Нейтральной среде почему не меняет цвет индикатор. Индикаторы в химии

Вещества, изменяющие окраску при изменении реакции среды, – индикаторы – чаще всего сложные органические соединения – слабые кислоты или слабые основания. Схематично состав индикаторов можно выразить формулами НInd или IndOH, где Ind – сложный органический анион или катион индикатора.

Практически индикаторы применяли давно, но первая попытка в объяснении их действия была сделана в 1894 году Оствальдом, создавшим так называемую ионную теорию. Согласно этой теории, недиссоциированные молекулы индикатора и его Ind–ионы имеют в растворе разную окраску, и окраска раствора изменяется в зависимости от положения равновесия диссоциации индикатора. Например, фенолфталеин (кислотный индикатор) имеет молекулы бесцветные, а анионы малиновые; метилоранж (основной индикатор) – желтые молекулы и красные катионы.

фенолфталеин метилоранж

HIndH + + Ind – IndOH
Ind + + OH –

бесцв. малинов. желт. красн.

Изменение в соответствии с принципом Ле-Шателье приводит к смещениию равновесия вправо или влево.

Согласно хромофорной теории (Ганч), появившейся позднее, изменение окраски индикаторов связано с обратимой перегруппировкой атомов в молекуле органического соединения. Такая обратимая перегруппировка в органической химии называется таутомерией. Если в результате таутомерного изменения строения в молекуле органического соединения появляются особые группировки, называемые хромофорами, то органическое вещество приобретает окраску. Хромофорами называются группы атомов, которые содержат одну или несколько кратных связей, вызывающие избирательное поглощение электромагнитных колебаний в УФ области. В роли хромофорных групп могут выступать группировки атомов и связей, как −N=N− , =С=S , −N=О, хиноидные структуры и т.д.

Когда таутомерное превращение ведет к изменению строения хромофора – окраска изменяется; если же после перегруппировки молекула не содержит более хромофора – окраска исчезнет.

Современные представления основывываются на ионно-хромофорной теории, согласно которой изменение окраски индикаторов обусловлено переходом из ионной формы в молекулярную, и наоборот, сопровождающегося изменением структуры индикаторов. Таким образом, один и тот же индикатор может существовать в двух формах с разным строением молекул, причем эти формы могут переходить одна в другую, и в растворе между ними устанавливается равновесие.

В качестве примера можно рассмотреть структурные изменения в молекулах типичных кислотно-основных индикаторов – фенолфталеина и метилового оранжевого под действием растворов щелочей и кислот (при различных значениях рН).

Реакция, в результате которой, благодаря таутомерной перестройке структуры молекулы фенолфталеина в ней возникает хромофорная группировка, обусловливающая появление окраски, протекает согласно следующему уравнению:

бесцветный бесцветный бесцветный

малиновый

Индикаторы, как слабые электролиты, имеют малые величины констант диссоциации. Например, К д фенолфталеина равна 2∙10 -10 и в нейтральных средах он находится преимущественно в виде своих молекул вследствие очень малой концентрации ионов, почему и остается бесцветным. При добавлении щелочи Н + -ионы фенолфталеина связываются, «стягиваются» с ОН – -ионами щелочи, образуя молекулы воды, и положение равновесия диссоциации индикатора смещается вправо – в сторону увеличения концентрации Ind – -ионов. В щелочной среде образуется двунатриевая соль, имеющая хиноидное строение, что вызывает окраску индикатора. Смещение равновесия между таутомерными формами происходит постепенно. Поэтому и цвет индикатора изменяется не сразу, а переходя через смешанную окраску к цвету анионов. При добавлении в этот же раствор кислоты одновременно с нейтрализацией щелочи – при достаточной концентрации Н + -ионов – положение равновесия диссоциации индикатора смещается влево, в сторону моляризации, раствор снова обесцвечивается.

Аналогично происходит изменение окраски метилоранжа: нейтральные молекулы метилоранжа придают раствору желтый цвет, который в результате протонирования переходит в красный, соответствующий хиноидной структуре. Этот переход наблюдается в интервале рН 4.4–3.1:

желтый красный

Таким образом, окраска индикаторов зависит от рН-среды. Интенсивность окраски таких индикаторов достаточно велика и хорошо заметна даже при введении небольшого количества индикатора, не способного существенно повлиять на рН раствора.

Раствор, содержащий индикатор, непрерывно изменяет свою окраску при изменении рН. Человеческий глаз, однако, не очень чувствителен к таким изменениям. Диапазон, в котором наблюдается изменение окраски индикатора, определяется физиологическими пределами восприятия цвета человеческим глазом. При нормальном зрении глаз способен различить присутствие одной окраски в смеси ее с другой окраской только при наличии как минимум некоторой пороговой плотности первой окраски: изменение окраски индикатора воспринимается только в той области, где имеется 5-10-кратный избыток одной формы по отношению к другой. Рассматривая в качестве примера HInd и характеризуя состояние равновесия

HInd
H + + Ind –

соответствующей константой

,

можно написать, что индикатор проявляет свою чисто кислотную окраску, обычно улавливаемую наблюдателем, при

,

а чисто щелочную окраску при

Внутри интервала, определяемого этими величинами, проявляется смешанная окраска индикатора.

Таким образом, глаз наблюдателя различает изменение окраски лишь при изменении реакции среды в интервале около 2-х единиц рН. Например, у фенолфталеина этот интервал рН от 8,2 до 10,5: при рН=8,2 глаз наблюдает начало появления розовой окраски, которая все усиливается до значения рН=10,5, а при рН=10,5 усиление красной окраски уже незаметно. Этот интервал значений рН, в котором глаз различает изменение окраски индикатора, называют интервалом перехода окраски индикатора. Для метилового оранжевого К Д = 1,65·10 -4 и рК = 3,8. Это означает, что при рН = 3,8 нейтральная и диссоциированные формы находятся в равновесии в приблизительно равных концентрациях.

