Электрические и временные параметры прямоугольных импульсов. Радио технические цепи и сигналы Спектральный состав периодической последовательности прямоугольных импульсов

Литература: [Л.1], с 40

В качестве примера приведем разложение в ряд Фурье периодической последовательности прямоугольных импульсов с амплитудой , длительностью и периодом следования , симметричной относительно нуля, т.е.

, (2.10)

Здесь

Разложение такого сигнала в ряд Фурье дает

, (2.11)

где – скважность.

Для упрощения записи можно ввести обозначение

, (2.12)

Тогда (2.11) запишется следующим образом

, (2.13)

На рис. 2.3 изображена последовательность прямоугольных импульсов. Спектр последовательности, как впрочем, и любого другого периодического сигнала, носит дискретный (линейчатый) характер.

Огибающая спектра (рис. 2.3, б) пропорциональна . Расстояние по оси частот между двумя соседними составляющими спектра равно , а между двумя нулевыми значениями (ширина лепестка спектра) – . Число гармонических составляющих в пределах одного лепестка, включая правое по рисунку нулевое значение, составляет , где знак означает округление до ближайшего целого числа, меньшего (если скважность – дробное число), или (при целочисленном значении скважности). При увеличении периода основная частота уменьшается, спектральные составляющие на диаграмме сближаются, амплитуды гармоник также уменьшаются. При этом форма огибающей сохраняется.

При решении практических задач спектрального анализа вместо угловых частот используют циклические частоты , измеряемые в Герцах. Очевидно, расстояние между соседними гармониками на диаграмме составит , а ширина одного лепестка спектра – . Эти значения представлены на диаграмме в круглых скобках.

В практической радиотехнике в большинстве случаев вместо спектрального представления (рис. 2.3, б) используют спектральные диаграммы амплитудного и фазового спектров. Амплитудный спектр последовательности прямоугольных импульсов представлен на рис. 2.3, в.

Очевидно, огибающая амплитудного спектра пропорциональна .

Что же касается фазового спектра (рис. 2.3, г), то полагают, что начальные фазы гармонических составляющих изменяются скачком на величину при изменение знака огибающей sinc kπ/q . Начальные фазы гармоник первого лепестка, полагаются равными нулю. Тогда начальные фазы гармоник второго лепестка составят φ = -π , третьего лепестка φ = -2π и т.д.

Рассмотрим еще одно представление сигнала рядом Фурье. Для этого воспользуемся формулой Эйлера

.

В соответствии с этой формулой k-ю составляющую (2.9) разложения сигнала в ряд Фурье можно представить следующим образом

; . (2.15)

Здесь величины и являются комплексными и представляют собой комплексные амплитуды составляющих спектра. Тогда ряд

Фурье (2.8) с учетом (2.14) примет следующую форму

, (2.16)

, (2.17)

Нетрудно убедиться в том, что разложение (2.16) проводится по базисным функциям , которые также являются ортогональными на интервале , т.е.

Выражение (2.16) представляет собой комплексную форму ряда Фурье, которая распространяется на отрицательные частоты. Величины и , где означает комплексную сопряженную с величину, называются комплексными амплитудами спектра. Т.к. является комплексной величиной, из (2.15) следует, что

и .

Тогда совокупность составляет амплитудный, а совокупность – фазовый спектр сигнала .

На рис. 2.4 представлена спектральная диаграмма спектра рассмотренной выше последовательности прямоугольных импульсов, представленного комплексным рядом Фурье

Спектр также носит линейчатый характер, но в отличие от ранее рассмотренных спектров определяется как в области положительных, так и в области отрицательных частот. Поскольку является чётной функцией аргумента , спектральная диаграмма симметрична относительно нуля.

Исходя из (2.15) можно установить соответствие между и коэффициентами и разложения (2.3). Так как

и ,

то в результате получим

. (2.18)

Выражения (2.5) и (2.18) позволяют найти значения при практических расчетах.

