В жидком состоянии согласно молекулярно кинетической теории. МКТ, термодинамика (изменение физических величин в процессах)

Молекулярная физика раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения, силы взаимодействия между частицами, образующими тела и характеры теплового движения этих частиц.

Многочисленные исследования, проведенные этими учеными позволили сформулироватьосновные положения молекулярно-кинетической теории – МКТ.

МКТ объясняет строение и свойства тел на основе закономерностей движения и взаимодействия молекул, из которых состоят тела.

В основе МКТ лежат три важных положения, подтвержденные экспериментально и теоретически.

  1. Все тела состоят из мельчайших частиц – атомов, молекул, в состав которых входят еще более мелкие элементарные частицы (электроны, протоны, нейтроны). Строение любого вещества дискретно (прерывисто).
  2. Атомы и молекулы вещества всегда находятся в непрерывном хаотическом движении.
  3. Между частицами любого вещества существуют силы взаимодействия – притяжения и отталкивания. Природа этих сил электромагнитная.

Эти положения подтверждаются опытным путем.

Опытное обоснование 1 положения.

Все тела состоят из мельчайших частиц. Во-первых, об этом говорит возможность деления вещества (все тела можно разделить на части).

Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение .

Оно было открыто английским ботаником Р. Броуном (1827 г.). В 1827 году англ. ботаник Броун, изучая внутреннее строение растений с помощью микроскопа обнаружил, что частички твердого вещества в жидкой среде совершают непрерывное хаотическое движение.

Тепловое движение взвешенных в жидкости (или газе) частиц получило название броуновского движения.

Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую. Теория броуновского движения была создана А. Эйнштейном (1905 г.). Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена (1908–1911 гг.).

Причиной броуновского движения является непрерывное хаотическое движение молекул жидкости или газа, которые, беспорядочно ударяясь со всех сторон о частичку, приводят её в движение. Причина броуновского движения частицы в том, что удары молекул о неё не компенсируются. Значит броуновское движение является еще и опытным обоснованием 2 положения МКТ.

Непрерывное движение молекул любого вещества (твердого, жидкого, газообразного) подтверждается многочисленными опытами по диффузии.

Диффузией называют явление самопроизвольного проникновения молекул одного вещества в промежутки между молекулами другого. Т.е. это самопроизвольное перемешивание веществ.

Если пахучее вещество (духи) внести в помещение, то через некоторое время запах этого вещества распространится по всему помещению. Это свидетельствует о том, что молекулы одного вещества без воздействия внешних сил проникают в другое. Диффузия наблюдается и в жидкостях, и в твердых телах.

При изучении строения вещества было установлено, что между молекулами одновременно действуют силы притяжения и отталкивания, называемые молекулярными силами. Это силы электромагнитной природы.

Способность твердых тел сопротивляться растяжению, особые свойства поверхности жидкости приводят к выводу, что между молекулами действуют силы притяжения .

Малая сжимаемость весьма плотных газов и особенно жидкостей и твердых тел означает, что между молекулами существуют силы отталкивания .

Эти силы действуют одновременно. Если бы этого не было, то тела не были бы устойчивыми: либо разлетелись бы на частицы, либо слипались.

Межмолекулярное взаимодействие – это взаимодействие электрически нейтральных молекул и атомов.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы представляют собой сложные пространственные структуры, содержащие как положительные, так и отрицательные заряды. Если расстояние между молекулами достаточно велико, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания. Зависимости результирующей силы F и потенциальной энергии E p взаимодействия между молекулами от расстояния между их центрами качественно изображены на рисунке. При некотором расстоянии r = r 0 сила взаимодействия обращается в нуль. Это расстояние условно можно принять за диаметр молекулы. Потенциальная энергия взаимодействия при r = r 0 минимальна. Чтобы удалить друг от друга две молекулы, находящиеся на расстоянии r 0 , нужно сообщить им дополнительную энергию E 0 . Величина E 0 называется глубиной потенциальной ямы или энергией связи .

Между электронами одной молекулы и ядрами другой действуют силы притяжения, которые условно принято считать отрицательными (нижняя часть графика). Одновременно между электронами молекул и их ядрами действуют силы отталкивания, которые условно считают положительными (верхняя часть графика). На расстоянии равном размеру молекул результирующая сила равна нулю, т.е. силы притяжения уравновешивают силы отталкивания. Это наиболее устойчивое расположение молекул. При увеличении расстояния притяжение превосходит силу отталкивания, при уменьшении расстояния между молекулами – наоборот.

Атомы и молекулы взаимодействуют и значит обладают потенциальной энергией .

Атомы и молекулы находятся в постоянном движении, и значит, обладают кинетической энергией.

Масса и размеры молекул

Большинство веществ состоит из молекул, поэтому для объяснения свойств макроскопических объектов, объяснения и предсказания явлений важно знать основные характеристики молекул.