Указанный диапазон рН величиной приблизительно в 2 единицы для различных индикаторов не приходится на одну и ту же область шкалы рН, так как его положение зависит от конкретного значения константы диссоциации каждого индикатора: чем более сильная кислота HInd , тем в более кислой области находится интервал перехода индикатора. В табл. 18 приведены интервалы перехода и цвета наиболее распространенных кислотно-основных индикаторов.

Для более точного определения значения pH растворов используют сложную смесь нескольких индикаторов, нанесенную на фильтровальную бумагу (так называемый "Универсальный индикатор Кольтгоффа"). Полоску индикаторной бумаги обмакивают в исследуемый раствор, кладут на белую непромокаемую подложку и быстро сравнивают окраску полоски с эталонной шкалой для pH.

Таблица 18.

Интервалы перехода и окраска в различных средах

наиболее распространенных кислотно-основных индикаторов

Название

Цвет индикатора в различных средах

Фенолфталеин

бесцветный

малиновый

8.0 < pH < 9.8

малиновый

фиолетовый

5 < рН < 8

Метиловый

оранжевый

оранжевый

3.1< рН < 4.4

Метиловый

фиолетовый

фиолетовый

Бромкрезоловый

Бромтимоловый

Тимоловый

2,5 < pH < 7,9

При проведении химического процесса чрезвычайно важно бывает проследить за условиями протекания реакции или установить достижение ее окончания. Иногда это удается наблюдать по некоторым внешним признакам: прекращению выделения пузырьков газа, изменению окраски раствора, выпадению осадка или, наоборот, переходу в раствор одного из компонентов реакции и т. п. В большинстве же случаев для определения окончания реакции пользуются реактивами вспомогательного действия, так называемыми индикаторами, которые вводят обычно в анализируемый раствор в небольших количествах.

Индикаторами называются химические соединения, способные изменять окраску раствора в зависимости от условий среды, не влияя при этом непосредственно на испытуемый раствор и на направление реакции. Так, кислотно-щелочные индикаторы изменяют окраску в зависимости от pH среды; окислительно-восстановительные индикаторы - от потенциала среды; адсорбционные индикаторы - от степени адсорбции и т. д.

Особенно широко применяют индикаторы в аналитической практике для титриметрического анализа. Они служат также важнейшим инструментом для контроля технологических процессов в химической, металлургической, текстильной, пищевой и других отраслях промышленности. В сельском хозяйстве при помощи индикаторов проводят анализ и классификацию почв, устанавливают характер удобрений и необходимое количество их для внесения в почву.

Различают кислотно-щелочные, флуоресцентные, окислительновосстановительные, адсорбционные и хемилюминесцентные индикаторы.

КИСЛОТНО-ЩЕЛОЧНЫЕ (PH) ИНДИКАТОРЫ

Как известно из теории электролитической диссоциации, растворенные в воде химические соединения диссоциируют на положительно заряженные ионы - катионы и отрицательно заряженные - анионы. Вода также диссоциирует в очень малой степени на ионы водорода, заряженные положительно, и ионы гидроксила, заряженные отрицательно:

Концентрацию водородных ионов в растворе обозначают символом .

Если концентрация водородных и гидроксильных ионов в растворе одинакова, то такие растворы нейтральны и pH = 7. При концентрации водородных ионов, соответствующей pH от 7 до 0, раствор кислый, если же концентрация гидроксильных ионов больше (pH = от 7 до 14), раствор щелочной.

Для измерения значения pH пользуются различными методами. Качественно же реакцию раствора можно определить с помощью специальных индикаторов, меняющих свою окраску в зависимости от концентрации водородных ионов. Такими индикаторами являются кислотно-щелочные индикаторы, которые реагируют на изменение pH среды.

Кислотно-щелочные индикаторы в подавляющем большинстве являются красителями или другими органическими соединениями, молекулы которых претерпевают структурные изменения в зависимости от реакции среды. Ими пользуются в титриметрическом анализе при реакциях нейтрализации, а также для колориметрического определения pH.

Индикатор Интервал pH перехода окраски Изменение окраски
Метиловый фиолетовый 0,13-3,2 Желтая - фиолетовая
Тимоловый синий 1,2-2,8 Красная - желтая
Тропеолин 00 1,4-3,2 Красная - желтая
- Динитрофенол 2,4-4,0 Бесцветная - желтая
Метиловый оранжевый 3,1-4,4 Красная - желтая
Нафтиловый красный 4,0-5,0 Красная - оранжевая
Метиловый красный 4,2-6,2 Красная - желтая
Бромтимоловый синий 6,0-7,6 Желтая - синяя
Феноловый красный 6,8-8,4 Желтая - красная
Метакрезоловый пурпуровый 7,4-9,0 Желтая - фиолетовая
Тимоловый синий 8,0-9,6 Желтая - синяя
Фенолфталеин 8,2-10,0 Бесцветная - красная
Тимолфталеин 9,4-10,6 Бесцветная - синяя
Ализариновый желтый Р 10,0-12,0 Бледно-желтая - красно-оранжевая
Тропеолин 0 11,0-13,0 Желтая - срзнжевая
Малахитовый зеленый 11,6-13,6 Зеленовато-голубая - бесцветная

Если необходимо повысить точность измерения pH, то пользуются смешанными индикаторами. Для этого подбирают два индикатора с близкими интервалами pH перехода окраски, имеющими в этом интервале дополнительные цвета. При помощи такого смешанного индикатора можно проводить определения с точностью до 0,2 единицы pH.

Широко пользуются также универсальными индикаторами, способными многократно изменять окраску в широком диапазоне значений pH. Хотя точность определения такими индикаторами не превышает 1,0 единицы pH, зато они позволяют вести определения в широком интервале pH: от 1,0 до 10,0. Универсальные индикаторы обычно представляют собой комбинацию из четырех - семи двухцветных или одноцветных индикаторов с различными интервалами pH перехода окраски, составленную таким образом, чтобы при изменении pH среды происходило заметное изменение окраски.