Дадим геометрическую интерпретацию комплексной формы ряда Фурье. Выделим k-тую составляющую спектра сигнала. В комплексной форме k-я составляющая описывается формулой

где и определятся выражениями (2.15).

В комплексной плоскости каждое из слагаемых в (2.19) изображается в виде векторов длиной , повернутых на угол и относительно вещественной оси и вращающихся в противоположных направлениях с частотой (рис. 2.5).

Очевидно, сумма этих векторов дает вектор, расположенный на вещественной оси, длина которого составляет . Но этот вектор соответствует гармонической составляющей

Что касается проекций векторов на мнимую ось, то эти проекции имеют равную длину, но противоположные направления и в сумме дают ноль. А это значит, что сигналы, представленные в комплексной форме (2.16) в действительности являются вещественными сигналами. Иными словами, комплексная форма ряда Фурье является математической абстракцией, весьма удобной при решении целого ряда задач спектрального анализа. Поэтому, иногда спектр, определяемый тригонометрическим рядом Фурье, называют физическим спектром , а комплексной формой ряда Фурье – математическим спектром .

И в заключение рассмотрим вопрос распределения энергии и мощности в спектре периодического сигнала. Для этого воспользуемся равенством Парсеваля (1.42). При разложении сигнала в тригонометрический ряд Фурье выражение (1.42) принимает вид

.

Энергия постоянной составляющей

,

а энергия k-той гармоники

.

Тогда энергия сигнала

. (2.20)

Т.к. средняя мощность сигнала

,

то с учетом (2.18)

. (2.21)

При разложение сигнала в комплексный ряд Фурье выражение (1.42) имеет вид

,

где
- энергия k-той гармоники.

Энергия сигнала в этом случае

,

а его средняя мощность

.

Из приведенных выражений следует, что энергия или средняя мощность k-той спектральной составляющей математического спектра вдвое меньше энергии или мощности соответствующей спектральной составляющей физического спектра. Это обусловлено тем, что физического спектра распределяется поровну между и математического спектра.

-τ и /2
τ и /2
Т
t
U 0
S(t)

Задание №1, группа РИ – 210701

Название образовательной организации:

Государственное бюджетное профессиональное образовательное учреждение «Ставропольский колледж связи имени Героя Советского Союза В.А. Петрова»

Год и место создания работы: 2016 год, цикловая комиссия естественных и общепрофессиональных дисциплин.

Методические указания к выполнению практической работы по дисциплине «Теория электросвязи»

«Расчет и построение спектра периодической последовательности прямоугольных импульсов»

для студентов 2 курса специальностей:

11.02.11 Сети связи и системы коммутации

11.02.09 Многоканальные телекоммуникационные системы

очной формы обучения

Цель работы: закрепить знания, полученные на теоретических занятиях, выработать навыки расчета спектра периодической последовательности прямоугольных импульсов.

Литература: П.А. Ушаков «Цепи и сигналы электросвязи». М.: Издательский центр «Академия», 2010, с.24-27.

1. Оснащение:

1.Персональный компьютер

2.Описание практической работы

2. Теоретический материал

2.1. Периодический сигнал произвольной формы может быть представлен в виде суммы гармонических колебаний с разными частотами, это называется спектральным разложение сигналом.

2.2 . Гармониками называются колебания, частоты которых в целое число раз больше частоты следования импульсов сигнала.

