, чем 1s-орбиталь водорода. Вследствие большого различия энергий 1s-орбиталь атома водорода и 2s-орбиталь атома фтора не взаимодействуют. Таким образом, 2s-орбиталь фтора становится без изменения энергии МО в HF. Такие орбитали называются несвязывающими. 2р у - и 2р z –орбитали фтора также не могут взаимодействовать с 1s-орбиталью водорода вследствие различия симметрии относительно оси связи. Они тоже становятся несвязывающими МО. Связывающая и разрыхляющая МО образуются из 1s-орбитали водорода и 2р х -орбитали фтора. Атомы водорода и фтора связаны двухэлектронной связью с энергией 560 кДж/моль.

Задача 241.
Описать электронное строение молекул СО и СN с позиций методов ВС и МО. Какая из молекул характеризуется большей кратностью связи?
Решение:
а) Электронное строение молекул CO и CN с позиции метода ВС.
Электронная конфигурация атома углерода 1s 2 2s 2 2p 2 , атома кислорода 1s 2 2s 2 2p 4 , атома азота 1s 2 2s 2 2p 3 . Электронное строение их валентных орбиталей в невозбуждённом состоянии может быть представлено следующими графическими схемами:
а) атом углерода:

б) атом азота:

При возбуждении атом углерода переходит в состояние 1s 2 2s 1 2p 3 , а электронное строение его валентных орбиталей соответствует схеме:

Два неспаренных электрона невозбуждённого атома углерода могут участвовать в образовании двух ковалентных связей по обычному механизму с атомом кислорода, имеющем два неспаренных электрона, с образованием молекулы СО. При образовании молекулы CN образуются две ковалентные связи по обычному механизму за счёт двух неспаренных электрона атома углерода и двух неспаренных электронов атома азота. Электронные схемы CO и CN:

б) Электронное строение молекул CO и CN с позиции метода МО.

Энергетические схемы образования молекул а) CO и б) CN:

Из приведённых схем следует, что кратность связи в молекуле СО равна 3 [(6 - 0)/2 = 3], а в молекуле NO – 2,5[(5 – 0)/2 = 2,5]. Следовательно, молекула СО по отношению к молекуле NO характеризуется большей устойчивостью, чем больше кратность связи, тем короче связь. Молекула СN имеет один неспаренный электрон на связывающей орбитали, следовательно, она парамагнитна. Молекула СО не имеет неспаренных электронов на связывающих и разрыхляющих орбиталях, значит, она диамагнитна .

Задача 242.
Рассмотреть с позиций метода МО возможность образования молекул В 2 , F 2 , BF. Какая из этих молекул наиболее устойчива?
Решение:
Энергетические схемы образования молекул а)В 2 , б) F 2 , в) BF:

Из составленных энергетических схем В 2 , F 2 , BF вытекает, что разность между числом связывающих и разрыхляющих электронов соответственно равны 2, 2 и 6, что отвечает кратности связи соответственно 1, 1 и 3. Следовательно, молекула BF характеризуется большей кратностью связи между атомами, она должна быть более прочной, чем у В 2 и F 2 .

3.4. Метод молекулярных орбиталей

Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей (ЛКАО). Метод МО ЛКАО основан на следующих правилах.

1. При сближении атомов до расстояний химических связей из атомных орбиталей (АО) образуются молекулярные.

2. Число полученных молекулярных орбиталей равно числу исходных атомных.

3. Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей , а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей .

4. При перекрывании атомных орбиталей возможно образование и -связи (перекрывание по оси химической связи), и -связи (перекрывание по обе стороны от оси химической связи).

5. Молекулярная орбиталь, не участвующая в образовании химической связи, носит название несвязывающей . Ее энергия равна энергии исходной АО.

6. На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов.

7. Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

8. Заполнение вырожденных (с одинаковой энергией) орбиталей происходит последовательно по одному электрону на каждую из них.

Применим метод МО ЛКАО и разберем строение молекулы водорода. Изобразим на двух параллельных диаграммах энергетические уровни атомных орбиталей исходных атомов водорода (рис. 3.5).

Видно, что имеется выигрыш в энергии по сравнению с несвязанными атомами. Свою энергию понизили оба электрона, что соответствует единице валентности в методе валентных связей (связь образуется парой электронов).
Метод МО ЛКАО позволяет наглядно объяснить образование ионов и , что вызывает трудности в методе валентных связей. На -связывающую молекулярную орбиталь катиона переходит один электрон атома H с выигрышем энергии (рис. 3.7).

В анионе на двух молекулярных орбиталях необходимо разместить уже три электрона (рис. 3.8).

Если два электрона, опустившись на связывающую орбиталь, дают выигрыш в энергии, то третьему электрону приходится повысить свою энергию. Однако энергия, выигранная двумя электронами, больше, чем проигранная одним. Такая частица может существовать.
Известно, что щелочные металлы в газообразном состоянии существуют в виде двухатомных молекул. Попробуем убедиться в возможности существования двухатомной молекулы Li 2 , используя метод МО ЛКАО. Исходный атом лития содержит электроны на двух энергетических уровнях – первом и втором (1s и 2s ) (рис. 3.9).