Например, выпускаемый промышленностью универсальный индикатор РКС - смесь семи индикаторов: бромкрезолового пурпурового, бромкрезолового зеленого, метилового оранжевого, тро-пеолина 00, фенолфталеина, тимолового синего и бромтимолового синего.

Этот индикатор в зависимости от pH имеет следующую окраску: при pH = 1 - малиновую, pH = 2 - розовато-оранжевую, pH =3 - оранжевую, pH = 4 - желто-оранжевую, pH =5 желтую, pH = 6 - зеленовато-желтую, pH = 7 - желто-зеленую,. РН = 8 - зеленую, pH = 9 - сине-зеленую, pH = 10 - серовато-синюю.

Индивидуальные, смешанные и универсальные кислотно-щелочные индикаторы обычно растворяют в этиловом спирте и по нескольку капель добавляют в испытуемый раствор. По изменению окраски раствора судят о значении pH. Кроме спирторастворимых индикаторов, выпускаются также водорастворимые формы, представляющие собой аммонийные или натриевые соли этих индикаторов.

Во многих случаях удобнее пользоваться не растворами индикаторов, а индикаторными бумажками. Последние готовят следующим образом: фильтровальную бумагу пропускают через стандартный раствор индикатора, отжимают бумагу от избыточного раствора, высушивают, разрезают на узкие полоски и брошюруют в книжечки. Для проведения испытания индикаторную бумажку опускают в испытуемый раствор или одну каплю раствора помещают на полоску индикаторной бумажки и наблюдают изменение ее окраски.

ФЛУОРЕСЦЕНТНЫЕ ИНДИКАТОРЫ

Некоторые химические соединения при воздействии на них ультрафиолетовых лучей обладают способностью при определенном значении pH вызывать флуоресценцию раствора или изменять ее цвет или оттенок.

Этим свойством пользуются для кислотно-щелочного титрования масел, мутных и сильно окрашенных растворов, поскольку обычные индикаторы для этих целей непригодны.

Работу с флуоресцентными индикаторами проводят при освещении исследуемого раствора ультрафиолетовым светом.

Индикатор Интервал pH изменения флуоресценции (в ультрафиолетовом свете) Изменение цвета флуоресценции
4-Этоксиакридон 1,4-3,2 Зеленый - синий
2-Нафтиламин 2,8-4,4 Нарастание фиолетовой флуоресценции
Диметнлнафтэйродин 3,2-3,8 Лиловый - оранжевый
1-Нафтиламнн 3,4-4,8 Нарастание синей флуоресцен­ции
Акридин 4,8-6,6 Зеленый - фиолетовый
3,6-Диоксифталимид 6,0-8,0 Желто-зеленый - желтый
2,3-Дициангидрохинон 6,8-8,8 Синий - зеленый
Эухризин 8,4-10,4 Оранжевый - зеленый
1,5-Нафтиламинсульфамид 9,5-13,0 Желтый - зеленый
СС-кислота (1,8-аминонафтол 2,4-дисульфокислота) 10,0-12,0 Фиолетовый - зеленый

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ИНДИКАТОРЫ

Окислительно-восстановительные индикаторы - химические соединения, изменяющие окраску раствора в зависимости от значения окислительно-восстановительного потенциала. Они применяются в титриметрических методах анализа, а также в биологических исследованиях для колориметрического определения окислительно-восстановительного потенциала.

Индикатор Нормальный окислительно-восстановительный потенциал (при рН=7), В Окраска раствора
окислительная форма восстановленная форма
Нейтральный красный -0,330 Красно-фиолето­вая Бесцветная
Сафранин Т -0,289 Коричневая Бесцветная
Индигомоносульфонат калия -0,160 Синяя Бесцветная
Индигодисульфонат калия -0,125 Синяя Бесцветная
Индиготрисульфонат калия -0,081 Синяя Бесцветная
Инднготетрасульфо­нат калия -0,046 Синяя Бесцветная
Толуидиновый голу­бой +0,007 Синяя Бесцветная
Тнонин +0,06 Фиолетовая Бесцветная
о-Крезолиндофенолят натрия +0,195 Красновато-синяя Бесцветная
2,6-Днхлорфенолиндофенолят натрия +0,217 Красновато-синяя Бесцветная
м-Бромфенолиндофенолят натрия +0,248 Красновато-синяя Бесцветная
Дифеинлбензидин +0,76 (кислый раствор) Фиолетовая Бесцветная

АДСОРБЦИОННЫЕ ИНДИКАТОРЫ

Адсорбционные индикаторы - вещества, в присутствии которых происходит изменение цвета осадка, образующегося при титровании методом осаждения. Изменять цвет осадка при определенном значении pH способны многие кислотно-щелочные индикаторы, некоторые красители и другие химические соединения, что делает их пригодными для использования в качестве адсорбционных индикаторов.

Индикатор Определяемый ион Ион осадитель Изменение окраски
Ализариновый красный С Желтая - розово-красная
Бромфеноловый синий Желтая - зеленая
Сиреневая - желтая
Фиолетовая - сине-зеленая
Дифенилкарбазид , , Бесцветная - фиолетовая
Конго красный , , Красная - синяя
Синяя - красная
Флуоресцеин , Желто-зеленая - розовая
Эозин , Желто-красная - красно­ фиолетовая
Эритрозин Красно-желтая - темно­ красная

ХЕМИЛЮМИНЕСЦЕНТНЫЕ ИНДИКАТОРЫ

К этой группе индикаторов относятся вещества, способные при определенных значениях pH высвечивать видимым светом. Хемилюминесцентными индикаторами удобно пользоваться при работе с темными жидкостями, поскольку в данном случае в конечной точке титрования возникает свечение.

Существуют различные методы определения концентрации (точнее активности) ионов водорода (и, соответственно, концентрации гидроксид-ионов). Один из простейших (колориметрический) основан на использовании кислотно-основных индикаторов. В качестве таких индикаторов могут служить многие органические кислоты и основания, которые изменяют свою окраску в некотором узком интервале значений рН.

