Сила ампера формула направление применения. Закон ампера простым языком

Закон Ампера, формулировка которого известна любому физику, является одним из четырех уравнений Максвелла, которые в своей совокупности образуют фундамент всей теории классической электродинамики.

Уравнения Максвелла

Часть закона Ампера о том, как электрические токи, источники магнитного поля, относятся к самому полю. Другими словами, это (в совокупности с законом Гаусса для магнетизма) точно описывает картину, в которой электрические токи порождают магнитные поля. Поправочная часть Максвелла является значимой, поскольку она говорит, что магнитные поля появляются, когда электрические поля изменяются во времени. Это также важно, поскольку уравнения Максвелла не согласуются без него. С коррекцией термина можно вывести формулы сохранения электрического заряда и предсказать существование электромагнитных волн, которые перемещаются со скоростью.

В доходчивой форме закон Ампера принимает участие соответственно линейности уравнений Максвелла и, следовательно, всей теории классической электродинамики. Если взять два токовых распределителя и их совместить, тогда магнитное поле будет представлять собой сумму магнитных полей, производимых каждой конфигурацией.

Регулировочный элемент Максвелла является еще линейным, и, следовательно, электромагнитные волны являются линейными тоже. Они мешают друг другу согласно принципу суперпозиции и проходят прямо сквозь друг друга без рассеяния.

Как объяснить закон Ампера простым языком?

Простейшим объяснением является то, что провод переносит ток. Если игнорировать магнитное поле Земли, можно представить, что вертикальный провод с электрическим током идет вверх.

Люди склонны говорить об электромагнетизме, но электричество отдельно от магнетизма, поскольку установлено, что электричество и магнетизм влияют друг на друга и могут быть объединены в систему уравнений. В частности, в случае токоведущих проводов электрический ток производит магнитное поле. Ориентация этих полей не очень понятна, но это заметно. Магнитные компасы могут быть размещены вокруг токоведущих проводов, а направления поля можно увидеть в направлениях игловых точек.

Есть возможность рассмотреть это из-за простой симметрии. Ток в проводе производит магнитное поле, но что должно произойти с узором в этих полях, если провод остается вертикальным и поворачивается на некоторый угол около этой вертикальной оси? Дело в том, что ток не меняется в любом случае на такой поворот. Он по-прежнему идет прямо. Следовательно, это вращение не может изменить картину магнитного поля, которое производится.

Структуры

Есть только две возможные структуры, которые работали бы от этого. Либо поля направлены радиально в сторону или подальше от провода, или вокруг провода. Первая возможность — это то, что люди получают от электрически заряженного провода электрическое поле. Вторая возможность — это то, что можно получить магнитное поле, создаваемое током, через провода.

Для одиночного проводника формы поля имеют круговые структуры по центру провода, и сила поля убывает с расстоянием. Как шаблон, это очень похоже на рябь, которая образуется при падении камня в воду. Существует два основных различия между прудом и картиной магнитного поля. Первый - это то, что магнитное поле остается неизменным на заданном расстоянии. Оно не будет расти, а будет уменьшаться в заданной точке. Второй заключается в том, что магнитное поле имеет направление к каждой точке касания окружности.

Сила тока и расстояние

Следующая часть закона Ампера гласит, что сила магнитного поля зависит от силы тока и расстояния от провода. В результате получается, что, если умножить силу магнитного поля на окружность круга, этот продукт будет пропорционален силе электрического тока. То есть, если удвоить расстояние от провода, линия окружности удваивается, а величина магнитного поля падает в 2 раза.

Но закон Ампера позволяет разобраться с токами, которые производятся в системах более сложных, чем одиночный провод. Но все эти случаи эквивалентны. Это означает, что идея магнитной напряженности поля, умноженной на длину пути, остается полезной и по-прежнему зависит от суммы всех токов внутри контура, который образует путь.

Как можно понять закон в практическом смысле?

Это влечет за собой некоторые векторные исчисления, которые можно объяснить интуитивно понятным способом:

  • Магнитные поля создаются электрическими токами.
  • Магнитные поля «накручены» на ток, который их производит в заданном направлении.
  • Чем больше ток, тем сильнее создается магнитное поле. Напряженность магнитного поля пропорциональна току.