Перекрывание одинаковых 1s -орбиталей атомов лития даст две молекулярные орбитали (связывающую и разрыхляющую), которые согласно принципу минимума энергии будут полностью заселены четырьмя электронами. Выигрыш в энергии, получаемый в результате перехода двух электронов на связывающую молекулярную орбиталь, не способен компенсировать ее потери при переходе двух других электронов на разрыхляющую молекулярную орбиталь. Вот почему вклад в образование химической связи между атомами лития вносят лишь электроны внешнего (валентного) электронного слоя.
Перекрывание валентных 2s -орбиталей атомов лития приведет также к образованию одной
-связывающей и одной разрыхляющей молекулярных орбиталей. Два внешних электрона займут связывающую орбиталь, обеспечивая общий выигрыш в энергии (кратность связи равна 1).
Используя метод МО ЛКАО, рассмотрим возможность образования молекулы He 2 (рис. 3.10).

В этом случае два электрона займут связывающую молекулярную орбиталь, а два других – разрыхляющую. Выигрыша в энергии такое заселение двух орбиталей электронами не принесет. Следовательно, молекулы He 2 не существует.
Методом МО ЛКАО легко продемонстрировать парамагнитные свойства молекулы кислорода. С тем чтобы не загромождать рисунок, не будем рассматривать перекрывание 1s -орбиталей атомов кислорода первого (внутреннего) электронного слоя. Учтем, что p -орбитали второго (внешнего) электронного слоя могут перекрываться двумя способами. Одна из них перекроется с аналогичной с образованием -связи (рис. 3.11).

Две других p -АО перекроются по обе стороны от оси x с образованием двух -связей (рис. 3.12).

Энергии сконструированных молекулярных орбиталей могут быть определены по данным спектров поглощения веществ в ультрафиолетовой области. Так, среди молекулярных орбиталей молекулы кислорода, образовавшихся в результате перекрывания p -АО, две -связывающие вырожденные (с одинаковой энергией) орбитали обладают меньшей энергией, чем -связывающая, впрочем, как и *-разрыхляющие орбитали обладают меньшей энергией в сравнении с *-разрыхляющей орбиталью (рис. 3.13).

В молекуле O 2 два электрона с параллельными спинами оказались на двух вырожденных (с одинаковой энергией) *-разрыхляющих молекулярных орбиталях. Именно наличием неспаренных электронов и обусловлены парамагнитные свойства молекулы кислорода, которые станут заметными, если охладить кислород до жидкого состояния.
Среди двухатомных молекул одной из наиболее прочных является молекула CO. Метод МО ЛКАО легко позволяет объяснить этот факт (рис. 3.14, см. с. 18 ).

Результатом перекрывания p -орбиталей атомов O и C является образование двух вырожденных
-связывающих и одной -связывающей орбитали. Эти молекулярные орбитали займут шесть электронов. Следовательно, кратность связи равна трем.
Метод МО ЛКАО можно использовать не только для двухатомных молекул, но и для многоатомных. Разберем в качестве примера в рамках данного метода строение молекулы аммиака (рис. 3.15).

Поскольку три атома водорода имеют только три 1s -орбитали, то суммарное число образованных молекулярных орбиталей будет равно шести (три связывающих и три разрыхляющих). Два электрона атома азота окажутся на несвязывающей молекулярной орбитали (неподеленная электронная пара).

3.5. Геометрические формы молекул

Когда говорят о формах молекул, прежде всего имеют в виду взаимное расположение в пространстве ядер атомов. О форме молекулы имеет смысл говорить, когда молекула состоит из трех и более атомов (два ядра всегда находятся на одной прямой). Форма молекул определяется на основе теории отталкивания валентных (внешних) электронных пар. Согласно этой теории молекула всегда будет принимать форму, при которой отталкивание внешних электронных пар минимально (принцип минимума энергии). При этом необходимо иметь в виду следующие утверждения теории отталкивания.

1. Наибольшее отталкивание претерпевают неподеленные электронные пары.
2. Несколько меньше отталкивание между неподеленной парой и парой, участвующей в образовании связи.
3. Наименьшее отталкивание между электронными парами, участвующими в образовании связи. Но и этого бывает недостаточно, чтобы развести ядра атомов, участвующих в образовании химических связей, на максимальный угол.

В качестве примера рассмотрим формы водородных соединений элементов второго периода: BeH 2 , BH 3 , CH 4 , C 2 H 4 , C 2 H 2 , NH 3 , H 2 O.
Начнем с определения формы молекулы BeH 2 . Изобразим ее электронную формулу:

из которой ясно, что в молекуле отсутствуют неподеленные электронные пары. Следовательно, для электронных пар, связывающих атомы, есть возможность оттолкнуться на максимальное расстояние, при котором все три атома находятся на одной прямой, т.е. угол HBeH составляет 180°.
Молекула BH 3 состоит из четырех атомов. Согласно ее электронной формуле в ней отсутствуют неподеленные пары электронов:

Молекула приобретет такую форму, при которой расстояние между всеми связями максимально, а угол между ними равен 120°. Все четыре атома окажутся в одной плоскости – молекула плоская:

Электронная формула молекулы метана выглядит следующим образом:

Все атомы данной молекулы не могут оказаться в одной плоскости. В таком случае угол между связями равнялся бы 90°. Есть более оптимальное (с энергетической точки зрения) размещение атомов – тетраэдрическое. Угол между связями в этом случае равен 109°28".
Электронная формула этена имеет вид:

Естественно, все углы между химическими связями принимают максимальное значение – 120°.
Очевидно, что в молекуле ацетилена все атомы должны находиться на одной прямой:

H:C:::C:H.