Индикаторы представляют собой слабые кислоты или основания, которые в недиссоциированной и в диссоциированной (ионной) формах имеют разную окраску.

Пример.

1.Фенолфталеин представляет собой кислоту, которая в молекулярной форме (HJnd) при рН8,1 бесцветна. Анионы фенолфталеина (Jnd -) при рН9,6 имеют красно-фиолетовую окраску:

H Jnd  H + + Jnd -

Бесцветный  красно-фиолетовый

рН8,1 рН9,6

При уменьшении концентрации ионов Н + и увеличении концентрации ионовOH - молекулярная форма фенолфталеина переходит в анионную из-за отрыва от молекул иона водорода и связывания его с гидроксид-ионом в воду. Поэтому при рН9,6 раствор в присутствии фенолфталеина приобретает красно-фиолетовую окраску. Наоборот, в кислотных растворах при рН8,1 равновесие смещается в сторону молекулярной формы индикатора, не имеющей окраски.

2.Метиловый оранжевый представляет собой слабое основание JndOH, которое в молекулярной форме при рН 4,4 имеет желтый цвет. Катионы Jnd + при рН3,0 окрашивают раствор в красный цвет:

JndOH  Jnd + + OH -

желтый  красный

рН4,4 рН3,0

Кислотной формой индикатора называют форму, которая преобладает в кислотных растворах, а основной формой – ту, которая существует в основных (щелочных) растворах. В некотором промежутке значений рН в растворе может одновременно находиться в равновесии некоторое количество обеих форм индикатора, вследствие чего возникает переходная окраска индикатора, - это интервал рН перехода окраски индикатора, или просто интервал перехода индикатора.

В табл.1 показаны интервалы перехода некоторых часто используемых индикаторов.

Таблица 1

Кислотно-основные индикаторы

Индикатор

Значение рН

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Тимоловый синий

Метиловый оранжевый

желто-оранжевая

Бромфеноловый синий

Ализариновый красный

фиолетовая

Метиловый красный

Феноловый красный

Фенолфталеин

бесцветная

красная (розовая)

Ализариновый желтый

бледно-желтая

желто-коричн-евая

Индиго карминовый

11,6-14,0 14- желтая

Для быстрого определения рН удобно также пользоваться раствором универсального индикатора, представляющего собой смесь различных индикаторов и имеющего большой интервал перехода (значения рН от 1 до 10). На основе универсального индикатора промышленностью выпускаются специальные бумажные ленты для определения рН у растворов путем сравнения со специальной шкалой изменения их окраски под действием испытуемого раствора.

В колориметрическом методе для точного определения рН применяются стандартные буферные растворы, значение водородного показателя которых точно известно и постоянно.

Буферными растворами называются смеси слабых кислот или оснований с их солями. Такие смеси сохраняют определенное значение рН как при разбавлении, так и при прибавлении небольших количеств сильных кислот или щелочей.

Каждому школьнику хорошо знаком лакмус — с его помощью определяют кислотность среды. Это вещество явля-ется кислотно-основным индикатором, т. е. обладает способностью обратимо изменять окраску в зависимости от кис-лотности раствора: в кислой среде лак-мус становится красным, а в щелоч-ной — синим. В нейтральной среде цвет лакмуса фиолетовый — это сочетание равных количеств синего и красного. Хотя лакмус уже в течение несколь-ких столетий верно служит людям, его состав так до конца и не изучен. В этом нет ничего удивительного: ведь лак-мус — это сложная смесь природных соединений. Он был известен уже в Древнем Египте и в Древнем Риме, где его использовали в качестве фиолето-вой краски — заменителя дорогостоя-щего пурпура. Затем рецепт приготов-ления лакмуса оказался утерян. Лишь в начале XIV в. во Флоренции вновь бы-ла открыта фиолетовая краска орсейль, тождественная лакмусу, причём способ её приготовления в течение многих лет держали в секрете.

При переходе от кислой среды к щелочной окраска лакмуса меняется с красной на синюю .

Готовили лакмус из специальных ви-дов лишайников. Измельчённые лишай-ники увлажняли, а затем добавляли в эту смесь золу и соду. Приготовленную та-ким образом густую массу помешали в деревянные бочки, добавляли мочу и вы-держивали длительное время. Постепен-но раствор приобретал тёмно-синий цвет. Его упаривали и в таком виде применяли для окрашивания тканей. В XVII столетии производство орсейли было налажено во Фландрии и Голлан-дии, а в качестве сырья использовали ли-шайники, которые привозили с Канар-ских островов.

Похожее на орсейль красящее веще-ство было выделено в XVII в. из гелио-тропа — душистого садового растения с тёмно-лиловыми цветками.

Знаменитый физик и химик XVII в. Роберт Бойль писал о гелиотропе: «Пло-ды этого растения дают сок, который при нанесении на бумагу или материю име-ет сначала свежий ярко-зелёный цвет, но неожиданно изменяет его на пурпурный. Если материал замочить в воде и отжать, вода окрашивается в винный цвет; такие виды красителя (их обычно называют «турнесоль») есть у аптекарей, в бакалей-ных лавках и в других местах, которые служат для окраски желе, или других веществ, кто как хочет». С того времени орсейль и гелиотроп стали использовать в химических лабораториях. И лишь в 1 704 г. немецкий учёный М. Валентин назвал эту краску лакмусом.

Сегодня для производства лакмуса измельчённые лишайники сбраживают в растворах поташа (карбоната калия) и аммиака, затем в полученную смесь добавляют мел или гипс. Считается, что красящими веществами лакмуса яв-ляются индофенолы, которые в кис-лой среде существуют в катионной форме, а в щелочной — в анионной, например:

В некоторых странах краску, сход-ную с лакмусом, добывали и из других растений. Простейшим примером служит свекольный сок, который также из-меняет цвет в зависимости от кислот-ности среды.

В сильнокислой среде индикатор метиловый оранжевый имеет красную окраску, в слабокислой и нейтральной — оранжевую, а в щелочной — жёлтую.

