Видеоурок «Координатная плоскость. Построение прямой по ее уравнению Как строить прямую на координатной плоскости

§ 1 Система координат: определение и способ построения

В этом уроке познакомимся с понятиями «система координат», «координатная плоскость», «оси координат», научимся строить точки на плоскости по координатам.

Возьмем координатную прямую х с началом координат точкой О, положительным направлением и единичным отрезком.

Через начало координат точку О координатной прямой х проведем еще одну координатную прямую y, перпендикулярную х, положительное направление зададим вверх, единичный отрезок такой же. Таким образом, мы построили систему координат.

Дадим определение:

Две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом координат каждой из них, образуют систему координат.

§ 2 Координатная ось и координатная плоскость

Прямые, которые образуют систему координат, называют координатными осями, каждая из которых имеет свое название: координатная прямая х - ось абсцисс, координатная прямая y - ось ординат.

Плоскость, на которой выбрана система координат, называется координатной плоскостью.

Описанная система координат называется прямоугольной. Часто ее называют декартовой системой координат в честь французского философа и математика Рене Декарта.

Каждая точка координатной плоскости имеет две координаты, которые можно определить, опустив из точки перпендикуляры на оси координат. Координаты точки на плоскости - это пара чисел, из которых первое число - абсцисса, второе число - ордината. Абсциссу показывает перпендикуляр к оси х, ординату - перпендикуляр к оси y.

Отметим на координатной плоскости точку А, проведем из неё перпендикуляры к осям системы координат.

По перпендикуляру к оси абсцисс (ось х) определяем абсциссу точки А, она равна 4, ординату точки А - по перпендикуляру к оси ординат (ось у) - это 3. Координаты нашей точки 4 и 3. А (4;3). Таким образом, координаты можно найти для любой точки координатной плоскости.

§ 3 Построение точки на плоскости

А как построить точку на плоскости с заданными координатами, т.е. по координатам точки плоскости определить её положение? В данном случае действия выполняем в обратном порядке. На координатных осях находим точки соответствующие заданным координатам, через которые проводим прямые, перпендикулярные осям х и y. Точка пересечения перпендикуляров и будет искомой, т.е. точкой с заданными координатами.

Выполним задание: построить на координатной плоскости точку М (2;-3).

Для этого на оси абсцисс находим точку с координатой 2, проводим через данную точку прямую перпендикулярную оси х. На оси ординат найдем точку с координатой -3, через нее проведем прямую перпендикулярную оси y. Точка пересечения перпендикулярных прямых и будет заданной точкой М.

А теперь рассмотрим несколько частных случаев.

Отметим на координатной плоскости точки А (0; 2), В (0; -3), С (0; 4).

Абсциссы данных точек равны 0. На рисунке видно, что все точки находятся на оси ординат.

Следовательно, точки, абсциссы которых равны нулю, лежат на оси ординат.

Поменяем координаты данных точек местами.

Получится А (2;0), В (-3;0) С (4; 0). В этом случае все ординаты равны 0 и точки находятся на оси абсцисс.

Значит, точки, ординаты которых равны нулю, лежат на оси абсцисс.

Разберем еще два случая.

На координатной плоскости отметим точки М (3; 2), N (3; -1), Р (3; -4).

Легко заметить, что все абсциссы точек одинаковые. Если эти точки соединить, получится прямая, параллельная оси ординат и перпендикулярная оси абсцисс.

Напрашивается вывод: точки, имеющие одну и ту же абсциссу, лежат на одной прямой, которая параллельна оси ординат и перпендикулярна оси абсцисс.

Если поменять координаты точек М, N, Р местами, то получится М (2; 3), N (-1; 3), Р (-4; 3). Одинаковыми станут ординаты точек. В данном случае, если эти точки соединить, получится прямая параллельная оси абсцисс и перпендикулярная оси ординат.

Таким образом, точки, имеющие одну и ту же ординату, лежат на одной прямой параллельной оси абсцисс и перпендикулярной оси ординат.

В этом уроке Вы познакомились с понятиями «система координат», «координатная плоскость», «оси координат - ось абсцисс и ось ординат». Узнали, как найти координаты точки на координатной плоскости и научились строить точки на плоскости по ее координатам.