Молекулой называют наименьшую устойчивую частицу данного вещества, обладающую его основными химическими свойствами.

Молекула состоит из ещё более мелких частиц – атомов, которые в свою очередь, состоят из электронов и ядер.

Атомом называют наименьшую частицу данного химического элемента.

Размеры молекул очень малы.

Порядок величины диаметра молекулы 1*10 - 8 см = 1*10 - 10 м

Порядок величины объёма молекулы 1*10 - 20 м 3

О том что размеры молекул малы можно судить и из опыта. В 1 л (м 3) чистой воды разведем 1 м 3 зеленых чернил, тете разбавим чернила в 1 000 000 раз. Увидим, что раствор имеет зеленую окраску и вместе с тем однороден. Это говорит о том, что даже при разбавлении в 1 000 000 раз в воде находится большое количество молекул красящего вещества. Этот опыт показывает, как малы размеры молекул.

В 1 см 3 воды содержится 3,7*10 -8 молекул.

Порядок величины массы молекул 1*10 -23 г = 1*10 -26 кг

В молекулярной физике принято характеризовать массы атомов и молекул не их абсолютными значениями (в кг), а относительными безразмерными величинами относительной атомной массой и относительной молекулярной массой.

По международному соглашению в качестве единичной атомной массы m 0 принимается 1/12 массы изотопа углерода 12 С (m 0С):

m 0 =1/12 m 0С =1,66 *10 -27

Относительную молекулярную массу можно определить, если абсолютное значение массы молекулы (m мол в кг) разделить на единичную атомную массу.

M 0 = m мол / 1/12 m 0С

Относительная молекулярная (атомарная) масса вещества (из таблицы Менделеева)

7 14 N Азот M 0 N = 14 M 0 N 2 = 28

Относительное число атомов или молекул, содержащихся в веществе характеризуется физической величиной, называемой количеством вещества.

Количество вещества ע – это отношение числа молекул (атомов) N в донном макроскопическом теле к числу молекул в 0,012 кг углерода N A

Количество вещества выражают в молях

Один моль – это количество вещества, в котором столько же молекул (атомов), сколько атомов содержится в 0,012 кг углерода.

Моль любого вещества содержит одинаковое число молекул. Это число называют постоянной Авогадро N A =6, 02 * 10 23 моль -1

Масса одного моля вещества называется молярной массой.

Число молекул в данной массе вещества:

Масса вещества (любого количества вещества):

Определение молярной массы:

Видеоресурс: Масса молекул. Количество вещества.

{youtube}bfPw9aZJVqk&list=PLhOzgnnk_5jyM6NXfLniX5sX3rZTrpoea&index=18{/youtube}

Понятие температуры – одно из важнейших в молекулярной физике.

Температура - это физическая величина, которая характеризует степень нагретости тел.

Беспорядочное хаотическое движение молекул называется тепловым движением .

Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах средняя кинетическая энергия молекулы может оказаться небольшой. В этом случае молекулы конденсируются в жидкое или твердое вещество; при этом среднее расстояние между молекулами будет приблизительно равно диаметру молекулы. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты .

Рассмотрим пример. Если положить нагретый металл на лед, то лед начнет плавится, а металл – охлаждаться до тех пор, пока температуры тел не станут одинаковыми. При контакте между двумя телами разной температуры происходит теплообмен, в результате которого энергия металла уменьшается, а энергия льда увеличивается.

Энергия при теплообмене всегда передается от тела с более высокой температурой к телу с более низкой температурой. В конце концов, наступает состояние системы тел, при котором теплообмен между телами системы будет отсутствовать. Такое состояние называют тепловым равновесием .

Тепловое равновесие это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными.

Температура это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики.

Тела, находящиеся в тепловом равновесии, имеют одинаковые температуры.

Для измерения температур чаще всего используют свойство жидкости изменять объем при нагревании (и охлаждении).

Прибор, с помощью которого измеряется температура, называется термометр.

Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании). Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении.

Обыкновенный жидкостный термометр состоит из небольшого стеклянного резервуара, к которому присоединена стеклянная трубка с узким внутренним каналом. Резервуар и часть трубки наполнены ртутью. Температуру среды, в которую погружен термометр определяют по положению верхнего уровня ртути в трубке. Деления на шкале условились наносить следующим образом. Цифру 0 ставят в том месте шкалы, где устанавливается уровень столбика жидкости, когда термометр опущен в тающий снег (лед), цифру 100 – в том месте, где устанавливается уровень столбика жидкости, когда термометр погружен в пары воды, кипящей при нормальном давлении (10 5 Па). Расстояние между этими отметками делят на 100 равных частей, называемых градусами. Такой способ деления шкалы введен Цельсием. Градус по шкале Цельсия обозначают ºС.

По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды – 100 °С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0 °С и 100 °С принимается равным 1 °С.