Метиловый оранжевый в щелочной среде.

В XIX в. на смену лакмусу пришли более прочные и дешёвые синтетиче-ские красители, поэтому использование лакмуса ограничивается лишь грубым определением кислотности среды. Для этой цели служат полоски фильтроваль-ной бумаги, пропитанные раствором лакмуса. В аналитической практике применение лакмуса ограничено тем, что по мере полкисления он изменяет окраску постепенно, а не в узком ин-тервале рН, как многие современные индикаторы. На смену лакмусу в анали-тической химии пришёл лакмоид — краситель резорциновый синий, кото-рый отличается от природного лакмуса по строению, но сходен с ним по окраске: в кислой среде он красный, а в щелочной — синий.

При увеличении рН до 8—8,5 окраска фенолфталеина изменяется с бесцветной на малиновую.

В наши дни известны несколько сот кислотно-основных индикаторов, ис-кусственно синтезированных начиная с середины XIX в. С некоторыми из них можно познакомиться в школьной хи-мической лаборатории. Индикатор ме-тиловый оранжевый (метилоранж) в кислой среде красный, в нейтральной — оранжевый, а в щелочной — жёлтый. Более яркая цветовая гамма свойствен-на индикатору тимоловому синему: в кислой среде он малиново-красный, в нейтральной — жёлтый, а в щелочной — синий. Индикатор фенолфтале-ин (он продаётся в аптеке под названи-ем «пурген») в кислой и нейтральной среде бесцветен, а в щелочной имеет малиновую окраску. Поэтому фенол-фталеин используют лишь для опреде-ления щелочной среды. В зависимости от кислотности среды изменяет окраску и краситель бриллиантовый зелёный (сто спиртовой раствор используется как дезинфицирующее средство — «зе-лёнка»). Для того чтобы проверить это, надо приготовить разбавленный раст-вор бриллиантового зелёного: налить в пробирку несколько миллилитров воды и добавить в неё одну-две капли аптеч-ного препарата. Раствор приобретёт красивый зелёно-голубой цвет. В силь-нокислой среде его окраска сменится жёлтой, а в сильнощелочной раствор обесцветится.

Лекция 4 Кислотно-основные индикаторы. Титрование в неводных средах. Теория кислоти оснований.

В 1894г Оствальдом была создана, так называемая ионная теория индикаторов . Согласно этой теории кислотно-основные индикаторы – это сложные органические вещества (слабые органические кислоты или основания: HInd или IndOH), способные изменять свою окраску в зависимости от pH раствора. Известно около 200 кислотно-основных индикаторов, относящихся к различным классам органических соединений. Кроме индивидуальных для титрования применяют смешанные индикаторы, представляющие собой смеси 2, 3 и более индикаторов, которые дают более четкие переходы окраски при изменении pH раствора.

В растворах индикаторы могут существовать в молекулярной и ионной формах. Эти формы окрашены в разный цвет и находятся в равновесии, которое зависит от pH среды.

Например, кислотный индикатор метилоранж, в молекулярной форме имеет красную окраску, а в нейтральной и щелочной среде – жёлтую. Изменение кислотности раствора приводит к смещению равновесия диссоциации либо вправо либо влево, что сопровождается изменением окраски раствора.

Предложенная позже хромофорная теория связывает изменение окраски индикаторов с изменением строения индикаторов в результате внутримолекулярной перегруппировки. Свое название эта теория получила из-за того, что окраска органических соединений приписывается наличию в них особых групп, называющихся хромофорами. К хромофорам относятся группы: , азогруппа –N=N-, переходящая в группу =N-NH-, группа =С=0. Вызванная хромофорами окраска соединения усиливается присутствием в молекуле соединения групп, называемых ауксохромами. Важнейшими ауксохромами являются группы –OH и –NH 2 , а также их производные, например –N(CH 3) 2 , -N(C 2 H 5) 2 и т.д. Ауксохромы сами по себе не способны придавать окраску соединению, но присутствуя с хромофорами, они усиливают действие последних. Если в результате внутримолекулярной перегруппировки в индикаторе возникают или исчезают хромофорные или ауксохромные группы, влияющие на окраску, то окраска изменяется.Ионная и хромофорная теории не исключают, а дополняют друг друга. Ионизация молекул индикатора обычно приводит к внутримолекулярной перегруппировке и изменению окраски. При изменении pH раствора все ислотно-основные индикаторы изменяют свою окраску не скачкообразно, а плавно, т.е. в определенном интервале значений pH. Этот интервал называется интервалом перехода индикатора . Каждый индикатор имеет свой интервал перехода, который зависит от особенностей структуры индикатора. Интервал перехода окраски индикатора характеризуется показателем титрования pT. Показатель титрования – это значение pH, при котором наблюдается наиболее резкое изменение цвета индикатора.



Интервал значений pH, в котором происходит изменение окраски индикатора обозначают :

где К инд – константа диссоциации индикатора

Значение К, окраска и приведены в химических справочниках.

Таблица 1- Окраска индикаторов

Индикаторы применяют или в виде растворов, или в виде индикаторных бумаг.

4. 2 Теория кислот и оснований

Содержание понятий «кислот» и «основание» в процессе развития химической науки существенно менялось, оставаясь одним из основных вопросов химии. Одной из первых теорий кислот и оснований является теория Аррениуса . Согласно определению Аррениуса-Оствальда кислоты – это вещества, диссоциирующие в воде с образованием иона водорода H + , а основания – вещества, дающие анион гидроксила OH - . По мере накопления данных, развития теории растворов оказалось, что многие вещества, не имеющими в своем составе H + или OH - обладают свойствами кислот или оснований. Было доказано, что в свободном виде H + вообще не существует. В водных растворах эти ионы гидратированы, а в неводных сольватированы. Так, например:

Исследования показали, что некоторые соли в неводных растворителях ведут себя как кислоты или основания. Так например KNH 2 в растворе аммиака ведет себя как KOH в воде, т.е. является сильным основанием. Он окрашивает фенолфталеин, обладает электропроводностью, нейтрализует кислоты. Другая соль NH 4 Cl ведет себя в сухом аммиаке как HCl, т.е. является сильной кислотой. Следовательно, основные и кислотные свойства присущи не только соединениям, имеющим ионы водорода и гидроксильные группы. Поэтому следующей теорией кислот и оснований стала теория сольвосистем .