Отличие молекулы аммиака NH 3 от всех предшествующих состоит в наличии в ней неподеленной пары электронов у атома азота:

Как уже указывалось, от неподеленной электронной пары более сильно отталкиваются электронные пары, участвующие в образовании связи. Неподеленная пара располагается симметрично относительно атомов водорода в молекуле аммиака:

Угол HNH меньше, чем угол HCH в молекуле метана (вследствие более сильного электронного отталкивания).
В молекуле воды неподеленных пар уже две:

Этим обусловлена уголковая форма молекулы:

Как следствие более сильного отталкивания неподеленных электронных пар, угол HOH еще меньше, чем угол HNH в молекуле аммиака.
Приведенные примеры достаточно наглядно демонстрируют возможности теории отталкивания валентных электронных пар. Она позволяет сравнительно легко предсказывать формы многих как неорганических, так и органических молекул.

3.6. Упражнения

1 . Какие виды связей можно отнести к химическим?
2. Какие два основных подхода к рассмотрению химической связи вам известны? В чем состоит их отличие?
3. Дайте определение валентности и степени окисления.
4. В чем состоят отличия простой ковалентной, донорно-акцепторной, дативной, металлической, ионной связей?
5. Как классифицируют межмолекулярные связи?
6. Что такое электроотрицательность? Из каких данных электроотрицательность рассчитывается? О чем электроотрицательности атомов, образующих химическую связь, позволяют судить? Как изменяется электроотрицательность атомов элементов при продвижении в периодической таблице Д.И.Менделеева сверху вниз и слева направо?
7. Какими правилами необходимо руководствоваться при рассмотрении строения молекул методом МО ЛКАО?
8. Используя метод валентных связей, объясните строение водородных соединений элементов
2-го периода.
9. Энергия диссоциации в ряду молекул Cl 2 , Br 2 , I 2 уменьшается (239 кДж/моль, 192 кДж/моль, 149 кДж/моль соответственно), однако энергия диссоциации молекулы F 2 (151 кДж/моль) значительно меньше, чем энергия диссоциации молекулы Cl 2 , и выпадает из общей закономерности. Объясните приведенные факты.
10. Почему при обычных условиях CO 2 – газ, а SiO 2 – твердое вещество, H 2 O – жидкость,
а H 2 S – газ? Попробуйте объяснить агрегатное состояние веществ.
11. Используя метод МО ЛКАО, объясните возникновение и особенности химической связи в молекулах B 2 , C 2 , N 2 , F 2 , LiH, CH 4 .
12. Используя теорию отталкивания валентных электронных пар, определите формы молекул кислородных соединений элементов 2-го периода.

1. В результате линейной комбинации две атомные орбитали (АО) формируют две молекулярные орбитали (МО) – связывающую, энергия которой ниже, чем энергия АО, и разрыхляющую, энергия которой выше энергии АО

2. Электроны в молекуле располагаются на молекулярных орбиталях в соответствии с принципом Паули и правилом Хунда.

3. Отрицательный вклад в энергию химической связи электрона, находящегося на разрыхляющей орбитали больше, чем положительный вклад в эту энергию электрона на связывающей МО.

4. Кратность связи в молекуле равна деленной на два разности числа электронов, находящихся на связывающих и разрыхляющих МО.

5. С повышением кратности связи в однотипных молекулах увеличивается ее энергия связи и уменьшается ее длина.

Если при образовании молекулы из атомов электрон займет связывающую МО, то полная энергия системы понизится, т.е. образуется химическая связь. При переходе электрона на разрыхляющую МО энергия системы повысится, система станет менее устойчивой (рис. 9.1).

Рис. 9.1. Энергетическая диаграмма образования молекулярных орбиталей из двух атомных орбиталей

Молекулярные орбитали, образованные из s-атомных орбиталей, обозначаются s s . Если МО образованы р z -атомными орбиталями – они обозначаются s z . Молекулярные орбитали, образованные р x - и р y -атомными орбиталями, обозначаются p x и p y соответственно.

При заполнении молекулярных орбиталей электронами следует руководствоваться следующими принципами:

    1. Каждой МО отвечает определенная энергия. Молекулярные орбитали заполняются в порядке увеличения энергии.

    2. На одной молекулярной орбитали может находиться не более двух электронов с противоположными спинами.

    3. Заполнение молекулярных квантовых ячеек происходит в соответствии с правилом Хунда.

Экспериментальное исследование (изучение молекулярных спектров) показало, что энергия молекулярных орбиталей возрастает в следующей последовательности :

s 1s < s *1s < s 2s

Звездочкой (* ) в этом ряду отмечены разрыхляющие молекулярные орбитали.

У атомов В, С и N энергии 2s- и 2p-электронов близки и переход 2s-электрона на молекулярную орбиталь s 2p z требует затраты энергии. Следовательно, для молекул В 2 , С 2 , N 2 энергия орбитали s 2p z становится выше энергии орбиталей p 2р х и p 2р у :

s 1s < s *1s < s 2s < s *2s < p 2р х = p 2р у < s  2p z < p *2р х = p *2р у < s *2p z.

При образовании молекулы электроны располагаются на орбиталях с более низкой энергией. При построении МО обычно ограничиваются использованием валентных АО (орбиталей внешнего слоя), так как именно они вносят основной вклад в образование химической связи.

Электронное строение гомоядерных двухатомных молекул и ионов

Процесс образования частицы H 2 +

Н + Н + H 2 + .