2.3. Мгновенное значение напряжения периодического сигнала производной формы может быть записано следующим образом:

Где постоянная составляющая, равная среднему значению сигнала за период;

Мгновенное значение синусоидального напряжения первой гармоники;

Частота гармоники, равная частоте следования импульсов;

Амплитуда первой гармоники;

Начальная фаза колебания первой гармоники;

Мгновенное значение синусоидального напряжения второй гармоники;

Частота второй гармоники;

Амплитуда второй гармоники;

Начальная фаза колебания второй гармоники;

Мгновенное значение синусоидального напряжения третий гармоники;

Частота третий гармоники;

Амплитуда третий гармоники;

Начальная фаза колебания третий гармоники;

2.4. Спектр сигнала - это совокупность гармонических составляющих с конкретными значениями частот, амплитуд и начальных фаз, образующих в сумме сигнала. На практике чаще всего используется диаграмма амплитуд

Если сигнал представлен собой периодическую последовательность прямоугольных импульсов, то постоянная составляющая равна

где Um - амплитуда напряжения ПППИ

s - скважность сигнала (S - T/t);

T - период следования импульсов;

t - длительность импульсов;

Амплитуды всех гармоник определяются выражением:

Umk = 2Um | sin kπ/s | / kπ

где k - номер гармоника;

2.5. Номера гармоника, амплитуды которых равны нулю

где n - любое целое число 1,2,3…..

Номер гармоники, амплитуда которой первый раз обращается в нуль, равен скважности ПППИ

2.6. Интервал между любыми соседними спектральными линиями равен частоте первой гармоники или частоте следования импульсов.

2.7 Огибающая амплитудного спектра сигнала (на рис. 1 показанная пунктирной линией)

выделяет группы спектральных линий называемых лепестками. Согласно рис. 1 каждый лепесток огибающей спектра содержит число линий, равное скважности сигнала.

3 . П орядок выполнения работы .

3.1. Получить вариант индивидуального задания, который соответствует номеру в списке журнала группы (см. приложение).

3.2. Ознакомиться с примером расчета (см. раздел 4)

4. Пример

4.1. Пусть период следования ПППИ Т=.1мкс, длительность импульсов t=0,25 мкс, амплитуда импульса =10В.

4.2. Расчет и построение временной диаграммы ПППИ.

4.2.1 . Для построения временной диаграммы ПППИ необходимо знать период следования импульсов Т, амплитуду и длительность импульсов t, которые известны из условия задачи.

4.2.2. Для построения временной диаграммы ПППИ необходимо выбрать масштабы по осям напряжений и времени. Масштабы должны соответствовать числам 1,2 и 4, умноженным на 10 n -(где n=0,1,2,3...). Ось времени должна занимать примерно 3/4 ширины листа и на ней следует разместить 2-3 периода сигнала. Вертикальная ось напряжений должна быть равна 5-10 см. При ширине листа 20 см длинна оси времени должна равна примерно 15 см. На 15-ти см удобно разместить 3 периода, при этом на каждый период будет приходиться L 1 =5см. Так как

Mt=T/Lt=1мкс/5см= 0,2 мкс/см

Полученный результат не противоречит выше указанным условиям. На оси напряжений удобно взять масштаб Мu=2В/см (см.рис.2).

4.3.Расчет и построение спектральной диаграммы.

4.3.1.Скважность ПППИ равна

4.3.2. Так как скважность S=4, то следует рассчитывать 3лепестка, т.к. 12 гармоник.

4.3.3.Частоты гармонических составляющих равны

Где к- номер гармоники, l- период ПППИ.

4.3.4. Амплитуды составляющих ПППИ равны

4.3.5. Математическая модель ПППИ напряжения

4.3.6.Выбор масштабов.

Ось частот располагается горизонтально и при ширине листа 20см должна иметь длину около 15 см. Так как на оси частот нужно показать самую высокую частоту 12 МГц удобно взять масштаб по этой оси Mf=1MГц/см.

Ось напряжений располагается вертикально и должна иметь длину 4-5 см. Так как из оси напряжений нужно показать самое большое напряжение

Удобно взять масштаб по этой оси M=1В/см.