Согласно этой теории кислотами и основаниями являются химические соединения, образующие катионы и анионы, идентичные катионам и анионам данного растворителя.

Так, например жидкий аммиак диссоциирует:

значит NH 4 Cl – кислота (такой же катион)

Основание (такой же анион).

Недостатком этой теории является то, что в некоторые растворители не диссоциируют ни на катионы ни на анионы, а кислоты и основания в них существуют.

Протолитическая теория Бренстеда-Лоури.

Согласно этой теории кислотами являются химические соединения, способные отдавать протоны другим веществам, а основаниями – вещества, способные присоединять протоны.

Кислотами могут быть и молекулы и катионы и анионы. Например, вода:

Таким образом, каждая кислота имеет сопряженное основание (), а каждое основание имеет сопряженную кислоту.

Сила кислот и оснований зависит от природы растворителя. Так, например, в растворе жидкого аммиака все кислоты полностью диссоциированны т.к. жидкий аммиак проявляет свойства основания. В воде, менее сильном основании, не все кислоты диссоциируют, а лишь только сильные неорганические.

К недостаткам теории Бренстеда-Лоури относится то, что эта теория исключает возможность проявления кислотного характера веществами, не содержащими водород. Поэтому наряду с этой теорией появилась еще одна теория – электронная теория Льюса.

Согласно этой теории основанием является вещество, обладающее неподеленной свободной парой электронов. Например, аммиак является основанием, т.к. его молекула имеет неподеленную электронную пару.

Кислотой является вещество, в молекуле которого не хватает пары электронов до образования устойчивой электронной группировки. Например: BCl 3

По теории Льюиса вещество не обязательно должно иметь H + чтобы обладать кислотными свойствами. Так, NH 3 и BCl 3 взаимодействуют с образованием соли:

или NH 3 +HClàNH 4 Cl

Электронная теория значительно расширила понятие о кислотах и основаниях. Недостатком этой теории является то, что в ней не объясняется тот факт, что одно и то же вещество может быть и кислотой и основанием в зависимости от природы растворителя. В настоящее время на основании исследований ряда ученых было доказано, что одно и то же вещество в зависимости от растворителя, в котором оно растворено, может быть отнесено к кислотам или основаниям.

Современная теория кислот и оснований .

Эта теория дает следующее определение кислотам и основаниям:

«Кислота – это вещество, которое является донором протонов или акцептором электронной пары или дающее такой же катион лиония, как и растворитель, в котором оно растворено. Основание – это вещество, являющееся акцептором протонов, или донором электронной пары, или дающее такой же анион лиата, как и растворитель, в котором оно растворено.

Например соль CH 3 COONa диссоциирует в уксусной кислоте согласно уравнению:

CH 3 COONa àCH 3 COO - +Na + (основные свойства)

Следовательно, CH 3 COONa можно количественно оттитровать какой- либо сильной кислотой, например, хлорной:

HClO 4 +CH 3 COONaàNaClO 4 +CH 3 COOH.

4. 3 Титрование в неводных средах.

Химическая теория растворов Д. И. Менделеева рассматривает растворитель не тольао как среду, в которой протекает реакция, но и как непосредственного участника химиического процесса. Согласно теории неводных сред, разработанной нашими учеными Измайловым и Крешковым одно и то же вещество может вести себя по разному в зависимости от растворителя, т.е. сила кислот и оснований зависит от природы растворителя.

При классификации по донорно-акцепротным свойствам обычно выделяют протонные и апротонные растворители. Притонные могут отдавать или принимать протон и таким образом участвовать в процессе кислотно-основного взаимодействия. Апротонные растворители не проявляют кислотно-основных свойств и не вступают в протолитическое равновесие с растворённым веществом. Протонные растворители принято подразделять на:

1. Амфотерные растворители.Это такие растворители, которые играют роль основания по отношению к кислотам и роль кислот по отношению к основаниям. Эти растворители отличаются способностью и отдавать и присоединять протоны. К ним относятся: H 2 O, CH 3 OH, C 2 H 3 OH и другие.

2. Кислые растворители. Это вещества кислого характера, молекулы которого могутлишь отдавать протоны. HF, H 2 SO 4 , CH 3 COOH и другие.

3. Основные растворители. Это вещества, обладающие ярко выраженным сродством к протонам (NH 3 , N 2 H 4).

По влиянию на кислотно-основные свойства растворённого вещества растворители принято делить на нивелирующие и дифференцирующие.

Нивелирующие – это растворители, в которых кислоты и основания раздельной природы не меняют соотношения в своей силе (вода, уксусная кислота и др.)

Дифференцирующи е – растворители, в которых кислоты и основания заметно изменяют соотношение в своей силе (ДМФ, ацетон и др).

К нивелирующим растворителям относятся или очень сильные кислоты или очень сильные основания, например CH 3 COOH – гидразин. Поскольку это сильные кислоты или основания, все кислоты в их среде становятся одинаковыми по своей силе, то же касается и оснований.

К дифференцирующим же относятся растворы, в среде которых проявляются значительные различия в силе кислот и оснований. Например, ДМФ, ДМСО, пиридин, ацетон. В среде этих растворителей можно раздельно оттитровать не только 2-х, 3-х, но и даже 5 и 6-и компонентные смеси.

Используя влияние неводных растворителей на свойства растворенных электролитов, можно проводить кислотно-основное титрование в неводных средах таких веществ, которые не могут быть оттитрованы в воде. Так, например, многие соли в воде проявляют свойства очень слабых или кислот или оснований и не могут быть оттитрованы непосредственно основаниями или кислотами. В неводных же средах их кислотность или основность повышается настолько, что их можно количественно оттитровать кислотой или основанием.