Закон Ампера связывает вместе эти понятия в одной из двух математических формул. Поле становится более интенсивным по мере приближения к проводу.

Пропорциональность суммарному току

В интегральной форме закона Ампера используется понятие линейного интеграла. В принципе, можно выбрать определенный цикл (т. е. замкнутый путь через космос) и пройтись вдоль петли, сложить составляющие магнитного поля. Это покажет, насколько магнитное поле вьется вокруг поверхности, ограниченной петлей. Утверждение, что эта величина пропорциональна суммарному току, который ограничен петлей, верно.

Чтобы понять это, нужно рассмотреть контур, ограничивающий провод. Если выполнить петлю вокруг провода, магнитное поле всегда идет к точке в том же направлении, что означает, что общая сумма криволинейного интеграла будет положительной. Это говорит, что можно пройти вокруг тока! Кроме того, можно определить направление тока, используя правило правой руки. Если поток тока пошел в другом направлении, значение криволинейного интеграла переворачивается.

Теперь можно предположить, что взят цикл, в котором не подкладывают проволоку, но делают круг против часовой стрелки над проводом. Если пройтись вокруг нижней части петли, в большинстве случаев направление будет идти против течения, поэтому вклад в интеграл будет отрицательным. Но когда направление проходит вокруг верхней части петли, в большинстве случаев оно будет такое же, что и ток, так что вклад будет положительным. Это говорит, что нет ничего внутри цикла (либо нет тока вообще, или течения токов в противоположных направлениях компенсируют друг друга).

Дифференциал

В дифференциальной форме применение закона Ампера происходит в концепции завитков векторной области. Локон — это количественное измерение, векторное поле — это «керлинг» вокруг данной точки. Если брать все меньшие и меньшие циклы вокруг точки и вычислить криволинейный интеграл, результат должен стать примерно пропорциональным площади петли. Коэффициентом пропорциональности является завиток.

Если взять цикл, который не содержат провода, криволинейный интеграл всегда будет равен нулю. Если петли все дальше и дальше, он всегда будет равен нулю. Коэффициент пропорциональности будет равен нулю, и ротор будет равен нолю (если быть точным, то нулевой вектор). Но если находиться внутри провода, то, независимо от того, какие петли, он будет получать ток, протекающий через него. Идея заключается в том, что для бесконечно малого контура только плотность тока в этот момент будет «внутри» него, а так только плотность тока в этой точке будет определять значение криволинейного интеграла. Поэтому ротор должен быть пропорционален плотности тока в данной точке, так как он соотносится по значению криволинейного интеграла по бесконечно малой петле.

Заключение

В дифференциальной и интегральной формах закон Ампера эквивалентен, он может быть показан путем применения теоремы Стокса. По существу, дифференциальная форма является бесконечно малой версией второго уравнения в «интегральной форме». Но теорема Стокса — это тема другого исследования.

ЗАКОН АМПЕРА - закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию:

Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию: где α - угол между векторами магнитной индукции и тока.

ПРИМЕНЕНИЕ ЗАКОНА Громкоговоритель служит для возбуждения звуковых волн под действием переменного электрического тока, меняющегося со звуковой частотой. В электродинамическом громкоговорителе (динамике) используется действие магнитного поля постоянного магнита на переменный ток в подвижной катушке.

Схема устройства громкоговорителя показана на рисунке 1. 22, а. Звуковая катушка ЗК располагается в зазоре кольцевого магнита М. С катушкой жестко связан бумажный конус - диафрагма D. Диафрагма укреплена на упругих подвесах, позволяющих ей совершать вынужденные колебания вместе с подвижной катушкой. По катушке проходит переменный электрический ток с частотой, paвной звуковой частоте сигнала с микрофона или с выхода радиоприемника, проигрывателя, магнитофона. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя ОО 1 (см. рис. 1. 22, а) в такт с колебаниями токa. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны. Первоклассные громкоговорители воспроизводят без значительных искажений звуковые колебания в диапазоне 40- 15 000 Гц. Но такие устройства очень сложны. Поэтому обычно применяют системы из нескольких громкоговорителей, каждый из которых воспроизводит звук в определенном небольшом интервале частот. Общим недостатком всех громкоговорителей является их малый КПД. Они излучают лишь 1 3% проводимой энергии.