Таким образом, на связывающей молекулярной s -орбитали располагается один электрон.

Кратность связи равна полуразности числа электронов на связывающих и разрыхляющих орбиталях. Значит, кратность связи в частице H 2 + равна (1 – 0):2 = 0,5. Метод ВС, в отличие от метода МО, не объясняет возможность образования связи одним электроном.

Молекула водорода имеет следующую электронную конфигурацию:

H 2 [(s 1s) 2 ].

В молекуле H 2 имеется два связывающих электрона, значит, связь в молекуле одинарная.

Молекулярный ион H 2 - имеет электронную конфигурацию:

H 2 - [(s 1s) 2 (s *1s) 1 ].

Кратность связи в H 2 - составляет (2 – 1):2 = 0,5.

Рассмотрим теперь гомоядерные молекулы и ионы второго периода.

Электронная конфигурация молекулы Li 2 следующая:

2Li (K2s) Li 2 .

Молекула Li 2 содержит два связывающих электрона, что соответствует одинарной связи.

Процесс образования молекулы Ве 2 можно представить следующим образом:

2 Ве (K2s 2) Ве 2 .

Число связывающих и разрыхляющих электронов в молекуле Ве 2 одинаково, а поскольку один разрыхляющий электрон уничтожает действие одного связывающего, то молекула Ве 2 в основном состоянии не обнаружена.

В молекуле азота на орбиталях располагаются 10 валентных электронов. Электронное строение молекулы N 2:

N 2 .

Поскольку в молекуле N 2 восемь связывающих и два разрыхляющих электрона, то в данной молекуле имеется тройная связь. Молекула азота обладает диамагнитными свойствами, поскольку не содержит неспаренных электронов.

На орбиталях молекулы O 2 распределены 12 валентных электронов, следовательно, эта молекула имеет конфигурацию:

O 2 .

Рис. 9.2. Схема образования молекулярных орбиталей в молекуле О 2 (показаны только 2р-электроны атомов кислорода)

В молекуле O 2 , в соответствии с правилом Хунда, два электрона с параллельными спинами размещаются по одному на двух орбиталях с одинаковой энергией (рис. 9.2). Молекула кислорода по методу ВС не имеет неспаренных электронов и должна обладать диамагнитными свойствами, что не согласуется с экспериментальными данными. Метод молекулярных орбиталей подтверждает парамагнитные свойства кислорода, которые обусловлены наличием в молекуле кислорода двух неспаренных электронов. Кратность связи в молекуле кислорода равна (8–4):2 = 2.

Рассмотрим электронное строение ионов O 2 + и O 2 - . В ионе O 2 + на его орбиталях размещаются 11 электронов, следовательно, конфигурация иона следующая:

O 2 +

O 2 + .

Кратность связи в ионе О 2 + равна (8–3):2 = 2,5. В ионе O 2 - на его орбиталях распределены 13 электронов. Этот ион имеет следующее строение:

O 2 -

O 2 - .

Кратность связи в ионе О 2 - равна (8 – 5):2 = 1,5. Ионы О 2 - и О 2 + являются парамагнитными, так как содержат неспаренные электроны.

Электронная конфигурация молекулы F 2 имеет вид:

F 2 .

Кратность связи в молекуле F 2 равна 1, так как имеется избыток двух связывающих электронов. Поскольку в молекуле нет неспаренных электронов, она диамагнитна.

В ряду N 2 , O 2 , F 2 энергии и длины связей в молекулах составляют:

Увеличение избытка связывающих электронов приводит к росту энергии связи (прочности связи). При переходе от N 2 к F 2 длина связи возрастает, что обусловлено ослаблением связи.

В ряду О 2 - , О 2 , О 2 + кратность связи увеличивается, энергия связи также повышается, длина связи уменьшается.

Электронное строение гетероядерных молекул и ионов

Изоэлектронными

частицами называют частицы, содержащие одинаковое число электронов. Например, к изоэлектронным частицам относятся N 2 , CO, BF, NO + , CN- .

Согласно методу МО электронное строение молекулы СО аналогично строению молекулы N 2:

На орбиталях молекулы СО располагаются 10 электронов (4 валентных электрона атома углерода и 6 валентных электронов атома кислорода). В молекуле СО, как и в молекуле N 2 , связь тройная. Сходство в электронном строении молекул N 2 и СО обуславливает близость физических свойств этих веществ.

В молекуле NO на орбиталях распределены 11 электронов (5 электронов атома азота и 6 электронов атома кислорода), следовательно, электронная конфигурация молекулы такова:

NO или

Кратность связи в молекуле NO равна (8–3):2 = 2,5.

Конфигурация молекулярных орбиталей в ионе NO - :

NO -

Кратность связи в этой молекуле равна (8–4):2 = 2.

Ион NO + имеет следующее электронное строение:

NO + .

Избыток связывающих электронов в этой частице равен 6, следовательно, кратность связи в ионе NO + равна трём.

В ряду NO - , NO, NO + избыток связывающих электронов увеличивается, что приводит к возрастанию прочности связи и уменьшению её длины.

Задачи для самостоятельного решения

9.1. Используя метод МО, установите порядок уменьшения энергии химической связи в частицах:
NF + ; NF - ; NF.


9.3. На основе метода МО установите, какие из перечисленных частиц не существуют:
He 2 ; He 2 + ; Be 2 ; Be 2 + .