Титрование в неводных средах получило широкое применение в аналитической химии. Это связано со следующими причинами.

  1. В неводных средах можно оттитровать те вещества, которые в воде не растворяются.
  2. В неводных средах можно титровать те вещества, которые в воде не дают резких конечных точек титрований.
  3. В неводных средах можно проводить не только к/о, но и о/в, комплекснометрическое, осадительное титрование.

Лекция 5 Окислительно-восстановительные методы (редоксиметрия).

  1. 1 Суть редоксиметрического метода анализа

Этот метод основан на использовании окислительно-восстановительных реакций. В качестве титрантов применяют растворы окислителей или восстановителей. Как правило, окислителями титруют вещества, которые могут окисляться, а восстановителями вещества, которые могут восстанавливаться. С помощью этого метода можно определять и неорганические и органические вещества, способные к окислению или восстановлению.

Существуют несколько способов титрования: прямой и обратный.

В процессе титрования изменяется не рН раствора, а его окислительно-восстановительный потенциал. Если реакцию между окислителем и восстановителем представить в виде:

то константу равновесия можно представить следующим образом:

Воспользовавшись уравнением Нернста, можно выразить концентрации окислителя и восстановителя через потенциалы. После преобразований получим выражение для константы равновесия:

Таким образом, чем больше разность между стандартными потенциалами окислителя и восстановителя, тем больше константа равновесия. Следовательно, тем более вероятно, что реакция идет до конца.Поэтому для титрования выбирают сильные окислители и сильные восстановители, имеющие высокие значения стандартных потенциалов. К сольным окислителям относятся . К сильным восстановителям относятся растворы ионов металлов, .

5. 2 Кривые титрования в редоксиметрии

В процессе титрования меняется Е раствора, поэтому такую зависимость можно выразить графически. Например, рассмотрим, как изменяется потенциал раствора при титровании этих ионов титрантом . Запишем реакцию:

Согласно уравнению Нернста до точки эквивалентности потенциал раствора рассчитывают по формуле:

после точки эквивалентности:

На рисунке 1 изображена кривая титрованиякривая титрования раствора FeSO 4 раствором КМп0 4 .

Кривые окислительно-восстановительного титрования выглядят, в общем, как и кривые титрования кислот и оснований. В близи точки эквивалентности они имеют резкий скачок потенциала. Поэтому для фиксирования точки эквивалентности можно воспользоваться индикаторами, которые меняют свой цвет в зависимости от потенциала системы. В отличие от кривой кислотно-основного титрования скачок не зависит от разбавления и его можно повысить, если один из образующихся ионов связывать в комплекс.

Рисунок 1-Кривая титрования 100,0 см 3 0,lMFeSO 4 0,1н. раствором КМп0 4.

5. 3 Индикаторы, применяемые в редоксиметрии

В окислительно-восстановительном титровании точку эквивалентности можно определить тремя способами:

1. При титровании часто можно обойтись вообще без индикаторов. Безиндикаторное титрование возможно в том случае, если титрант или определяемый раствор имеют яркую окраску, как, например, в случае титрования перманганата калия. Как известно, раствор яркого малиново-фиолетового цвета. В результате восстановления образуются бесцветные ионы. Без индикатора можно также титровать раствором йода, поскольку имеет темную окраску, а бесцветен.

2. С помощью индикаторов.

Индикаторы в редоксиметрии можно разделить на две группы:

1) Индикаторы, которые вступают в специфическую реакцию с избытком окислителя или восстановителя. Например ионы дают ярко-розовый комплекс с поэтому, если в растворе появится хотя бы одна капля , весь раствор окрашивается в розовый.

2) Индикаторы, у которых перемена окраски не зависит от специфических свойств окислителя или восстановителя, а связана с достижением титруемым раствором определенного потенциала. Такие индикаторы называются окислительно-восстановительными. Окисленная и восстановленная формы имеют различную окраску.

Их превращение можно представить следующим образом:

где – окисленная форма;

– восстановленная.

Применяя к таким индикаторам уравнение Нернста, получим:

Таким образом, при изменении потенциала раствора изменяется соотношение между окисленной и в восстановленной формами. Если к окислительно-восстановительной системе прилить 1-2 капли индикатора, то установится соответствующие потенциалу системы соотношение между концентрациями окисленной и восстановленной форм индикатора. При этом раствор приобретает соответственную окраску. Для любой системы можно подобрать такой индикатор, у которого изменение окраски индикатора происходит вблизи точки эквивалентности.

5. 4 Примеры окислительно-восстановительных методов титрования.

5. 4. 1 Перманганатометрия

Перманганатометрией называют метод, в котором рабочим раствором, т.е. титрантом, является раствор перманганата калия . Определяемыми веществами являются катионы металлов, способные к окислению.

В зависимости от условий, в которых протекает реакция окисления-восстановления анион может принимать различное количество электронов:

В кислой среде окислительно-восстановительный потенциал системы самый большой, поэтому окисление перманганатом калия с аналитическими целями проводят в кислой среде. В связи с этим основное уравнение перманганатометрии имеет вид:

Обычно готовят 0,1н. раствор или 0,05н. . Перманганат калия, применяемый для приготовления рабочего раствора, как правило, содержит ряд примесей, из которых наиболее значимые примеси . Кроме того, концентрация перманганата постоянно меняется, т.к. все время идет его восстановление примесями органических веществ, которые находятся в воздухе и дистиллированной воде. Поэтому концентрацию устанавливают по стандартному веществу, концентрация которого точно известна и не меняется. Первичным стандартом в перманганатометрии являются такие вещества как оксалат аммония, натрия или щавелевая кислота:

Взаимодействие щавелевой кислоты с перманганатом калия протекает согласно уравнению:

Разность окислительно-восстановительных потенциалов:

Большая разность потенциалов показывает, что реакция идет до конца. Однако скорость прямой реакции мала и реакция идет очень медленно. На скорость прямой реакции влияют следующие факторы: рН, температура, катализатор. Поэтому для ускорения реакции повышают рH раствора (в кислой среде E 0 имеет максимально значение). Реакцию проводят при нагревании (70-80 0 С). Катализатором этой реакции являются ионы двухвалентного марганца. Они появляются в результате реакции окисления и по мере накопления течение реакции ускоряется до точки мгновенного взаимодействия.