В ряде стран (США) широко используется шкала Фаренгейта (T F), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно,

Ртутные термометры применяют для измерения температуры в области от -30 ºС до +800 ºС. Наряду с жидкостными ртутными и спиртовыми термометрами применяются электрические и газовые термометры.

Электрический термометр – термосопротивление – в нем используется зависимость сопротивления металла от температуры.

Особое место в физике занимают газовые термометр , в которых термометрическим веществом является разреженный газ (гелий, воздух) в сосуде неизменного объема (V = const), а термометрической величиной – давление газа p . Опыт показывает, что давление газа (при V = const) растет с ростом температуры, измеренной по шкале Цельсия.

Чтобы проградуировать газовый термометр постоянного объема, можно измерить давление при двух значениях температуры (например, 0 °C и 100 °C), нанести точки p 0 и p 100 на график, а затем провести между ними прямую линию. Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления.

Газовые термометры громоздки и неудобны для практического применения: они используются в качестве прецизионного стандарта для калибровки других термометров.

Показания термометров, заполненных различными термометрическими телами, обычно несколько различаются. Чтобы точное определение температуры не зависело от вещества, заполняющего термометр, вводится термодинамическая шкала температур.

Чтобы её ввести, рассмотрим, как зависит давление газа от температуры, когда его масса и объём остаются постоянными.

Термодинамическая шкала температур. Абсолютный нуль.

Возьмем закрытый сосуд с газом, и будем нагревать его, первоначально поместив в тающий лед. Температуру газа t определим с помощью термометра, а давление p манометром. С увеличением температуры газа его давление будет возрастать. Такую зависимость нашел французский физик Шарль. График зависимости p от t, построенный на основании такого опыта, имеет вид прямой линии.

Если продолжить график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах все газы переходят в жидкие или твердые состояния. Давление идеального газа определяется ударами хаотически движущихся молекул о стенки сосуда. Значит, уменьшение давления при охлаждении газа объясняется уменьшением средней энергии поступательного движения молекул газа Е; давление газа будет равно нулю, когда станет равна нулю энергия поступательного движения молекул.

Английский физик У. Кельвин (Томсон) выдвинул идею о том, что полученное значение абсолютного нуля соответствует прекращению поступательного движения молекул всех веществ. Температуры ниже абсолютного нуля в природе быть не может. Это предельная температура при которой давление идеального газа равно нулю.

Температуру, при которой должно прекратиться поступательное движение молекул, называют абсолютным нулем (или нулем Кельвина).

Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалытермодинамической шкалы температур (шкала Кельвина ). За начало отсчета по этой шкале принята температура абсолютного нуля.

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К.

Размер градуса кельвина определяют так, чтобы он совпадал с градусом Цельсия, т.е 1К соответствует 1ºС.

Температура, отсчитанная по термодинамической шкале температур, обозначается Т. Её называют абсолютной температурой или термодинамической температурой .

Температурная шкала Кельвина называется абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01 °С), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной 273,16 К.

Связь между абсолютной температурой и температурой по шкале Цельсия выражается формулой Т = 273,16 + t , где t – температура в градусах Цельсия.

Чаще пользуются приближенной формулой Т = 273 + t и t = Т – 273

Абсолютная температура не может быть отрицательной.

Температура газа – мера средней кинетической энергии движения молекул.

В опытах Шарлем была найдена зависимость p от t. Эта же зависимость будет и между р и Т: т.е. между р и Т прямопропорциональная зависимость .

С одной стороны, давление газа прямопропорционально его температуре, с другой стороны, мы уже знаем, что давление газа прямопропорционально средней кинетической энергии поступательного движения молекул Е (p = 2/3*E*n). Значит, Е прямопропорциональна Т.

Немецкий ученый Больцман предложил ввести коэффициент пропорциональности (3/2)k в зависимость Е от Т

Е = (3/2) k Т

Из этой формулы следует, что среднее значение кинетической энергии поступательного движения молекул не зависит от природы газа, а определяется только его температурой.

Так как Е = m*v 2 /2, то m*v 2 /2 = (3/2)kТ

откуда средняя квадратичная скорость молекул газа

Постоянная величина k называется постоянная Больцмана.

В СИ она имеет значение k = 1,38*10 -23 Дж/К

Если подставить значение Е в формулу p = 2/3*E*n , то получим p = 2/3*(3/2)kТ* n, сократив, получим p = n * k

Давление газа не зависит от его природы, а определяется только концентрацией молекул n и температурой газа Т.

Соотношение p = 2/3*E*n устанавливает связь между микроскопическими (значения определяются с помощью расчетов) и макроскопическими (значения можно определить по показаниям приборов) параметрами газа, поэтому его принято называть основным уравнением молекулярно – кинетической теории газов .