9.4. Распределить электроны на молекулярных орбиталях для молекулы B 2 . Определить кратность связи.


9.5. Распределить электроны на молекулярных орбиталях для молекулы N 2 . Определить кратность связи. N 2 ;
N 2 - .
Кратность связи в N 2 составляет (8–2):2=3;
Кратность связи в N 2 - составляет (8–3):2=2,5.
Уменьшение энергии связи при переходе от нейтральной молекулы N 2 к иону N 2 -
связано с уменьшением кратности связи.


9.9. Распределить электроны на молекулярных орбиталях для иона CN

- . Определить кратность связи в этом ионе.

9.10. Используя метод МО определить как изменяется длина связи и энергия связи в ряду CN + , CN, CN - .


© Факультет естественных наук РХТУ им. Д.И. Менделеева. 2013 г.

Рассмотренные выше недостатки МВС способствовали развитию другого квантовомеханического метода описания химической связи, который получил название метода молекулярных орбиталей (ММО) . Основные принципы данного метода были заложены Ленардом-Джонсом, Гундом и Малликеном. В его основе лежит представление о многоатомной частице как о единой системе ядер и электронов. Каждый электрон в такой системе испытывает притяжение со стороны всех ядер и отталкивание со стороны всех других электронов. Такую систему удобно описывать при помощи молекулярных орбиталей , которые являются формальными аналогами атомных орбиталей. Отличие атомных и молекулярных орбиталей заключается в том, что одни описывают состояние электрона, находящегося в поле единственного ядра, а другие состояние электрона в поле нескольких ядер. Учитывая аналогичность подхода к описанию атомных и молекулярных систем, можно сделать вывод, что орбитали n-атомной молекулы должны обладать следующими свойствами:

а) состояние каждого электрона в молекуле описывается волновой функцией ψ, а величина ψ 2 выражает вероятность нахождения электрона в любом единичном объёме многоатомной системы; указанные волновые функции называют молекулярными орбиталями (МО) и они, по определению, являются многоцентровыми, т.е. описывают движение электрона в поле всех ядер (вероятность нахождения в любой точке пространства);

б) каждая молекулярная орбиталь характеризуется определённой энергией;

в) каждый электрон в молекуле имеет определённое значение спинового квантового числа, принцип Паули в молекуле выполняется;

г) молекулярные орбитали конструируются из атомных, путём линейной комбинации последних: ∑с n ψ n (если общее число использованных при суммировании фолновых функций равно k, то n принимает значения от 1 до k), с n – коэффициенты;

д)минимум энергии МО достигают при максимальном перекрывании АО;

е) чем ближе по энергии исходные АО, тем ниже энергия МО, сформированных на их основе.

Из последнего положения можно сделать вывод, что внутренние орбитали атомов, имеющие очень низкую энергию, практически не будут принимать участия в образовании МО и их вкладом в энергию этих орбиталей можно пренебречь.

С учётом описанных выше свойств МО рассмотрим их построение для двухатомной молекулы простого вещества, например для молекулы Н 2 . Каждый из атомов, составляющих молекулу (Н А и Н В) имеют по одному электрону на 1s орбитале, тогда МО можно представить в виде:



Ψ МО = с А ψ А (1s) + с В ψ В (1s)

Так как в рассматриваемом случае атомы, образующие молекулу идентичны, нормирующие множители (с), показывающие долю участия АО при конструировании МО, равны по абсолютному значению и, следовательно возможны два варианта Ψ МО при с А = с В и с А = - с В:

Ψ МО(1) = с А ψ А (1s) + с В ψ В (1s) и

Ψ МО(2) = с А ψ А (1s) - с В ψ В (1s)

Молекулярная орбиталь Ψ МО(1) соответствует состоянию с более высокой электронной плотностью между атомами по сравнению с изолированными атомными орбиталями, а электроны располагающиеся на ней и имеющие противоположные значения спинов в соответствии с принципом Паули – более низкую энергию по сравнению с их энергией в атоме. Такая орбиталь в ММО ЛКАО называется связывающей.

В то же время молекулярная орбиталь Ψ МО(2) представляет собой разность волновых функций исходных АО, т.е. характеризует состояние системы с пониженной электронной плотностью в межъядерном пространстве. Энергия такой орбитали выше, чем исходных АО и нахождения на ней электронов приводит к росту энергии системы. Такие орбитали носят название разрыхляющих. На рисунке 29.3 показано формирование связывающей и разрыхляющей орбиталей в молекуле водорода.



Рис.29.3. Образование σ - связывающей и σ-разрыхляющей орбиталей в молекуле водорода.

Ψ МО(1) и Ψ МО(2) имеют цилиндрическую симметрию относительно оси, проходящей через центры ядер. Орбитали такого типа называются σ – симметричными и записываются: связывающая – σ1s, разрыхляющая - σ ٭ 1s . Таким образом молекуле водорода в основном состоянии отвечает конфигурация σ1s 2 , а конфигурации иона Не 2 + , который образуется в электрическом разряде, в основном состоянии может быть записана в виде σ1s 2 σ ٭ 1s (рис. 30.3).

Рис. 30.3. Энергетическая диаграмма образования связующей и разрыхляющей орбиталей и электронное строение молекул и ионов элементов первого периода.