Список использованной литературы:

  1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//автор-составитель Л.А. Топилина. – Мнемозина, 2009.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И.Зубарева, А.Г.Мордкович.- М.: Мнемозина, 2013.
  3. Математика. 6 класс: учебник для общеобразовательных учреждений/Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др./по редакцией Г.В. Дорофеева, И.Ф. Шарыгина; Рос.акад.наук, Рос.акад.образования. - М.: «Просвещение», 2010
  4. Справочник по математике - http://lyudmilanik.com.ua
  5. Справочник для учащихся в средней школе http://shkolo.ru

Прямая вполне определена, если известны две принадлежащие ей точки. Для того чтобы построить прямую по ее уравнению, надо, пользуясь этим уравнением, найти координаты двух ее точек. Твердо следует помнить, что если точка принадлежит прямой, то координаты этой точки удовлетворяют уравнению прямой.

При практическом построении прямой по ее уравнению наиболее точный график получится тогда, когда координаты взятых для ее построения двух точек - целые числа.

1. Если прямая определена общим уравнением Ax + By + C = 0 и , то для ее построения проще всего определить точки пересечения прямой с координатными осями.

Укажем, как определить координаты точек пересечения прямой с координатными осями. Координаты точки пересечения прямой с осью Ox находят из следующих соображений: ординаты всех точек, расположенных на оси Ox , равны нулю. В уравнении прямой полагают, что y равно нулю, и из полученного уравнения находят x . Найденное значение x и есть абсцисса точки пересечения прямой с осью Ox . Если окажется, что x = a , то координаты точки пересечения прямой с осью Ox будут (a , 0).

Чтобы определить координаты точки пересечения прямой с осью Oy , рассуждают так: абсциссы всех точек, расположенных на оси Oy , равны нулю. Взяв в уравнении прямой x равным нулю, из полученного уравнения определяют y . Найденное значение y и будет ординатой пересечения прямой с осью Oy . Если окажется, например, что y = b , то точка пересечения прямой с осью Oy имеет координаты (0, b ).

Пример. Прямая 2x + y - 6 = 0 пересекает ось Ox в точке (3, 0). Действительно, взяв в этом уравнении y = 0, получим для определения x уравнение 2x - 6 = 0, откуда x = 3.

Чтобы определить точку пересечения этой прямой с осью Oy , положим в уравнении прямой x = 0. Получим уравнение y - 6 = 0, из которого следует, что y = 6. Таким образом, прямая пересекает координатные оси в точках (3, 0) и (0, 6).

Если же в общем уравнении прямой C = 0, то прямая, определяемая этим уравнением, проходит через начало координат. Таким образом, уже известна одна ее точка, и для построения прямой остается только найти еще одну ее точку. Абсциссу x этой точки задают произвольно, а ординату y находят из уравнения прямой.

Пример. Прямая 2x - 4y = 0 проходит через начало координат. Вторую точку прямой определим, взяв, например, x = 2. Тогда для определения y получаем уравнение 2*2 - 4y = 0; 4y = 4; y = 1. Итак, прямая 2x - 4y = 0 проходит через точки (0, 0) и (2, 1).

Если прямая задана уравнением y = kx + b с угловым коэффициентом, то из этого уравнения уже известна величина отрезка b , отсекаемого прямой на оси ординат, и для построения прямой остается определить координаты еще только одной точки, принадлежащей этой прямой. Если в уравнении y = kx + b , то легче всего определить координаты точки пересечения прямой с осью Ox . Выше было указано, как это сделать.

Если же в уравнении y = kx + b b = 0, то прямая проходит через начало координат, и тем самым уже известна одна принадлежащая ей точка. Чтобы найти еще одну точку, следует дать x любое значение и определить из уравнения прямой значение y , соответствующее этому значению x .

Пример. Прямая проходит через начало координат и точку (2, 1), так как при x = 2 из ее уравнения .

Уравнение прямой, проходящей через данную точку в данном направлении. Уравнение прямой, проходящей через две данные точки. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Определение точки пересечения двух прямых

1. Уравнение прямой, проходящей через данную точку A (x 1 , y 1) в данном направлении, определяемом угловым коэффициентом k ,

y - y 1 = k (x - x 1). (1)

Это уравнение определяет пучок прямых, проходящих через точку A (x 1 , y 1), которая называется центром пучка.

2. Уравнение прямой, проходящей через две точки: A (x 1 , y 1) и B (x 2 , y 2), записывается так:

Угловой коэффициент прямой, проходящей через две данные точки, определяется по формуле

3. Углом между прямыми A и B называется угол, на который надо повернуть первую прямую A вокруг точки пересечения этих прямых против движения часовой стрелки до совпадения ее со второй прямой B . Если две прямые заданы уравнениями с угловым коэффициентом

y = k 1 x + B 1 ,

y = k 2 x + B 2 , (4)

то угол между ними определяется по формуле

Следует обратить внимание на то, что в числителе дроби из углового коэффициента второй прямой вычитается угловой коэффициент первой прямой.