Содержание статьи

МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ – раздел молекулярной физики, изучающий свойства вещества на основе представлений об их молекулярном строении и определенных законах взаимодействия между атомами (молекулами), из которых состоит вещество. Считается, что частицы вещества находятся в непрерывном, беспорядочном движении и это их движение воспринимается как тепло.

До 19 в. весьма популярной основой учения о тепле была теория теплорода или некоторой жидкой субстанции, перетекающей от одного тела к другому. Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Понятие об атомах долго казалось ненужным для теории тепла, однако многие ученые уже тогда интуитивно связывали тепло с движением молекул. Так, в частности, думал русский ученый М.В.Ломоносов . Прошло немало времени, прежде чем молекулярно-кинетическая теория окончательно победила в сознании ученых и стала неотъемлемым достоянием физики.

Многие явления в газах, жидкостях и твердых телах находят в рамках молекулярно-кинетической теории простое и убедительное объяснение. Так давление , оказываемое газом на стенки сосуда, в котором он заключен, рассматривается как суммарный результат многочисленных соударений быстро движущихся молекул со стенкой, в результате которых они передают стенке свой импульс. (Напомним, что именно изменение импульса в единицу времени приводит по законам механики к появлению силы, а сила, отнесенная к единице поверхности стенки, и есть давление). Кинетическая энергия движения частиц, усредненная по их огромному числу, определяет то, что принято называть температурой вещества.

Истоки атомистической идеи, т.е. представления о том, что все тела в природе состоят из мельчайших неделимых частиц-атомов, восходят еще к древнегреческим философам – Левкиппу и Демокриту. Более двух тысяч лет назад Демокрит писал: «…атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля». Решающий вклад в развитие молекулярно-кинетической теории был внесен во второй половине 19 в. трудами замечательных ученых Дж.К.Максвелла и Л.Больцмана , которые заложили основы статистического (вероятностного) описания свойств веществ (главным образом, газов), состоящих из огромного числа хаотически движущихся молекул. Статистический подход был обобщен (по отношению к любым состояниям вещества) в начале 20 в. в трудах американского ученого Дж.Гиббса , который считается одним из основоположников статистической механики или статистической физики. Наконец, в первые десятилетия 20 в. физики поняли, что поведение атомов и молекул подчиняется законам не классической, а квантовой механики. Это дало мощный импульс развитию статистической физики и позволило описать целый ряд физических явлений, которые ранее не поддавались объяснению в рамках обычных представлений классической механики.

Молекулярно-кинетическая теория газов.

Каждая молекула, летящая к стенке, при столкновении с ней передает стенке свой импульс. Поскольку скорость молекулы при упругом столкновении со стенкой меняется от величины v до –v , величина передаваемого импульса равна 2mv . Сила, действующая на поверхность стенки D S за время D t , определяется величиной полного импульса, передаваемого всеми молекулами достигнувшим стенки за этот промежуток времени, т.е. F = 2mv n c D S /D t , где n c определено выражением (1). Для величины давления p = F /D S в этом случае находим: p = (1/3)nmv 2.

Для получения окончательного результата можно отказаться от предположения об одинаковой скорости молекул, выделив независимые группы молекул, каждая из которых имеет свою приблизительно одинаковую скорость. Тогда средняя величина давления находится усреднением квадрата скорости по всем группам молекул или

Это выражение можно представить также в виде

Этой формуле удобно придать другой вид, умножив числитель и знаменатель под знаком квадратного корня на число Авогадро

N a = 6,023·10 23 .

Здесь M = mN A – атомная или молекулярная масса, величина R = kN A = 8,318·10 7 эрг называется газовой постоянной.

Средняя скорость молекул в газе даже при умеренных температурах оказывается очень большой. Так, для молекул водорода (H 2) при комнатной температуре (T = 293K) эта скорость равна около 1900 м/c , для молекул азота в воздухе – порядка 500 м/с. Скорость звука в воздухе при тех же условиях равна 340 м/с.

Учитывая, что n = N /V , где V – объем, занимаемый газом, N – полное число молекул в этом объеме, легко получить следствия из (5) в виде известных газовых законов. Для этого полное число молекул представляется в виде N = vN A , где v – число молей газа, и уравнение (5) принимает вид

(8) pV = vRT ,

которое носит название уравнения Клапейрона – Менделеева.

При условии T = const давление газа меняется обратно пропорционально занимаемому им объему (закон Бойля – Мариотта).

В замкнутом сосуде фиксированного объема V = const давление меняется прямо пропорционально изменению абсолютной температуры газа Т . Если газ находится в условиях, когда постоянным сохраняется его давление p = const, но изменяется температура (такие условия можно осуществить, например, если поместить газ в цилиндр, закрытый подвижным поршнем), то объем, занимаемый газом, будет меняться пропорционально изменению его температуры (закон Гей-Люссака).