Звук в радиоприемнике, проигрывателе и магнитофоне возникает в результате движения катушки с током в поле постоянного магнита. Наряду с электромеханическими громкоговорителями в настоящее время широкое применение получили громкоговорители, основаннью на пьезоэлектрическом эффекте. Этот эффект проявляется в виде деформации некоторых типов кристаллов в электростатическом поле. Две пьезопластинки склеивают. Пластинки подбирают так, что одна из них увеличивается но длине под действием поля, а другая уменьшается (см. рис. 1. 22, б). В результате получают элемент, который сильно изгибается под действием поля и при переменном электрическом поле создает акустическую волну. Пьезогромкоговорители очень удобны в изготовлении и могут быть совсем маленькими. Вследствие этого они нашли широкое применение в радиотелефонах, мобильных телефонах, ноутбуках и микрокомпьютерах. Взаимодействие токов и пьезоэлектрический эффект положены в основу принципа работы современных громкоговорителей.

ЭЛЕКТРОДИНАМОМЕТР ВЕБЕРА Закон Ампера взаимодействия токов, или, что то же самое, магнитных полей, порождаемых этими токами, используют для устройства весьма распространенного типа электроизмерительных приборов магнитоэлектрических приборов. Они имеют легкую рамку с проволокой, укрепленную на упругом подвесе той или иной конструкции, способную поворачиваться в магнитном поле. Родоначальником всех магнитоэлектрических приборов является электродинамометр Вебера (рис. 4).

Именно этот прибор позволил провести классические исследования закона Ампера. Внутри неподвижной катушки У висит на бифилярном подвесе поддерживаемая вилкой llў подвижная катушка C, ось которой перпендикулярна оси неподвижной катушки. При последовательном прохождении тока по катушкам, подвижная катушка стремится стать параллельно неподвижной и поворачивается, закручивая бифилярный подвес. Углы поворота отсчитываются при помощи прикрепленного к раме llў зеркала f.

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.

Ампер первым установил, что проводники, по которым течет электрический ток, взаимодействуют механически (притягиваются или отталкиваются).

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения: \(\overrightarrow{F} \) ,\(\overrightarrow{F}_{A} \) . Сила (\(\overrightarrow{F} \) ), которая действует на прямолинейный проводник с током (I ), всегда перпендикулярна проводнику и направлению вектора магнитной индукции (\(\overrightarrow{B} \) ). В том случае, если прямолинейный проводник расположен параллельно вдоль направления линий магнитного поля, поле не действует.

Конкретное направление силы Ампера можно найти с помощью правила левой руки. Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 90 градусов большой палец укажет направление силы Ампера.

Еще Ампер установил, что два параллельных проводника с током притягиваются, если токи имеют одинаковые направления и отталкиваются, если токи текут в противоположные стороны. Это просто объяснить, если представить, что один проводник создает магнитное поле, а другой проводник в него помещен и это поле действует на него. Можно использовать правило левой руки и выяснить, как направлена сила.

Закон Ампера

Сила Ампера – сила, действующая на проводник тока, находящийся в магнитном поле и равная произведению силы тока в проводнике, модуля вектора индукции магнитного поля, длины проводника и синуса угла между вектором магнитного поля и направлением тока в проводнике.

Для прямолинейного проводника сила Ампера имеет вид:

\[ \large{\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot \overrightarrow{l} \cdot sin(α) \]

где: \(I \) -- сила тока, которая течет в проводнике, \(\overrightarrow{B} \) -- вектор индукции магнитного поля, в которое проводник помещен, \(\overrightarrow{l} \) -- длина проводника в поле, направление задано направлением тока, \(\alpha \) -- угол между векторами \(\overrightarrow{l\ }и\ \overrightarrow{B} \) .

Этой формулой можно пользоваться:

  • если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;
  • если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

\[ \large{d\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot d\overrightarrow{l} \cdot sin(α) \]

Значение закона Ампера

На основании закона Ампера устанавливают единицы силы тока в системах СИ и СГСМ. Так как ампер равен силе постоянного тока, который при течении по двум параллельным бесконечно длинным прямолинейным проводникам бесконечно малого кругового сечения, находящихся на расстоянии 1м друг от друга в вакууме вызывает силу взаимодействия этих проводников равную \(2\cdot {10}^{-7}Н \) на каждый метр длины.