В молекуле Н 2 оба электрона занимают связывающую орбиталь, что приводит к снижению энергии системы по сравнению с исходной (два изолированных атома водорода). Как уже отмечалось энергия связи в этой молекуле 435 кДж/моль, а длина связи равна 74 пм. Удаление электрона со связывающей орбитали повышает энергию системы (понижает стабильность продукта реакции по сравнению с прекурсором): энергия связи в Н 2 + составляет 256 кДж/моль, а длина связи увеличивается до 106 пм. В частице Н 2 - число электронов увеличивается до трёх, поэтому один из них располагается на разрыхляющей орбитали, что приводит к дестабилизации системы по сравнению с ранее описанными: Е(Н 2 -) = 14,5 кДж/моль. Следовательно, появление электрона на разрыхляющей орбитали в большей степени влияет на энергию химической связи, чем удаление электрона со связывающей орбитали. Приведённые выше данные свидетельствуют о том, что суммарная энергия связи определяется разностью между числом электронов на связывающих и разрыхляющих орбиталях. Для бинарных частиц эта разность, делённая пополам называется порядком связи:

ПС = (ē св – ē несв.)/2

Если ПС равен нулю, то химическая связь не образуется (молекула Не 2 рис 30.3). Если в нескольких системах число электронов на разрыхляющих орбиталях одинаково, то наибольшую стабильность имеет частица с максимальным значением ПС. В то же время при одинаковом значении ПС более стабильна частица с меньшим числом электронов на разрыхляющих орбиталях (например, ионы Н 2 + и Н 2 -). Из рисунка 30.3 следует и ещё один вывод: атом гелия может образовывать химическую связь с ионом Н + . Несмотря на то, что энергия 1s орбитали Не очень низка (- 2373 кДж/моль), её линейная комбинация с 1s орбиталью атома водорода (Е =-1312 кДж/моль) приводит к образованию связывающей орбитали, энергия которой ниже АО гелия. Так как на разрыхляющих орбиталях частицы НеН + нет электронов, она более стабильна, по сравнению с системой образованной атомами гелия и ионами водорода.

Аналогичные рассуждения применимы и к линейным комбинациям атомных р-орбиталей. Если ось z совпадает с осью, проходящей через центры ядер, как показано на рисунке 31.3, то связывающая и разрыхляющая орбитали описываются уравнениями:

Ψ МО(1) = с А ψ А (2р z) + с В ψ В (2р z) и Ψ МО(2) = с А ψ А (2р z) - с В ψ В (2р z)

Когда МО конструируются из р-орбиталей, оси которых перпендикулярны линии соединяющей атомные ядра, то происходит образование π-связывающих и π-разрыхляющих молекулярных орбиталей рис.32.3. Молекулярные π у 2р и π у ٭ 2р- орбитали аналогичны представленным на рис. 32.3, но повёрнуты относительно первых на 90 о. Таким образом π2р и π ٭ 2р- орбитали дважды вырождены.

Следует отметить, что линейную комбинацию можно строить не из любых АО, а только из тех, которые обладают достаточно близкой энергией и перекрывание которых возможно с геометрической точки зрения. Парами таких орбиталей пригодными для образования σ-связывающих σ-разрыхляющих орбиталей могут s – s, s – p z , s – d z 2 , p z – p z , p z – d z 2 , d z 2 - d z 2 , тогда как при линейной комбинации p x – p x , p y – p y , p x – d xz , p y – d yz , образуются молекулярные π-связывающие и π-разрыхляющие молекулярных орбитали.

Если же строить МО из АО типа d x 2- y 2 - d x 2- y 2 или d xy - d xy то образуются δ-МО. Таким образом, как отмечалось выше, деление МО на σ,π и δ предопределяется их симметрией относительно линии соединяющей атомные ядра. Таким образом, для σ-МО число узловых плоскостей равно нулю, π-МО имеет одну такую плоскость, а δ-МО – две.

Для описания в рамках ММО ЛКАО гомоатомных молекул второго периода необходимо учесть, что линейная комбинация атомных орбиталей возможна только в том случае, когда АО орбитали близки по энергии и обладают одинаковой симметрией.

Рис.31.3. Образование σ-связывающих σ-разрыхляющих орбиталей из атомных р-орбиталей

Рис.32.3.Образование π-связывающих и π-разрыхляющих молекулярных орбиталей из атомных р-орбиталей.

Из орбиталей второго периода одинаковой симмерией относительно оси z обладают орбитали 2s и 2p z . Различие в их энергиях для атомов Li, Be, B и C относительно невелико, поэтому волновые функции 2s и 2p в данном случае могут смешиваться. Для атомов O и F различия в энергии 2s и 2p значительно больше, поэтому их смешение не происходит (таблица 4.3)

Таблица 4.3.

∆Е энергии между 2s и 2p орбиталями различных элементов

атом ∆Е в эВ атом ∆Е в эВ
Li 1,85 N 10,9
Be 2,73 O 15,6
B 3,37 F 20,8
C 4,18

Согласно данными таблицы 4.3, а также проведённых расчётов показано, что относительная энергия МО различна для молекул Li 2 – N 2 c одной стороны и для молекул О 2 – F 2 c другой. Для молекул первой группы порядок возрастания энергии МО можно представить в виде ряда:

σ2sσ ٭ 2sπ2p x π2p y σ2p z π٭2p x π ٭ 2p y σ ٭ 2p z , а для молекул О 2 и F 2 в виде:

σ2sσ ٭ 2sσ2p z π2p x π2p y π٭2p x π ٭ 2p y σ ٭ 2p z (рис 33.3).