Пусть в сосуде есть смесь газов, т.е. имеются несколько разных сортов молекул. В этом случае величина импульса, передаваемого стенке молекулами каждого сорта, не зависит от наличия молекул других сортов. Отсюда следует, что давление смеси идеальных газов равно сумме парциальных давлений, которые создавал бы каждый газ в отдельности, если бы занимал весь объем. В этом состоит еще один из газовых законов – известный закон Дальтона .

Длина свободного пробега молекул. Одним из первых, кто еще в 1850-х дал разумные оценки величины средней тепловой скорости молекул различных газов, был австрийский физик Клаузиус. Полученные им непривычно большие значения этих скоростей сразу же вызвали возражения. Если скорости молекул действительно так велики, то запах любого пахучего вещества должен был бы практически мгновенно распространяться из одного конца замкнутого помещения в другой. На самом деле распространение запаха происходит очень медленно и осуществляется, как теперь известно, посредством процесса так называемой диффузии в газе. Клаузиус, а затем и другие исследователи, сумели дать убедительное объяснение этому и другим процессам переноса в газе (таким как теплопроводность и вязкость) с помощью понятия средней длины свободного пробега молекул, т.е. среднего расстояния, которое пролетает молекула от одного столкновения до другого.

Каждая молекула в газе испытывает очень большое число столкновений с другими молекулами. В промежутке между столкновениями молекулы движутся практически прямолинейно, испытывая резкие изменения скорости лишь в момент самого столкновения. Естественно, что длины прямолинейных участков на пути молекулы могут быть различными, поэтому имеет смысл говорить лишь о некоторой средней длине свободного пробега молекул.

За время D t молекула проходит сложный зигзагообразный путь, равный v D t . Изломов траектории на этом пути столько, сколько произошло столкновений. Пусть Z означает число столкновений, которое испытывает молекула в единицу времени Средняя длина свободного пробега равна тогда отношению длины пути N 2, например, a » 2,0·10 –10 м. В таблице 1 приведены рассчитанные по формуле (10) значения l 0 в мкм (1мкм = 10 –6 м) для некоторых газов при нормальных условиях (p = 1атм, T =273K). Эти значения оказываются примерно в 100–300 раз больше собственного диаметра молекул.

Изучение молекулярной физики начнем с изучения молекулярно-кинетической теории газов.

Молекулярно-кинетическая теория газов - раздел физики, изучающий их свойства статистическими методами на основе представления об их молекулярном строении и определенном законе взаимодействия между молекулами.

Газ (от греческого chaoc - хаос) - агрегатное состояние вещества, в котором составляющие его атомы и молекулы слабо взаимодействуют и хаотически движутся в результате столкновений друг с другом, занимая весь предоставленный им объем.

Кинетическая теория газов строится на некоторых общих представлениях и опытных фактах. Вначале рассмотрим модель, называемую идеальным газом.

Идеальный газ - это газ молекулы, которого можно рассматривать как материальные точки и для которого можно пренебречь потенциальной энергией взаимодействия молекул по сравнению с их кинетической энергией. Столкновения молекул газа между собой и со стенками сосуда считаются абсолютно упругими.

Некоторые реальные газы близки по своим свойствам к идеальному газу при условиях близких к нормальным (кислород, гелий), а так же при низких давлениях и высоких температурах.

Макроскопическое состояние газа определяется давлением, температурой и объемом. В свою очередь давление, температура и объем являются параметрами, характеризующими макроскопическое состояние системы. Микроскопическое состояние газа определяется положением и скоростями всех его молекул.

Параметры состояния системы могут изменяться. Изменение любого термодинамического параметра называется термодинамическим процессом . Если состояние системы с течением времени не изменяется, то это стационарное состояние . Стационарное состояние системы, не обусловленное внешними процессами, называется равновесным состоянием системы. Уравнение, описывающее равновесное состояние термодинамической системы, называется уравнением состояния .

Основные положения молекулярно-кинетической теории газов

Первое положение молекулярно-кинетической теории - полная хаотичность движения молекул. В газе все направления движения молекул равноправны. Нет ни одного направления, в котором молекулы двигались бы в большем количестве или в котором преобладали бы более быстрые по сравнению с любым другим направлением молекулы.

Второе основное положение - пропорциональность средней скорости молекул корню квадратному их абсолютной температуры. Это положение является результатом опытов.

Третье положение - средние кинетические энергии молекул разных газов, находящихся при одинаковой температуре, равны между собой. Это положение также является результатом опытов.