Титрование перманганатом проводят без индикатора, т.к. раствор сам имеет малиновую окраску и в точке эквивалентности лишняя капля титранта окрашивает раствор в розовый цвет.

Перманганатометрия используется для определения содержания как восстановителей, так и окислителей. Из окислителей этим методом наиболее часто определяют ионы двухвалентного железа. Соединения двухвалентного железа легко определяются в кислой среде:

При окислении ионы двухвалентного железа переходят в ионы трехвалентного железа, поэтому , . Реакция идет быстро даже без нагревания, а лучше ее проводить при охлаждении и среде инертного газа для предотвращения окисления ионов железа кислородом воздуха.

При анализе сплавов железа, железной руды и минералов, где железо находится как в двухвалентном, так и в трехвалентном виде, предварительно восстанавливают трехвалентное железо в двухвалентное, а затем уже оттитровывают перманганатом. Восстановления трехвалентного железа проводят разными способами: цинком, алюминием и др.

5. 4. 2 Йодометрия

Кроме перманганата, в оксидиметрии в качестве окислителя широко применяют йод:

В этой реакции каждый атом йода присоединяет один электрон, и, следовательно, эквивалент йода равен его атомной массе. Стандартный окислительно-восстановительный потенциал системы , т.е. немного меньше, чем у системы .

Вследствие этого йод окисляет гораздо меньшее число восстановителей по сравнению с перманганатом. Реакция окисления йода обратима, и ее направление определяется условиями, в которых она протекает. Наибольший окислительно-восстановительный потенциал этой системы проявляется в нейтральной среде. В щелочных и кислых средах эта реакция протекает по другому механизму. Особенностью йодометрии является тот факт, что в качестве рабочего раствора, т.е. титранта раствор йода используют крайне редко. Раствором нельзя непосредственно титровать какой-то восстановитель, как это делают в пермангаматометрии. Это связано с тем, что – летучее вещество, которое быстро улетучивается из бюретки, кроме того, он разлагается на свету. Поэтому в йодометрии используют метод обратного титрования. Суть метода заключается в том, что титрантом является не сам , а раствор первичного стандарта, например тиосульфат Na.

Эта реакция протекает согласно уравнению:

при этом ионы окисляются:

При титровании в бюретку помещают раствор тиосульфата натрия, а в конические колбы для титрования – определенный объем раствора , приготовленный из точной навески.

Концентрацию тиосульфата можно установить и по другим окислителям, например, по . В качестве индикатора в этом титровании используют водный раствор крахмала. Его использование основано на том, что раствор крахмала окрашивается йодом в темно-синий цвет. В точке эквивалентности синяя окраска раствора исчезает, и раствор становится бесцветным. Йодометрическое титрование используется для определения содержания как окислителей, так и восстановителей, можно использовать как прямую йодометрию так и обратную.

5. 4. 3 Хроматометрия

В качестве окислителей в окислительно-восстановительных методах широко используют раствор дихромата калия. Метод основанный на применении этого окислителя, называется хроматометрией. Дихромат калия отличается от других окислителей очень высокой устойчивостью, поэтому его титр и нормальность не изменяются в течении нескольких месяцев. Готовят раствор дихромата калия по точной навеске химически чистого препарата в мерной колбе, т.е. первичный стандарт в данном случае не требуется. Точку эквивалентности в хроматометрии определяют при помощи индикатора дифениламина, который в точке эквивалентности изменяет свой цвет. Дифениламин является характерным представителем окислительно-восстановительных индикаторов. Хроматометрию наиболее часто применяют для определения ионов и для определения общего содержания железа в его сплавах, рудах и минералах. Хроматометрия используется для определения других катионов металлов, способных к восстановлению. Кроме того, используя метод обратного титрования, можно с помощью этого метода определять и содержание окислителей в образцах.

5. 4. 4 Броматометрия и бромометрия.

В качестве окислителей в редоксиметрии часто применяют или бромат калия или смесь бромата и бромида (). Окисление ведут в кислой среде, при этом определяемые ионы окисляются до высшей степени окисления, а бромат и бромид восстанавливаются до . Выделившийся бром обнаруживают или по появлению желтой окраски раствора или по изменению цвета индикаторов. С помощью бромо- и броматометрии определяют содержание ионов мышьяка, сурьмы, а также фенола, анилина, различных производных бензола, способных к окислению.

5. 5. 5 Цериметри

В качестве окислителя могут быть использованы соли . Это связано с тем, что ионы четырехвалентного церия легко восстанавливаются до . В результате происходит обесцвечивание желтого раствора соли , т.к. соли желтые, бесцветные. Такое титрование, как и в случае с перманганатом калия, можно проводить без индикатора. Цериметрию можно использовать для тех же случаев, что и перманганатометрию, только эти соли церия отличаются большей устойчивостью.

Лекция 6 Метод комплексообразования (комплексометрия)

6. 1 Общаяя характеристика метода

Комплексометрия основана на реакциях образования комплексов. В самом общем смысле под комплексом (комплексным соединением) в химии понимают сложную частицу, состоящую из составных частей, способных к автономному существованию. Можно отметить основные признаки, позволяющие выделить комплексные соединения в особый класс химических соединений:

Способность отдельных составных частей к самостоятельному существованию;

Сложность состава;

Частичная диссоциация на составные части в растворе по гетеролитическому механизму;

Наличие положительно заряженной центральной частицы – комплексообразователя (обычно это ион металла), связанной с лигандами;

Наличие определенной устойчивой пространственной геометрии расположения лигандов вокруг комплексообразователя. Примеры.