Орбитали типа 1s имеющих очень низкую энергию по сравнения с орбиталями второго энергетического уровня, переходят в молекулу в неизменном виде, т.е остаются атомными и на энергетической диаграмме молекулы не указываются.

На основе энергетических диаграмм молекул и молекулярных ионов можно сделать выводы о стабильности частиц и их магнитных свойствах. Так о стабильности молекул, МО которых конструируются из одинаковых АО, ориентировочно можно судить по значению порядка связи, а о магнитных свойствах – по числу неспаренных электронов на МО (рис.34.3).

Необходимо отметить, что АО орбитали не валентных, внутренних уровней с точки зрения ММО ЛКАО не принимают участия в образовании МО, но оказывают заметное влияние на энергию связи. Так, например, при переходе от Н 2 к Li 2 энергия связи понижается более чем в четыре раза (с 432 кДж/моль до 99 кДж/моль).

Рис.33.3 Распределение МО по энергии в молекулах (а) О 2 и F 2 и (б) Li 2 – N 2 .

Рис.34.3 Энергетические диаграммы бинарных молекул элементов второго периода.

Отрыв электрона от молекулы Н 2 снижает энергию связи в системе до 256 кДж/моль, что вызвано уменьшением числа электронов на связывающей орбитали и снижением ПС с 1 до 0,5. В случае же отрыва электрона от молекулы Li 2 энергия связи возрастает со 100 до 135,1 кДж/моль, хотя как видно из рисунка 6.9, электрон, также как в предыдущем случае удаляется со связывающей орбитали и ПС снижается до 0,5. Причина этого заключается в том, что при удалении электрона из молекулы Li 2 снижается отталкивание между электронами, находящимися на связывающей МО и электронами занимающими внутреннюю 1s орбиталь. Эта закономерность наблюдается для молекул всех элементов главной подгруппы первой группы Периодической системы.

По мере увеличения заряда ядра влияние электронов 1s орбиталь на энергию МО снижается, потому в молекулах В 2 , С 2 и N 2 отрыв электрона будет повышать энергию системы (снижение значения ПС, уменьшение суммарной энергии связей) из за того, что электрон удаляется со связывающей орбитали. В случае же молекул O 2 , F 2 и Ne 2 удаление электрона происходит с разрыхляющей орбитали, что ведёт к росту ПС и суммарной энергии связи в системе, например, энергия связи в молекуле F 2 равна 154,8 кДж/моль, а в ионе F 2 + практически в два раза выше (322,1 кДж/моль). Приведённые рассуждения справедливы для любых молекул, независимо от их качественного и количественного состава. Рекомендуем читателю провести сравнительный анализ стабильности бинарных молекул и их отрицательно заряженных молекулярных ионов, т.е. оценить изменение энергии системы в процессе А 2 + ē = А 2 - .

Из рисунка 34.3 также следует, что только молекулы В 2 и О 2 , имеющие неспаренные электроны, парамагнитны, тогда как остальные бинарные молекулы элементов второго периода относятся к диомагнитным частицам.

Доказательством справедливости ММО, т.е. свидетельством реального существования уровней энергии в молекулах, служит различие в значениях потенциалов ионизации атомоа и образованных из них молекул (таблица 5.3).

Таблица 5.3.

Потенциалы ионизации атомов и молекул

Представленные в таблице данные свидетельствуют о том, что у одних молекул потенциалы ионизации больше, чем у атомов из которых они образованы, у других – меньше. Данный факт необъясним с точки зрения МВС. Анализ данных рисунка 34.3 приводит к выводу, что потенциал молекулы больше чем у атома в том случае, когда электрон удаляется со связывающей орбитали (молекулы Н 2 , N 2 , С 2). Если же электрон удаляется с разрыхляющей МО (молекулы О 2 и F 2), то этот потенциал будет меньше, по сравнению с атомным.

Переходя к рассмотрению гетероатомных бинарных молекул в рамках ММО ЛКАО, необходимо напомнить, что орбитали атомов различных элементов, имеющие одинаковые значения главного и побочного квантовых чисел отличаются по своей энергии. Чем выше эффективный заряд ядра атома по отношению к рассматриваемым орбиталям, тем ниже их энергия. На рисунке 35.3 приведена энергетическая диаграмма МО гетероатомных молекул типа АВ, в которой атом В более электроотрицателен. Орбитали этого атома по энергии ниже аналогичных орбиталей атома А. В связи с этим вклад орбиталей атома В в связывающие МО будет больше, чем в разрыхляющие. Наоборот, основной вклад в разрыхляющие МО будут вносить АО атома А. Энергия внутренних орбиталей обоих атомов при образовании молекулы практически не изменяется, например, в молекуле фтороводорода орбитали 1s и 2s атома фтора сосредоточены вблизи его ядра, что, в частности, обуславливает полярность данной молекулы (µ = 5,8 ∙ 10 -30). Рассмотрим с использованием рисунка 34 описание молекулы NO. Энергия АО кислорода ниже АО азота, вклад первых выше в связывающие орбитали, вторых – в разрыхляющие. Орбитали 1s и 2s обоих атомов не изменяют свою энергию (σ2s и σ ٭ 2s заняты электронными парами, σ1s и σ ٭ 1s на рисунке не показаны). На 2р орбиталях атомов, соответственно, кислорода и азота находятся четыре и три электрона. Общее число этих электронов 7, а связующих орбиталей образованных за счёт 2р орбиталей три. После их заполнения шестью электронами становится очевидным, что седьмой электрон в молекуле расположен на одной из разрыхляющих π-орбиталей и, следовательно локализован вблизи атома азота. ПС в молекуле: (8 – 3)/2 = 2,5 т.е. суммарная энергия связи в молекуле высокая. Однако электрон расположенный на разрыхляющей орбитали имеет большую энергию и его удаление из системы приведёт к её стабилизации. Указанный вывод позволяет прогнозировать, что энергия активации процессов окисления NO будет низкой, т.е. эти процессы могут протекать даже при с.у..