1.1. Основное уравнение кинетической теории газов

Для вывода этого уравнения предположим, что в сосуде находится идеальный газ. Молекулы газа соударяются друг с другом и со стенками сосуда. Соударения молекул друг с другом приводят только к перераспределению энергии между молекулами. Выделим некоторую элементарную площадку на стенке сосуда и рассчитаем давление газа на нее (Рис.1). При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс
, гдеm - масса молекулы, v - ее скорость. За время t площадки S достигнут только те молекулы, которые заключены в объеме цилиндра с основанием S и высотой vt. Если n - концентрация молекул, то число этих молекул - nSvt. Однако следует учесть, что молекулы движутся к площадке S под разными углами и с различными скоростями. Поскольку движение молекул хаотическое, то его можно заменить движением вдоль трех взаимно перпендикулярных направлений. К тому же поскольку ни одно из направлений не имеет преимуществ перед другими, то в любой момент времени вдоль каждого из них движется 1/3 всех молекул, причем половина из них, т.е. 1/6 в одну сторону, другая половина - в противоположную. Тогда за время t площадку S достигнет число молекул, равное
. При столкновении с площадкойS эти молекулы передадут ей импульс

Тогда давление, оказываемое газом на стенку сосуда, равно


. (1.1.1)

Как уже отмечалось выше, молекулы движутся с различными скоростями v 1, v 2 , …, v n , если в объеме V газа содержится N молекул, то вместо скорости v необходимо учитывать среднюю квадратичную скорость

Тогда уравнение (1.1.1) запишется в виде

(1.1.2)

Уравнение (1.1.2) называют основным уравнением кинетической теории идеальных газов .

П
оскольку концентрацияn=N/V, следовательно

или
,

где Е - средняя кинетическая энергия одной молекулы, Е - кинетическая энергия газа.

Давление пропорционально числу молекул в единице объема и среднему значению кинетической энергии молекул.

Из основного уравнения можно вывести все газовые законы, установленные экспериментально еще в XVIII столетии, для данной массы газа справедливы законы:

Бойля-Мариотта PV=const, при T=const;

Гей-Люссака
при р=const и
приV=const;

Дальтона p=p 1 +p 2 +…+p n ;

Для 1 киломоля идеального газа справедлива формула Клапейрона-Менделеева

, (1.1.4)

где R=8,314 Дж/(мольК) - универсальная газовая постоянная. Для одного моля газа N=N A =6,0210 23 - число Авагадро. Следовательно, число Авогадро это число молекул в моле любого вещества. Количество молекул газа при нормальных условиях (p=1,01310 -5 Па, T=273K), находящихся в единице объема (1м 2), называется числом Лошмидта N L =2,68710 25 м -3 . Оно равняется числу Авогадро, деленному на объем моля газа при нормальных условиях V m =22,4110 -3 м 3 моль -1

Сравнивая выражения (1.1.3) и (1.1.4), получаем

С учетом постоянной Больцмана (k=R/N A =1,3810 -23 Дж/K):


(1.1.5)

Мы получили соотношение, связывающее среднюю кинетическую энергию одной молекулы с температурой.

Температура - физическая величина, характеризующая состояние равновесия термодинамической системы и пропорциональная средней кинетической энергии хаотического движения частиц, составляющих систему.

При приведении в контакт веществ, с различными температурами, т.е. кинетическими энергиями частиц, имеет место теплообмен - выравнивание температур.

Для измерения температуры используют зависимость физических свойств веществ от температуры (контактную разность потенциалов, тепловое расширение, зависимость электрического сопротивления, излучательную способность и т.д.).

Из уравнения (1.1.4) можно рассмотреть связь между температурой, давлением и объемом для заданной массы идеального газа

где m - масса газа,

 - молярная масса газа,

 - число молей,

N- число молекул в данном объеме газа.

Поскольку для двух различных состояний одной массы газа p 1 V 1 =NkT 1 и p 2 V 2 =NkT 2 , имеем
т.е.
(1.1.6)

Термодинамическая температура прямо пропорциональна произведению объема на давление (для заданной массы газа).

В качестве примера применения уравнения Менделеева - Клапейрона рассмотрим процесс изменения температуры и давления при постоянном объеме V=const (изохорический процесс). В этом случае удобно воспользоваться зависимостью давления от плотности и температуры

, (1.1.7)

где =m/ - плотность газа (кг/м 3).

График изохорического процесса в координатах р,Т (рис.1.1.2) представляет собой прямые, проходящие через начало координат. Из зависимости (1.1.7) и графика следует, что большей плотности (или концентрации n) соответствует большее давление. С другой стороны, большему объему V (при постоянной массе m) соответствует меньший угол наклона прямой к оси абсцисс - обратная зависимость.

Пример 1. Определить температуру, при которой 4м 2 газа создают давление 1,510 5 Па, если при нормальных условиях газ занимает объем 5м 3 .

Решение. В нормальных условиях V 1 =5 м 3 , р 1 =1атм=101325 Па, Т 1 =273К, необходимо найти Т 2 при V 2 =4м 3 , р 2 =1,510 5 Па. Согласно (5) имеем

откуда

Пример2. Сколько молекул вы вдыхаете, если при одном вдохе получаете 1л воздуха?