4.3.7.Спектральная диаграмма показана на рис.3

Задание:

    T=0.75мс; τ=0.15мс 21.T=24мкс; τ=8мкс

    T=1.5 мкс; τ=0.25мкс 22. T=6.4мс; τ=1.6мс

    T=2.45мс; τ=0.35мс 23. T=7мс; τ=1.4мс

    T=13.5мкс; τ=4.5мкс 24. T=5.4мс; τ=0.9мс

    T=0.26мс; τ=0.65мкс 25. T=17.5мкс; τ=2.5мкс

    Т=0.9мс; τ=150мкс 26. T=1.4мкс; τ=0.35мкс

    Т=0.165мс; τ=55мкс 27. T=5.4мкс; τ=1.8мкс

    Т=0.3мс; τ=75мкс 28. T=2.1мс; τ=0.3мс

    Т=42.5мкс; τ=8.5мкс 29. T=3.5мс; τ=7мс

    Т=0.665мс; τ=95мкс 30. T=27мкс; τ=4.5мкс

    Т=12.5мкс; τ=2.5мкс 31. T=4.2мкс; τ=0.7мкс

    Т=38мкс; τ=9.5мкс 32.T=28мкс; τ=7мкс

    Т=0.9мкс; τ=0.3мкс 33. T=0.3мс; τ=60мкс

    Т=38.5мкс; τ=5.5мкс

    Т=0.21мc; τ=35мс

    Т=2.25мс; τ=0.45мс

    Т=39мкс; τ=6.5мкс

    Т=5.95мс; τ=0.85мс

    Т=48мкс; τ=16мкс

    Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов и максимальным значением. Найдем разложение в ряд такого сигнала, выбрав начало координат как показано на рис. 15. при этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих=0, и нужно рассчитать только коэффициенты.

    - 0 T t

    постоянная составляющая
    (28)

    Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса
    , деленная на весь период, т.е.
    , т.е. то же, что получилось и при строгом формальном вычислении (28).

    Вспомним, что частота первой гармоники  1 =, где Т – период прямоугольного сигнала. Расстояние между гармониками= 1 . Если номер гармоники n окажется таким, что аргумент синуса
    , откуда. Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют«первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

    (29)

    с другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульсаN = S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных , то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть
    при
    , гдеk – любое целое число. Так, например, из (22) и (23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S =2 , то и N =2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

    С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 / U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

    Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

    2.5. Спектры при уменьшении длительности импульса и периода сигнала.

    Регулировать скважность S = T / t n можно либо изменением длительности импульса t n при T =const, либо изменением периода Т при t n =const. Рассмотрим спектры сигналов при этом.

      T =const, t n =var. Частота первой гармоники f 1 =1/ T = const и f = f 1 = const. Первый нуль N = T / t n и по мере укорочения импульса t n смещается в область гармоник с большими номерами. При t n 0 N , спектр получается дискретным и f = f 1 , бесконечно широкий и с бесконечно малыми амплитудами гармоник.

      t n =const, T =var. Будем увеличивать период Т , тогда частота первой гармоники f 1 и расстояние между спектральными линиями f будут уменьшаться. Так как f = f 1 =1/Т , то спектральные линии будут смещаться в область более низких частот и «плотность» спектра возрастет. Если Т , то сигнал из периодического становится непериодическим (одиночный импульс). В этом случае f 1 = f 0, т.е. спектр из дискретного превращается в непрерывный, состоящий из бесконечно большого числа спектральных линий, находящихся на бесконечно малых расстояниях друг от друга.

    Отсюда следует правило: периодические сигналы порождают дискретные (линейчатые) спектры, а непериодические – сплошные (непрерывные).

    При переходе от дискретного спектра к непрерывному ряд Фурье заменяется интегралом Фурье. Наиболее просто эта замена выполняется, если использовать запись ряда Фурье в комплексной форме (16) и (17). Интеграл Фурье для непрерывного спектра записывается

    , (30)

    где
    (31)

    Функция F (j ) называется спектральной функцией или спектральной плотностью , которая зависит от частоты. Формулы (30) и (31) называют в совокупности односторонним преобразованием Фурье , которое является частным случаем более общего преобразования Лапласа и получается заменой в преобразовании Лапласа комплексной переменной р на j .