В то же время, термическая стабильность этих молекул будет высокой, ион NO + по суммарной энергии связи будет близок к молекулам азота и СО, при низких температурах NO будет димеризоваться.

Анализ молекулы NO в рамках данного метода приводит к ещё одному важному выводу – наиболее стабильными будут бинарные гетероатомные молекулы, в состав которых входят атомы с суммарным числом электронов на валентных s и р-орбиталях, равных 10. В этом случае ПС = 3. Увеличение или уменьшение этого числа приведёт к уменьшению значения ПС, т.е. к дестабилизации частицы.

Многоатомные молекулы в ММО ЛКАО рассматриваются исходя из тех же принципов, которые описаны выше для духатомных частиц. Молекулярные орбитали в данном случае формируют путём линейной комбинации АО всех атомов, входящих в состав молекулы. Следовательно, МО в таких частицах многоцентровые, делокализованные и описывают химическую связь в системе как единое целое. Равновесные расстояния между центрами атомов в молекуле, отвечают минимуму потенциальной энергии системы.

Рис.35.3. Энергетическая диаграмма МО бинарных гетероатомных молекул

(атом В имеет большую электроотрицательность).

Рис.36.3.Энергетические диаграммы молекул различных типов в

рамках ММО. (ось р х орбитали совпадает с осью связей)

На рисунке 36.3 представлены МО молекул различных типов. Принцип их построения рассмотрим на примере молекулы ВеН 2 (рис.37.3). В образовании трёхцентровых МО в данной частице принимают участие 1s орбитали двух атомов водорода, а также 2s и 2р орбитали атома Ве (1s орбиталь этого атома в образовании МО участия не принимает и локализована вблизи его ядра). Примем, что ось р z -орбитали Ве совпадает с линией связи в рассматриваемой частице. Линейная комбинация s орбиталей атомов водорода и бериллия приводит к образованию σ s и σ s ٭ , а такая же операция с участием s орбиталей атомов водорода и р z -орбитали Ве к образованию связывающей и разрыхляющей МО σ z и σ z ٭ , соответсвенно.

Рис.37.3. МО в молекуле ВеН 2

Валентные электроны располагаются в молекуле на связывающих орбиталях, т.е. её электронная формула может быть представлена в виде (σ s) 2 (σ z) 2 . Энергия этих связывающих орбиталей ниже энергии орбиталей атома Н, что обеспечивает относительную стабильность рассматриваемой молекулы.

В том случае, когда все системы атомы имеют подходящие для линейной комбинации р-орбитали, наряду с σ-МО, образуются многоцентровые связывающие, несвязывающие и разрыхляющие π-МО. Рассмотрим такие частицы на примере молекулы СО 2 (рис.38.3 и 39.3).

Рис.38.3 Связывающие и разрыхляющие σ-МО молекулы СО 2

Рис.39.3. Энергетическая диаграмма МО в молекуле СО 2 .

В этой молекуле σ-МО образуются при комбинации 2s и 2р х орбиталей атома углерода с 2р х орбиталями атомов кислорода. Делокализованные π-МО формируются за счёт линейной комбинации p y и p z орбиталей всех атомов,

входящих в состав молекулы. В результате этого образуется три пары π-МО с различной энергией: связывающие - π y c в π z св, несвязывающие - π y π z (по энергии соответствующие р-орбиталям атомов кислорода), и разрыхляющие - π y разр π z разр.

При рассмотрении молекул в рамках ММО ЛКАО часто используют сокращённые схемы описания частиц (рис.40.3). При формировании МО, например, в молекуле BCI 3 достаточно указать только те АО, которые принимают реальное участие в линейной комбинации (на рисунке не указаны одна из АО р-орбиталей бора и 6 из 9 р-орбиталей атомов хлора, линейная комбинация которых даёт несвязывающие МО)

Рис.40.3. МО в молекуле BCI 3

Энергетическая диаграмма МО в молекуле СН 4 представлена на рис.41.3.. Анализ электронного строения атома углерода показывает, что в связи с разнонаправленностью его 2р орбиталей образование в молекуле СН 4 пятицентровых МО с участием этих АО невозможно по геометрически соображениям. В то же время, 2s орбиталь углерода в равной степени способна перекрываться с 1s орбиталями атомов водорода, в результате чего образуется пятицентровые σ s и σ s ٭ МО. В случае комбинаций 2р и 1s орбиталей, число атомных функций в линейной комбинации равно только трём, т.е. энергия σ-МО в данном случае будет выше, чем у соответствующих σ s и σ s ٭ .

Рис.41.3.. Энергетическая диаграмма МО молекулы СН 4 .

Различную энергию пятицентровой и трёхцентровых связывающих орбиталей подтверждают экспериментальные данные по потенциалам ионизации, которые различны для электронов удаляющихся с σ s и с σ x (σ y . σ z).