Решение. Объем одного киломоля равен 22,4м 3 , значит 1л воздуха равен 110 -3 /22,4=4,510 -5 кмоль. Таким образом, 1л воздуха содержит 4,510 -5 6,0210 26 =2,710 22 молекул.

Пример3. Что тяжелее 1м 3 сухого воздуха или 1м 3 влажного воздуха при одинаковых температурах и давлениях?  возд. =29 кг/кмоль,  воды =18 кг/кмоль.

Решение. Средняя масса молекулы сухого воздуха больше, чем у водяного пара. Число молекул в обоих случаях одинаково, но во влажном воздухе часть молекул заменена более легкими молекулами воды, следовательно, 1м 3 сухого воздуха тяжелее, чем 1м 3 влажного.

Пример4. Как изменится давление данной массы газа при постоянном объеме, если температуру газа увеличить в 2 раза и каждая молекула при этом распадется на два атома?

Решение.
, так какN и T увеличиваются в 2 раза, то давление увеличится в 4 раза.

Пример5. Показать, что
.

Решение. Рассмотрим четыре молекулы, скорости которых различны и равны 1,2,3 и 4м/c. Квадрат среднего значения
равен

,

а средняя квадратичная скорость равна

Если скорости отдельных молекул равны +1, -2, -3, +4 м/c, то
, а

ОПРЕДЕЛЕНИЕ

Атом — наименьшая частица данного химического элемента. Все существующие в природе атомы представлены в периодической системе элементов Менделеева.

Атомы соединяются в молекулу за счет химических связей, основанных на электрическом взаимодействии. Число атомов в молекуле может быть разным. Молекула может состоять из одного, из двух, трех и даже нескольких сотен атомов.

ОПРЕДЕЛЕНИЕ

Молекула - наименьшая частица данного вещества, обладающая его химическими свойствами.

Молекулярно-кинетическая теория - учение о строении и свойствах вещества на основе представлений о существовании атомов и молекул.

Основоположником молекулярно-кинетической теории является М.В. Ломоносов (1711-1765), который сформулировал ее основные положения и применил их к объяснению различных тепловых явлений.

Основные положения молекулярно-кинетической теории

Основные положения МКТ:

  1. все тела в природе состоят из мельчайших частиц (атомов и молекул);
  2. частицы находятся в непрерывном хаотическом движении, которое называется тепловым;
  3. частицы взаимодействуют друг с другом: между частицами действуют силы притяжения и отталкивания, которые зависят от расстояния между частицами.

Молекулярно-кинетическая теория подтверждается многими явлениями.

Смешивание различных жидкостей, растворение твердых тел в жидкостях объясняется перемешиванием молекул различного рода. При этом объем смеси может отличаться от суммарного объема входящих в нее компонент. что говорит о разных размерах молекулярных соединений.

ОПРЕДЕЛЕНИЕ

Диффузия - явление проникновения двух или нескольких соприкасающихся веществ друг в друга.

Наиболее интенсивно диффузия протекает в газах. Распространение запахов обусловлено диффузией. Диффузия свидетельствует о том, что молекулы находятся в постоянном хаотическом движении. Также явление диффузии свидетельствует о том, что между молекулами есть промежутки, т.е. вещество является дискретным.

ОПРЕДЕЛЕНИЕ

Броуновское движение - тепловое движение мельчайших микроскопических частиц, взвешенных в жидкости или газе.

Это явление впервые наблюдал английский ботаник Р. Броун в 1827 г. Наблюдая в микроскоп цветочную пыльцу, взвешенную в воде, он увидел, что каждая частица пыльцы совершает быстрые беспорядочные движения, перемещаясь на некоторое расстояние. В результате отдельных перемещений каждая частица пыльцы двигалась по зигзагообразной траектории (рис. 1, а).

Рис.1. Броуновское движение: а) траектории движения отдельных частиц, взвешенных в жидкости; б) передача импульса молекулами жидкости взвешенной частице.

Дальнейшие исследования броуновского движения в различных жидкостях и с различными твердыми частицами показали, что это движение становится тем интенсивнее, чем меньше размеры частиц и чем выше температура опыта. Это движение никогда не прекращается и не зависит от каких-либо внешних причин.

Р. Броун не смог дать объяснение наблюдаемому явлению. Теория броуновского движения была построена А. Эйнштейном в 1905 г. и получила экспериментальное подтверждение в опытах французского физика Ж. Перрена (1900-1911 гг.).