    Спектральную функцию можно представить как огибающую коэффициентов ряда Фурье, т.е. как предел линейчатого спектра периодической функции при Т . Функция F (j ) может быть действительной или комплексной. Считая в общем случае
    , мы получаем две частотные характеристики:
    -амплитудный спектр , т.е. зависимость амплитуды спектральных составляющих от частоты, и () фазовый спектр , т.е. закон изменения фазы спектральных составляющих сигнала от частоты. Можно показать, что амплитудный спектр – всегда четная, а фазовый спектр – всегда нечетная функция . Спектральную функцию для многих непериодических сигналов (одиночных импульсов различной формы) наиболее легко и просто находить с помощью таблиц оригиналов и изображений в преобразовании Лапласа, которые приводятся в учебной и справочной литературе. После нахождения изображения по Лапласу F (p ) для заданной непериодической функции f (t ) , спектральная функция находится

    (32)

    Итак, согласно (30) непериодическая функция f (t ) представляется совокупностью бесконечно большого числа гармоник с бесконечно малыми амплитудами
    во всем диапазоне частот от - до +, т.е. представление f (t ) в виде интеграла Фурье подразумевает суммирование незатухающих гармонических колебаний бесконечного сплошного спектра частот.

      описание лабораторной установки

    Работа выполняется на блоке «Синтезатор сигнала», функциональная схема которого приведена на рис. 16.

    Блок содержит генераторов Г1-Г6 шести первых гармоник сигнала. Частота первой гармоники равна 10 кГц. Гармонический сигнал с выхода n-го генератора через фазовращатель Ф n и аттенюатор А n поступает на сумматор. Фазовращателями задают начальные фазы  n гармоник, а аттенюаторами – их амплитуды А n .

    На выходе сумматора в общем случае получается сумма шести гармоник сигнала

    .

    С выхода сумматора сигнал подается на вход Y осциллографа. Для его внешней синхронизации используется специальный импульсный сигнал, подаваемый с гнезда «Синхр.» на вход Х осциллографа. Для установки и контроля амплитуд гармоник предусмотрена возможность отключения любой из гармоник. Включив только генератор n-ой гармоники, можно установить ее амплитуду аттенюатором А n и оценить ее значения с помощью осциллографа. Каждый фазовращатель с помощью переключателя позволяет установить требуемое дискретное значение начальной фазы гармоники, либо отключить генератор.

    В предыдущих разделах мы рассмотрели разложение периодических сигналов в ряд Фурье, а также изучили некоторые свойства представления периодических сигналов рядом Фурье. Мы говорили, что периодические сигналы можно представить как ряд комплексных экспонент, отстоящих друг от друга на частоту рад/c, где — период повторения сигнала. В результате мы можем трактовать представление сигнала в виде ряда комплексных гармоник как комплексный спектр сигнала. Комплексный спектр, в свою очередь, может быть разделен на амплитудный и фазовый спектры периодического сигнала.

    В данном разделе мы рассмотрим спектр периодической последовательности прямоугольных импульсов, как одного из важнейших сигналов, используемого в практических приложениях.

    Спектр периодической последовательности прямоугольных импульсов

    Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , длительности секунд следующих с периодом секунд, как это показано на рисунке 1

    Рисунок 1. Периодическая последовательность прямоугольных импульсов

    Единица измерения амплитуды сигнала зависит от физического процесса, который описывает сигнал . Это может быть напряжение, или, сила тока, или любая другая физическая величина со своей единицей измерения, которая меняется во времени как . При этом, единицы измерения амплитуд спектра , , будут совпадать с единицами измерения амплитуды исходного сигнала.

    Тогда спектр , , данного сигнала может быть представлен как:

    Спектр периодической последовательности прямоугольных импульсов представляет собой множество гармоник с огибающей вида .

    Свойства спектра периодической последовательности прямоугольных импульсов

    Рассмотрим некоторые свойства огибающей спектра периодической последовательности прямоугольных импульсов.

    Постоянная составляющая огибающей может быть получена как предел:

    Для раскрытия неопределенности воспользуемся правилом Лопиталя :

    Где называется скважностью импульсов и задает отношение периода повторения импульсов к длительности одиночного импульса.

    Таким образом, значение огибающей на нулевой частоте равно амплитуде импульса деленной на скважность. При увеличении скважности (т.е. при уменьшении длительности импульса при фиксированном периоде повторения) значение огибающей на нулевой частоте уменьшается.

    Используя скважность импульсов выражение (1) можно переписать в виде:

    Нули огибающей спектра последовательности прямоугольных импульсов можно получить из уравнения:

    Знаменатель обращается в ноль только при , однако, как мы выяснили выше , тогда решением уравнения будет

    Тогда огибающая обращается в ноль если

    На рисунке 2 показана огибающая спектра периодической последовательности прямоугольных импульсов (пунктирная линия) и частотные соотношения огибающей и дискретного спектра .

    Рисунок 2. Cпектр периодической последовательности прямоугольных импульсов

    Также показаны амплитудная огибающая , амплитудный спектр , а также фазовая огибающая и фазовый спектр .

    Из рисунка 2 можно заметить, что фазовый спектр принимает значения когда огибающая имеет отрицательные значения. Заметим, что и соответствуют одной и той же точке комплексной плоскости равной .

    Пример спектра периодической последовательности прямоугольных импульсов

    Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , следующих с периодом секунды и различной скважностью . На рисунке 3а показаны временные осциллограммы указанных сигналов, их амплитудные спектры (рисунок 3б), а также непрерывные огибающие спектров (пунктирная линия).

    Рисунок 3. Cпектр периодической последовательности прямоугольных импульсов при различном значении скважности
    а — временные осциллограммы; б — амплитудный спектр

    Как можно видеть из рисунка 3, при увеличении скважности сигнала, длительность импульсов уменьшается, огибающая спектра расширяется и уменьшается по амплитуде (пунктирная линия). В результате, в пределах главного лепестка увеличивается количество гармоник спектра .

    Спектр смещенной во времени периодической последовательности прямоугольных импульсов

    Выше мы подробно изучили спектр периодической последовательности прямоугольных импульсов для случая, когда исходный сигнал являлся симметричным относительно . В результате спектр такого сигнала является вещественным и задается выражением (1). Теперь мы рассмотрим, что произойдет со спектром сигнала если мы сместим сигнал во времени,как это показано на рисунке 4 .

    Рисунок 4. Сдвинутая во времени периодическая последовательность прямоугольных импульсов

    Смещенный сигнал можно представить как сигнал , задержанный на половину длительности импульса . Спектр смещенного сигнала можно представить согласно свойству циклического временного сдвига как:

    Таким образом, спектр периодической последовательности прямоугольных импульсов, смещенной относительно нуля, не является чисто вещественной функцией, а приобретает дополнительный фазовый множитель . Амплитудный и фазовый спектры показаны на рисунке 5.

    Рисунок 5. Амплитудный и фазовый спектры сдвинутой во времени периодической последовательности прямоугольных импульсов

    Из рисунка 5 следует, что сдвиг периодического сигнала во времени не изменяет амплитудный спектр сигнала, но добавляет линейную составляющую к фазовому спектру сигнала.

    Выводы

    В данном разделе мы получили аналитическое выражение для спектра периодической последовательности прямоугольных импульсов.

    Мы рассмотрели свойства огибающей спектра периодической последовательности прямоугольных импульсов и привели примеры спектров при различном значении скважности.

    Также был рассмотрен спектр при смещении во времени последовательности прямоугольных импульсов и показано, что смещение во времени изменяет фазовый спектр и не влияет на амплитудный спектр сигнала.

    Москва, Советское радио, 1977, 608 c.

    Дёч, Г. Руководство по практическому применению преобразования Лапласа. Москва, Наука, 1965, 288 c.

    Для определения спектров для различных видов импульсной модуляции найдем спектр самого носителя. Возьмем импульсный носитель с импульсами прямоугольной формы (рис. 3.10).

    Рис. 3.10 Периодическая последовательность прямоугольных импульсов

    Последовательность таких импульсов можно представить рядами Фурье.

    , (3.32)

    где - комплексная амплитуда k-ой гармоники;

    - постоянная составляющая.

    Найдем комплексные амплитуды для указанных пределов (рис. 3.10).

    (3.33)

    Постоянная составляющая

    (3.34)

    Подставим (3.33) и (3.34) в (3.32) и после преобразования получим:

    (3.35)

    Из выражения видно, что спектр линейчатый с огибающей, повторяющей спектр одиночного импульса (рис. 3.11). Другими словами, для импульсов одинаковой формы решетчатая функция вписывается в непрерывную S(jω).

    Рис. 3.11 Спектр периодической последовательности импульсов

    Постоянная составляющая А 0 /2 имеет при этом вдвое меньшее значение. Расстояние между составляющими гармоник равно основной частоте носителя ω 0 =2π/Т. Отсюда следует, что изменение периода Т следования импульсов приводит к изменению плотности дискретных составляющих, а изменение скважности Т/τ при неизменном периоде (т.е. изменение τ) вызывает сужение или расширение огибающей с сохранением ее формы, оставляя неизменным расстояние между линиями дискретного спектра. При достаточно большой плотности этих линий, когда между узлами размещается по крайней мере несколько линий спектра (Т>>τ), ширину спектра ω импульсного носителя можно считать практически такой же, как и для одиночного импульса. С приближением τ к Т эти спектры могут оказаться различными по ширине. На Рис. 3.12 изображены деформации спектра импульсного носителя при изменении Т, а на Рис. 3.13 при изменении τ для импульсов прямоугольной формы.

    Рис. 3.12 Изменение характера спектра носителя при изменении

    периода Т следования импульсов прямоугольной формы.

    При неизменной амплитуде импульсов согласно выражению (3.25) огибающая дискретного спектра увеличивается пропорционально увеличению площади импульсов (рис. 3.13).

    Следует отметить, что периодической последовательности в чистом виде не бывает поскольку любая последовательность имеет начало и конец. Степень приближения зависит от числа импульсов в последовательности. Поэтому для строгого описания импульсного носителя последний должен рассматриваться как одиночный импульс, представляющий собой пакет элементарных импульсов определенной формы. Такой сигнал имеет непрерывный спектр.

    Однако по мере накопления числа импульсов в последовательности ее спектр дробится и деформируется таким образом, что все более приближается к решетчатому.

    Рис. 3.13 Изменение характера спектра носителя при изменении

    длительности импульса τ для импульсов прямоугольной формы.

    3.7 Спектры сигналов с импульсной модуляцией

    Спектры всех видов импульсных модуляций имеют сложное строение, а выводы зачастую получаются слишком громоздкими. По этой причине вопрос о спектральном составе сигналов импульсной модуляции рассмотрим, опуская в ряде случаев слишком сложные промежуточные преобразования. Такое рассмотрение позволяет показать подход к задаче, наметить путь решения и проанализировать окончательные выводы.

    Найдем спектр при амплитудно–импульсной модуляции (АИМ). Для упрощения модулирующую функцию f(t) выберем, содержащую одну гармонику sint

    Раскрывая это выражение и заменяя произведение синуса на косинус

    . (3.36)

    Из (3.36) видно, что в спектре сигнала содержится частота модулирующей функции и наивысшие гармонические составляющие kω 0 ±  с двумя боковыми спутниками. При этом наивысшие гармонические составляющие вписываются в огибающую спектра одиночного импульса носителя. На Рис. 3.14 показан спектр при амплитудно-импульсной модуляции.

    Рис. 3.14 Спектр при амплитудно-импульсной модуляции.

    Ширина спектра при АИМ не изменяется, так как величина амплитуд, которые нужно принимать во внимание при определении ширины, зависит только от соотношения τ /Т, а эта величина при АИМ постоянна. Если последовательность импульсов модулируется сложной функцией от  min до  max , то в спектре после модуляции появляются не спектральные линии, а полосы частот  min …  max и кω 1 ±( min … max)

    Рассмотрим особенности спектра при фазо-импульсной модуляции (ФИМ), которая относится к разновидности время-импульсной модуляции (ВИМ).

    При ФИМ – модуляции (Рис. 3.15) пунктирной линией показано изменение модулирующей функции во времени. Вертикальные пунктирные линии соответствуют положению переходных фронтов немодулированнойпоследовательности импульсов. Из рисунка видно, что положение импульсов (фаза) меняется относительно так называемых тактовых точек t k , соответствующих положению на оси времени передних фронтов немодулированной последовательности импульсов. Смещение одного из импульсов на время ∆t k показано на рисунке.

    Рис. 3.15 Иллюстрация ФИМ – модуляции.

    Рис. 3.16 Положение импульса без модуляции

    и при наличии модуляции.

    На рис. 3.16 пунктиром показан немодулированный импульс, расположенный симметрично относительно тактовой точки, соответствующей началу отсчета. При модуляции импульс сместится на величину
    , где t 1 соответствует новому положению переднего фронта, а t 2 – новому положению заднего фронта. Будем считать, что максимальное смещение импульса ∆t K соответствует значению U(t) = 1.

    Если модулирующая функция изменяется синусоидально, то для модулированного импульса моменты времени, соответствующие положению переднего и заднего фронтов будет:


    (3.37)


    (3.38)

    В последнем выражении (3.38) значение времени равно (t-τ) поскольку задний фронт смещен относительно переднего на величину длительности импульса.

    Для получения спектра при ФИМ необходимо подставить вместо τ значение t 2 -t 1 , поскольку t 1 и t 2 являются текущими координатами. Отразить смещение осевой линии можно, заменяя время t временем
    . В результате подстановки этих значений в (3.35) получим:


    (3.39)

    Подставляя в выражение (3.39) значения t 1 и t 2 и после преобразования получим выражение, совпадающее со спектром при АИМ, только около составляющей основной частоты и каждой высшей гармоники появились не одна нижняя и одна верхняя боковые спектральные линии, а полосы боковых гармоник с частотами (kω 0 ±n).

    Примерный вид спектра показан на рис. 3.17. Однако боковые спутники быстро убывают, так как в них входят Бесселевы функции.

    Рис. 3.17 Спектр при фазо-импульсной модуляции.

    Спектры при ШИМ и ЧИМ по своему составу оказываются такими же, как и спектр при ФИМ – модуляции.

    Несмотря на то, что характер спектра при модуляции носителя изменяется и зависит от вида модуляции, его ширина остается такой же, как и для одиночного импульса и определяется в основном длительностью импульсов τ.

    Передача измерительной информации в телеметрических устройствах с временным разделением каналов часто оказывается более предпочтительной, чем передача при помощи частотного разделения каналов, так как при временном разделении не требуется фильтров и, кроме того, ширина полосы пропускания не зависит от числа каналов.

    В зависимости от вида модуляции в каналах (первичной) и вида модуляции несущей частоты (вторичной) существуют основные типы телеизмерительных устройств с временным разделением каналов: АИМ-ЧМ, ШИМ-ЧМ, ФИМ-АМ, ФИМ-ЧМ, КИМ-АМ, КИМ-ЧМ.

    Системы с временным разделением каналов применяются для передачи измерительной информации с искусственных спутников и космических кораблей.