Если уравнения прямой заданы в общем виде

A 1 x + B 1 y + C 1 = 0,

A 2 x + B 2 y + C 2 = 0, (6)

угол между ними определяется по формуле

4. Условия параллельности двух прямых:

а) Если прямые заданы уравнениями (4) с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:

k 1 = k 2 . (8)

б) Для случая, когда прямые заданы уравнениями в общем виде (6), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.

5. Условия перпендикулярности двух прямых:

а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.

  • Две взаимно перпендикулярные координатные прямые, пересекающиеся в точке О — начале отсчета, образуют прямоугольную систему координат , называемую также декартовой системой координат.
  • Плоскость, на которой выбрана система координат, называется координатной плоскостью. Координатные прямые называются координатными осями . Горизонтальная — ось абсцисс (Ох), вертикальная — ось ординат (Оy).
  • Координатные оси разбивают координатную плоскость на четыре части — четверти. Порядковые номера четвертей принято считать против часовой стрелки.
  • Любая точка в координатной плоскости задается своими координатами - абсциссой и ординатой . Например, А(3; 4) . Читают: точка А с координатами 3 и 4. Здесь 3 — абсцисса, 4 — ордината.

I. Построение точки А(3; 4).

Абсцисса 3 показывает, что от начала отсчета — точки О нужно отложить вправо 3 единичных отрезка, а затем вверх отложим 4 единичных отрезка и поставим точку.

Это и есть точка А(3; 4).

Построение точки В(-2; 5).

От нуля отложим влево 2 единичных отрезка, а затем вверх 5 единичных отрезков.

Ставим точку В .

Обычно за единичный отрезок принимают 1 клетку .

II. В координатной плоскости xOy построить точки:

A (-3; 1); B (-1; -2);

C (-2: 4); D (2; 3);

F (6: 4); K (4; 0)

III. Определить координаты построенных точек: A, B, C, D, F, K.

А(-4; 3); В(-2; 0);

С(3; 4); D (6; 5);

F (0; -3); K (5; -2).

Покажем, как преобразуются линии, если в уравнение задания линии вводить знак модуля.

Пусть имеем уравнение F(x;y)=0(*)

· Уравнение F(|x|;y)=0 задаёт линию симметричную относительно оси ординат. Если уже построена данная линия, заданная уравнением (*), то оставляем часть линии справа от оси ординат, а затем симметричным образом достраиваем слева.

· Уравнение F(x;|y|)=0 задаёт линию симметричную относительно оси абсцисс. Если уже построена данная линия, заданная уравнением (*), то оставляем часть линии сверху от оси абсцисс, а затем симметричным образом достраиваем снизу.

· Уравнение F(|x|;|y|)=0 задаёт линию симметричную относительно осей координат. Если уже построена линия, заданная уравнением(*), то оставляем часть линии в первой четверти, а затем достраиваем симметричным образом.

Рассмотрим следующие примеры

Пример 1.

Пусть имеем прямую, заданную уравнением:

(1), где a>0, b>0.

Построить линии, заданные уравнениями:

Решение:

Сначала построим исходную прямую, а затем, используя рекомендации будем строить остальные линии.

х
у
а
b
(1)

(2)
b
-a
a
y
x
x
y
a
(3)
-b
b
x
y
-a
х
-a
b
(5)

a
-b

Пример 5

Изобразить на координатной плоскости область, заданную неравенством:

Решение:

Сначала строим границу области, заданную уравнением:

| (5)

В предыдущем примере мы получили две параллельные прямые, которые разбивают координатную плоскость на две области:

Область между прямыми

Область вне прямых.

Для выбора нашей области возьмём контрольную точку, например, (0;0) и подставим в данное неравенство: 0≤1 (верно)®область между прямыми, включая границу.

Обратите внимание, если неравенство будет строгим, то граница в область не входит.

Сохраним данную окружность и построим симметричную относительно оси ординат. Сохраним данную окружность и построим симметричную относительно оси абсцисс. Сохраним данную окружность и построим симметричную относительно оси абсцисс. и оси ординат. В результате получим 4 круга. Заметим, что центр круга в первой четверти (3;3), а радиус R=3.
у
-3

х