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой \(2\cdot {10}^{-7} \) Ньютона.

Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Источник

Источник информации

Пример 1

Задача

В магнитном поле, направленном вертикально вниз на двух невесомых нитях горизонтально подвешен проводник с током силы I=2А. Масса проводника \(m=10^{-2} \) кг, длина l=0,4м. Индукция магнитного поля равна 0,25Тл. Определите величину угла, на который отклонятся нити, на которых висит проводник с током. Проводник весь находится в поле.

Решение

Проводник расположен перпендикулярно плоскости рисунка (ток направлен от нас). Запишем условие равновесия для проводника:

\[ \overrightarrow{F_A}+\overrightarrow{mg}+2\overrightarrow{N}=0\ \left(1.1\right), \]

где \(\overrightarrow{F_A} \) - сила Ампера, \(\overrightarrow{mg} \) -- сила тяжести, \(\overrightarrow{N} \) -- сила реакции нити.

Проектируем (1.1) на оси:

\[ X:\ -F_A-2Nsin\alpha =0\ \left(1.2\right). \]

\[ Y:\ -mg+2Ncos\alpha =0\ \left(1.3\right). \]

Разделим (1.2) на (1.3), получим:

\[ \frac{F_A}{mg}=tg\alpha \ \left(1.4\right). \]

Модуль силы Ампера для прямолинейного проводника с током, который подвешен в поле с током, причем \(\overrightarrow{B}\bot \overrightarrow{l}\ \) равен:

\[ F_A=IBl\ \left(1.5\right). \]

Перепишем (1.4) с учетом (1.5), получим:

\[ \frac{IBl}{mg}=tg\alpha \ \left(1.6\right). \]

Подставим исходные данные, проведём вычисления:

\[ tg\alpha =\frac{2\cdot 0,25\cdot 0,4}{10^{-2}\cdot 9,8}\approx 2 \]

Ответ

\(\alpha \approx 64{}^\circ \) .

Пример 2

Задача

Один проводник с током имеет форму квадрата, по нему утечет ток I. В одной плоскости с рамкой лежит бесконечно длинный прямой проводник с таким же током. Расположение проводников задано на рис.3. Найдите, какова сила, действующая на рамку, если расстояние между одной из сторон рамки и проводом равно длине стороны квадрата.

Решение

Магнитное поле создается бесконечно длинным проводником с током. Модуль индукции этого поля нам известен его можно записать как:

\[ B\left(r\right)=\frac{{\mu }_0}{2\pi }\frac{I}{r}\left(2.2\right), \]

где r -- расстояние от блинного проводника до точки поля.

Поле провода имеет цилиндрическую симметрию, для всех точек рамки оно будет направлено перпендикулярно. Если рассмотреть по очереди силы Ампера, которые действуют на каждый из четырех составных частей рамки, то выражение для модуля силы Ампера можно использовать в виде:

\[ F=IBlsin\alpha \ \left(2.3\right), \]

где \(l=а \) . Надо отметить, что на стороны, которые перпендикулярны проводнику с током будут действовать силы равные по модулю и противоположные по направлению, так результирующий их вклад равен нулю. \(\overrightarrow{F_{1A}} \) =-\(\overrightarrow{F_{2A}} \) .

Силы \(F_{4A}\ и\ F_{3A} \) направлены вдоль одной прямой, но в противоположные стороны. Следовательно, результирующую силу по модулю найдем как:

\[ F=F_{4A}-\ F_{3A}\left(2.4\right). \]

Используя закон Ампера, и помня, что магнитное поле перпендикулярно току в сторонах квадрата, запишем:

\[ F_{4A}=\frac{{\mu }_0}{2\pi }\frac{I^2}{a},\ F_{3A}=\frac{{\mu }_0}{2\pi }\frac{I^2}{2a}\left(2.5\right). \]

Подставим (2.5) в (2.4), получим:

\[ F=\frac{{\mu }_0}{2\pi }\frac{I^2}{a}-\ \frac{{\mu }_0}{2\pi }\frac{I^2}{2a}=\frac{{\mu }_0}{4\pi }\frac{I^2}{a}. \]

Ответ

\(F=\frac{{\mu }_0}{4\pi }\frac{I^2}{a}. \)

Пример 3

Задача

Однородное магнитное поле величиной двадцать Тесла удерживает от падения помещенный в него (перпендикулярно линиям магнитной индукции) прямолинейный проводник. Масса проводника четыре килограмма, длина пол метра.

Необходимо: определить силу тока в проводнике.

Данные

m=4 кг; l=0,5 м; B=20 Тл; I - ?

Решение

На прямолинейный проводник воздействуют две силы: \(F=m \cdot g \) – сила тяжести и \(F=B \cdot I \cdot l \) – сила Ампера.

Поскольку проводник не падает – эти силы равны \(m \cdot g=B \cdot I \cdot l \).

Из полученного равенства выведем формулу для определения силы тока в проводнике, помещенном в магнитное поле \(I=\dfrac{m\cdot g}{B\cdot l} \)

Подставив численные значения физических величин в формулу, определим силу тока в проводнике

\(I=\dfrac{m\cdot g}{B\cdot l}=\dfrac{4\cdot 9,8}{20\cdot 0,5}=3.92 A \)

Ответ

сила тока в проводнике равна три целых девяносто две сотых Ампера \(3.92 A \).

Пример 4

Задача

Прямой проводник длиной \(l = 20\) см и массой \(m = 105\) г подвешен горизонтально на двух легких нитях в однородном вертикальном магнитном поле. Модуль индукции магнитного поля \(В = 0,20\) Тл. Если по проводнику пропустить ток \(I = 5,0\) А, то нити, поддерживающие проводник, отклонятся от вертикали на угол \(\alpha \). Сколько градусов будет составлять угол \(\alpha \).

Если провод, по которому течет ток, находится в магнитном поле, то на каждый из носителей тока действует сила Ампера

Закон Ампера в векторной форме

Устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила , пропорциональная силе тока и индукции магнитного поля

Направлена перпендикулярно плоскости, в которой лежат векторы dl и B. Для определения направления силы , действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки.

Чтоб найти силу Ампера для двух бесконечных параллельных проводников, токи которых текут в одном направлении и эти проводники находятся на расстоянии r, необходимо:

Бесконечный проводник с током I1 в точке на расстоянии r создаёт магнитное поле с индукцией:

По закону Био-Савара-Лапласа для прямого тока:

Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:

По правилу буравчика, направлена в сторону первого проводника (аналогично и для , а значит, проводники притягиваются).

Интегрируем, учитывая только проводник единичной длины (пределы l от 0 до 1) и сила Ампера получается:

В формуле мы использовали:

Значение тока

Скорость хаотического движения носителя

Скорость упорядоченного движения

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

Сила Ампера - это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F:

· пропорционален длине проводника l, находящегося в магнитном поле;

· пропорционален модулю индукции магнитного поля B;

· пропорционален силу тока в проводнике I;

· зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля B⃗ .

Тогда: модуль силы Ампера равен произведению модуля индукции магнитного поля B, в котором находится проводник с током, длины этого проводника l, силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля ,

где - сила тока в проводнике;

Модуль вектора индукции магнитного поля;

Длина проводника, находящегося в магнитном поле;

Угол между вектором магнитного поля и направлением тока в проводнике.

Этой формулой можно пользоваться:

· если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;

· если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля () входил в ладонь, четыре вытянутых пальца указывали направление тока (), тогда отогнутый на 90° большой палец укажет направление силы Ампера ().


27) Закон Био-Сава-Лапласа и его применение

Закон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

Формулировка закона Био Савара Лапласа имеет вид: Определяет в точке А индукцию поля , создаваемую элементом проводника с током на расстоянии от него.

Где – вектор, по модулю равный длине элемента проводника и совпадающий по направлению с током; – радиус-вектор, проведенный из элемента проводника в точку А поля; – модуль радиуса-вектора ; – магнитная постоянная ; – Относительная магнитная проницаемость (среды); - Сила тока (текущего по проводнику), размерность в СИ-А

Направление вектора :

Вектор перпендикулярен и и напревлен по касательной к линии магнитной индукции. Направление определяется по правилу правого винта: направление вращения головки винта дает направление , если поступательное движение винта соотвтествует напрвлению тока в элементе.



Применение закона: магнитное поле прямого тока

тока, текущего по тонкому прямому проводу бесконечной длины. В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами dl и r), выразив через него все остальные величины.