Молекулы жидкости, которые находятся в постоянном хаотическом движении при столкновении со взвешенной частицей передают ей некоторый импульс (рис.1, б). В случае частицы больших размеров число налетающих на нее со всех сторон молекул велико, их удары в каждый момент времени компенсируются, и частица остается практически неподвижной. Если же размер частицы очень мал, то удары молекул не компенсируются - с одной стороны об нее может удариться большее число молекул, чем с другой, в результате чего частица придет в движение. Именно такое движение под влиянием беспорядочных ударов молекул и совершают броуновские частицы. Хотя броуновские частицы по массе в миллиарды раз превосходят массу отдельных молекул и движутся с очень малыми скоростями (по сравнению со скоростями молекул), все же их движение можно наблюдать в микроскоп.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

ОПРЕДЕЛЕНИЕ

Уравнение, положенное в основу молекулярно-кинетической теории, связывает макроскопические величины, описывающие (например, давление) с параметрами его молекул (их и скоростями). Это уравнение имеет вид:

Здесь – масса газовой молекулы, – концентрация таких частичек в единице объема, – усреднённый квадрат скорости молекул.

Основное уравнение МКТ наглядно объясняет, каким образом идеальный газ создает на окружающие его стенки сосуда. Молекулы все время ударяются о стенку, воздействуя на нее с некоторой силой F. Тут следует вспомнить : когда молекула ударяется о предмет, на нее действует сила -F, вследствие чего молекула «отбивается» от стенки. При этом мы считаем соударения молекул со стенкой абсолютно упругими: механическая энергия молекул и стенки полностью сохраняется, не переходя во . Это значит, что при соударениях изменяются только молекул, а нагревания молекул и стенки не происходит.

Зная, что соударение со стенкой было упругим, мы можем предсказать, как изменится скорость молекулы после столкновения. Модуль скорости останется таким же, как и до соударения, а направление движения изменится на противоположное относительно оси Ох (считаем, что Ох – это та ось, которая перпендикулярна стенке).

Молекул газа очень много, движутся они хаотично и о стенку ударяются часто. Найдя геометрическую сумму сил, с которой каждая молекула воздействует на стенку, мы узнаём силу давления газа. Чтобы усреднить скорости молекул, необходимо использовать статистические методы. Именно поэтому в основном уравнении МКТ используют усредненный квадрат скорости молекул , а не квадрат усредненной скорости : усредненная скорость хаотично движущихся молекул равна нулю, и в этом случае никакого давления мы бы не получили.

Теперь ясен физический смысл уравнения: чем больше молекул содержится в объеме, чем они тяжелее и чем быстрее движутся – тем большее давление они создают на стенки сосуда.

Основное уравнение МКТ для модели идеального газа

Следует заметить, что основное уравнение МКТ выводилось для модели идеального газа с соответствующими допущениями:

  1. Соударения молекул с окружающими объектами абсолютно упругие. Для реальных же газов это не совсем так; часть молекул всё-таки переходит во внутреннюю энергию молекул и стенки.
  2. Силами взаимодействия между молекулами можно пренебречь. Если же реальный газ находится при высоком давлении и сравнительно низкой температуре, эти силы становятся весьма существенными.
  3. Молекулы считаем материальными точками, пренебрегая их размером. Однако размеры молекул реальных газов влияют на расстояние между самими молекулами и стенкой.
  4. И, наконец, основное уравнение МКТ рассматривает однородный газ – а в действительности мы часто имеем дело со смесями газов. Как, например, .

Однако для разреженных газов это уравнение дает очень точные результаты. Кроме того, многие реальные газы в условиях комнатной температуры и при давлении, близком к атмосферному, весьма напоминают по свойствам идеальный газ.

Как известно из законов , кинетическая энергия любого тела или частицы . Заменив произведение массы каждой из частичек и квадрата их скорости в записанном нами уравнении, мы можем представить его в виде:

Также кинетическая энергия газовых молекул выражается формулой , что нередко используется в задачах. Здесь k – это постоянная Больцмана, устанавливающая связь между температурой и энергией. k=1,38 10 -23 Дж/К.

Основное уравнение МКТ лежит в основе термодинамики. Также оно используется на практике в космонавтике, криогенике и нейтронной физике.

Примеры решения задач

ПРИМЕР 1

Задание Определить скорость движения частиц воздуха в нормальных условиях.
Решение Используем основное уравнение МКТ, считая воздух однородным газом. Так как воздух на самом деле – это смесь газов, то и решение задачи не будет абсолютно точным.

Давление газа:

Можем заметить, что произведение – это газа, так как n – концентрация молекул воздуха (величина, обратная объему), а m – масса молекулы.

Тогда предыдущее уравнение примет вид:

В нормальных условиях давление равно 10 5 Па, плотность воздуха 1,29кг/м 3 – эти данные можно взять из справочной литературы.

Из предыдущего выражения получим молекул воздуха:

Ответ м/с

ПРИМЕР 2

Задание Определить концентрацию молекул однородного газа при температуре 300 К и 1 МПа. Газ считать идеальным.
Решение Решение задачи начнём с основного уравнения МКТ: , как и любых материальных частичек: . Тогда наша расчетная формула примет несколько другой вид: