Вращательное движение руки вокруг оси. Вращательное движение твердого тела

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .

Движение твердого тела называется вращательным, если во время движения все точки тела, расположенные на некоторой прямой, называемой осью вращения, остаются неподвижными (рис. 2.15).

Положение тела при вращательном движении принято определять углом поворота тела , который измеряется как двугранный угол между неподвижной и подвижной плоскостями, проходящими через ось вращения. Причем, подвижная плоскость связана с вращающимся телом.

Введем в рассмотрение подвижную и неподвижную системы координат, начало которых разместим в произвольной точке О оси вращения. Ось Oz, общую для подвижной и неподвижной систем координат, направим по оси вращения, ось Ох неподвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в неподвижной плоскости, ось Ох 1 подвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в подвижной плоскости (рис. 2.15).

Если рассматривать сечение тела плоскостью, перпендикулярной оси вращения, то угол поворота φ можно определять как угол между неподвижной осью Ох и подвижной осью Ох 1 , неизменно связанной с вращающимся телом (рис. 2.16).

Принято направление отсчета угла поворота тела φ против хода часовой стрелки считать положительным, если смотреть с положительного направления оси Oz.

Равенство φ = φ(t) , описывающее изменение угла φ во времени, называется законом или уравнением вращательного движения твердого тела.

Быстрота и направление изменения угла поворота твердого тела характеризуются угловой скоростью. Абсолютное значение угловой скорости принято обозначать буквой греческого алфавита ω (омега). Алгебраическое значение угловой скорости принято обозначать . Алгебраическое значение угловой скорости равно первой производной по времени от угла поворота:

. (2.33)

Единицы измерения угловой скорости равны единицам измерения угла, деленным на единицу измерения времени, например, град/мин, рад/ч. В системе СИ единица измерения угловой скорости рад/с, но чаще наименование этой единицы измерения записывается в виде 1/с.

Если > 0, то тело вращается против хода часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Если < 0, то тело вращается по ходу часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Быстрота и направление изменения угловой скорости характеризуются угловым ускорением. Абсолютную величину углового ускорения принято обозначать буквой греческого алфавита e (эпсилон). Алгебраическую величину углового ускорения принято обозначать . Алгебраическая величина углового ускорения равна первой производной по времени от алгебраического значения угловой скорости или второй производной от угла поворота:


Единицы измерения углового ускорения равны единицам измерения угла, деленным на единицу измерения времени в квадрате. Например, град/с 2 , рад/ч 2 . В системе СИ единицей измерения углового ускорения является рад/с 2 , но чаще наименование этой единицы измерения записывается в виде 1/с 2 .

Если алгебраические значения угловой скорости и углового ускорения имеют один знак, то угловая скорость с течением времени увеличивается по модулю, а если разный, то уменьшается.

Если угловая скорость постоянна (ω = const), то принято говорить, что вращение тела равномерное. В этом случае:

φ = · t + φ 0 , (2.35)

где φ 0 - начальный угол поворота.

Если постоянно угловое ускорение (e = const), то принято говорить, что вращение тела равноускоренное (равнозамедленное). В этом случае:

где 0 - начальная угловая скорость.

В остальных случаях для определения зависимости φ от и необходимо интегрировать выражения (2.33), (2.34) при заданных начальных условиях.

На рисунках направление вращения тела иногда показывают изогнутой стрелкой (рис. 2.17).

Часто в механике угловая скорость и угловое ускорение рассматриваются как векторные величины и . Оба эти вектора направляются по оси вращения тела. Причем вектор направляют в одну сторону с ортом, определяющим направление оси координат, совпадающей с осью вращения, если >0, и в противоположную, если
Аналогично выбирают направление вектора (рис. 2.18).

При вращательном движении тела каждая из его точек (кроме точек, расположенных на оси вращения) перемещается по траектории, представляющей собой окружность с радиусом, равным кратчайшему расстоянию от точки до оси вращения (рис. 2.19).

Поскольку для окружности касательная в любой ее точке составляет угол 90° с радиусом, то вектор скорости точки тела, совершающего вращательное движение, будет направлен перпендикулярно радиусу и лежать в плоскости окружности, являющейся траекторией движения точки. Касательная составляющая ускорения будет лежать на одной прямой со скоростью, а нормальная будет направлена по радиусу к центру окружности. Поэтому иногда касательную и нормальную составляющие ускорения при вращательном движении называют соответственно вращательной и центростремительной (осестремительной) составляющими (рис. 2.19)

Алгебраическая величина скорости точки определяется выражением:

, (2.37)

где R = OM - кратчайшее расстояние от точки до оси вращения.

Алгебраическая величина касательной составляющей ускорения определяется выражением:

. (2.38)

Модуль нормальной составляющей ускорения определяется выражением:

. (2.39)

Вектор ускорения точки при вращательном движении определяется по правилу параллелограмма как геометрическая сумма касательной и нормальной составляющих. Соответственно модуль ускорения может быть определен по теореме Пифагора :

Если угловая скорость и угловое ускорение определены как векторные величины , , то векторы скорости, касательной и нормальной составляющих ускорения могут быть определены по формулам:

где - радиус-вектор, проведенный в точку М из произвольной точки оси вращения (рис. 2.20).

Решение задач на вращательное движение одного тела обычно не вызывает никаких трудностей. Используя формулы (2.33)-(2.40), можно легко определить любой неизвестный параметр.

Определенные сложности возникают при решении задач, связанных с исследованием механизмов, состоящих из нескольких взаимосвязанных тел, совершающих как вращательное, так и поступательное движение.

Общий подход к решению подобных задач заключается в том, что движение от одного тела к другому передается через одну точку - точку касания (контакта). Причем у соприкасающихся тел равны скорости и касательные составляющие ускорений в точке контакта. Нормальные составляющие ускорения у соприкасающихся тел в точке контакта различны, они зависят от траектории движения точек тел.

При решении задач такого типа удобно в зависимости от конкретных обстоятельств использовать как формулы, приведенные в разделе 2.3, так и формулы для определения скорости и ускорения точки при задании ее движения естественным (2.7), (2.14) (2.16) или координатным (2.3), (2.4), (2.10), (2.11) способами. При этом если движение тела, к которому принадлежит точка, вращательное, траектория движения точки будет представлять собой окружность. Если движение тела прямолинейное поступательное, то траектория движения точки будет представлять собой прямую линию.

Пример 2.4. Тело вращается вокруг неподвижной оси. Угол поворота тела изменяется по закону φ = π · t 3 рад. Для точки, находящейся на расстоянии OM = R = 0,5 м от оси вращения, определить скорость, касательную, нормальную составляющие ускорения и ускорение в момент времени t 1 = 0,5 с. Показать направление этих векторов на чертеже.

Рассмотрим сечение тела плоскостью, проходящей через точку О перпендикулярно оси вращения (рис. 2.21). На этом рисунке точка О - точка пересечения оси вращения и секущей плоскости, точки М о и M 1 - соответственно начальное и текущее положение точки М. Через точки О и М о проведем неподвижную ось Ох , а через точки О и М 1 - подвижную ось Ох 1 . Угол между этими осями будет равен

Закон изменения угловой скорости тела найдем, продифференцировав закон изменения угла поворота:

В момент t 1 угловая скорость будет равна

Закон изменения углового ускорения тела найдем, продифференцировав закон изменения угловой скорости:

В момент t 1 угловое ускорение будет равно:

1/с 2 ,

Алгебраические величины векторов скорости, касательной составляющей ускорения, модуля нормальной составляющей ускорения и модуля ускорения найдем по формулам (2.37), (2.38), (2.39), (2.40):

М/с 2 ;

м/с 2 .

Так как угол φ 1 >0, то откладывать его от оси Ох будем против хода часовой стрелки. А так как > 0, то векторы будут направлены перпендикулярно радиусу OM 1 таким образом, чтобы мы видели их вращающимися против хода часовой стрелки. Вектор будет направлен по радиусу OM 1 к оси вращения. Вектор построим по правилу параллелограмма на векторах τ и .

Пример 2.5. По заданному уравнению прямолинейного поступательного движения груза 1 х = 0,6t 2 - 0,18 (м) определить скорость, а также касательную, нормальную составляющую ускорения и ускорение точки М механизма в момент времени t 1 , когда путь, пройденный грузом 1, равен s = 0,2 м. При решении задачи будем считать, что проскальзывание в точке контакта тел 2 и 3 отсутствует, R 2 = 1,0 м, r 2 = 0,6 м, R 3 = 0,5 м (рис. 2.22).

Закон прямолинейного поступательного движения груза 1 задан в координатной форме. Определим момент времени t 1 , для которого путь, пройденный грузом 1, будет равен s

s = x(t l)-x(0) ,

откуда получим:

0,2 = 0,18 + 0,6t 1 2 - 0,18.

Следовательно,

Продифференцировав по времени уравнение движения, найдем проекции скорости и ускорения груза 1 на ось Ох:

м/с 2 ;

В момент t = t 1 проекция скорости груза 1 будет равна:

то есть будет больше нуля, как и проекция ускорения груза 1. Следовательно, груз 1 будет в момент t 1 двигаться вниз равноускоренно, соответственно, тело 2 будет вращаться равноускоренно в направлении против хода часовой стрелки, а тело 3 - по ходу часовой стрелки.

Тело 2 приводится во вращение телом 1 через нить, намотанную на малый барабан. Поэтому модули скоростей точек тела 1, нити и поверхности малого барабана тела 2 равны, также равны будут и модули ускорений точек тела 1, нити и касательной составляющей ускорения точек поверхности малого барабана тела 2. Следовательно, модуль угловой скорости тела 2 можно определить как

Модуль углового ускорения тела 2 будет равен:

1/с 2 .

Определим модули скорости и касательной составляющей ускорения для точки К тела 2 - точки контакта тел 2 и 3:

м/с, м/с 2

Так как тела 2 и 3 вращаются без взаимного проскальзывания, модули скорости и касательной составляющей ускорения точки К - точки контакта у этих тел будут равны.

направим перпендикулярно радиусу в сторону вращения тела, так как тело 3 вращается равноускоренно

И Савельева .

При поступательном движении тела (§ 60 в учебнике Е. М. Никитина) все его точки движутся по одинаковым траекториям и в каждый данный момент они имеют равные скорости и равные ускорения.

Поэтому поступательное движение тела задают движением какой-либо одной точки, обычно движением центра тяжести.

Рассматривая в какой-либо задаче движение автомобиля (задача 147) или тепловоза (задача 141), фактически рассматриваем движение их центров тяжести.

Вращательное движение тела (Е. М. Никитин , § 61) нельзя отождествить с движением какой-либо одной его точки. Ось любого вращающегося тела (маховика дизеля, ротора электродвигателя, шпинделя станка, лопастей вентилятора и т. п.) в процессе движения занимает в пространстве относительно окружающих неподвижных тел одно и то же место.

Движение материальной точки или поступательное движение тела характеризуют в зависимости от времени линейные величины s (путь, расстояние), v (скорость) и а (ускорение) с его составляющими a t и a n .

Вращательное движение тела в зависимости от времени t характеризуют угловые величины : φ (угол поворота в радианах), ω (угловая скорость в рад/сек) и ε (угловое ускорение в рад/сек 2).

Закон вращательного движения тела выражается уравнением
φ = f (t).

Угловая скорость - величина, характеризующая быстроту вращения тела, определяется в общем случае как производная угла поворота по времени
ω = dφ/dt = f" (t).

Угловое ускорение - величина, характеризующая быстроту изменения угловой скорости, определяется как производная угловой скорости
ε = dω/dt = f"" (t).

Приступая к решению задач на вращательное движение тела, необходимо иметь в виду, что в технических расчетах и задачах, как правило, угловое перемещение выражается не в радианах φ, а в оборотах φ об.

Поэтому необходимо уметь переходить от числа оборотов к радианному измерению углового перемещения и наоборот.

Так как один полный оборот соответствует 2π рад, то
φ = 2πφ об и φ об = φ/(2π).

Угловая скорость в технических расчетах очень часто измеряется в оборотах, произведенных в одну минуту (об/мин), поэтому необходимо отчетливо уяснить, что ω рад/сек и n об/мин выражают одно и то же понятие - скорость вращения тела (угловую скорость), но в различных единицах - в рад/сек или в об/мин.

Переход от одних единиц угловой скорости к другим производится по формулам
ω = πn/30 и n = 30ω/π.

При вращательном движении тела все его точки движутся по окружностям, центры которых расположены на одной неподвижной прямой (ось вращающегося тела). Очень важно при решении задач, приведенных в этой главе, ясно представлять зависимость между угловыми величинами φ, ω и ε, характеризующими вращательное движение тела, и линейными величинами s, v, a t и a n , характеризующими движение различных точек этого тела (рис 205).

Если R - расстояние от геометрической оси вращающегося тела до какой-либо точки А (на рис. 205 R=OA), то зависимость между φ - углом поворота тела и s - расстоянием, пройденным точкой тела за то же время, выражается так:
s = φR.

Зависимость между угловой скоростью тела и скоростью точки в каждый данный момент выражается равенством
v = ωR.

Касательное ускорение точки зависит от углового ускорения и определяется формулой
a t = εR.

Нормальное ускорение точки зависит от угловой скорости тела и определяется зависимостью
a n = ω 2 R.

При решении задачи, приведенной в этой главе, необходимо ясно понимать, что вращением называется движение твердого тела, а не точки. Отдельно взятая материальная точка не вращается, а движется по окружности - совершает криволинейное движение.

§ 33. Равномерное вращательное движение

Если угловая скорость ω=const, то вращательное движение называется равномерным.

Уравнение равномерного вращения имеет вид
φ = φ 0 + ωt.

В частном случае, когда начальный угол поворота φ 0 =0,
φ = ωt.

Угловую скорость равномерно вращающегося тела
ω = φ/t
можно выразить и так:
ω = 2π/T,
где T - период вращения тела; φ=2π - угол поворота за один период.

§ 34. Равнопеременное вращательное движение

Вращательное движение с переменной угловой скоростью называется неравномерным (см. ниже § 35). Если же угловое ускорение ε=const, то вращательное движение называется равнопеременным . Таким образом, равнопеременное вращение тела - частный случай неравномерного вращательного движения.

Уравнение равнопеременного вращения
(1) φ = φ 0 + ω 0 t + εt 2 /2
и уравнение, выражающее угловую скорость тела в любой момент времени,
(2) ω = ω 0 + εt
представляют совокупность основных формул вращательного равнопеременного движения тела.

В эти формулы входят всего шесть величин: три постоянных для данной задачи φ 0 , ω 0 и ε и три переменных φ, ω и t. Следовательно, в условии каждой задачи на равнопеременное вращение должно содержаться не менее четырех заданных величин.

Для удобства решения некоторых задач из уравнений (1) и (2) можно получить еще две вспомогательные формулы.

Исключим из (1) и (2) угловое ускорение ε:
(3) φ = φ 0 + (ω + ω 0)t/2.

Исключим из (1) и (2) время t:
(4) φ = φ 0 + (ω 2 - ω 0 2)/(2ε).

В частном случае равноускоренного вращения, начавшегося из состояния покоя, φ 0 =0 и ω 0 =0. Поэтому приведенные выше основные и вспомогательные формулы принимают такой вид:
(5) φ = εt 2 /2;
(6) ω = εt;
(7) φ = ωt/2;
(8) φ = ω 2 /(2ε).

§ 35. Неравномерное вращательное движение

Рассмотрим пример решения задачи, в которой задано неравномерное вращательное движение тела.

Вращательным называют такое движение, при котором две точки, связанные с телом, следовательно, и прямая, проходящая через эти точки, остаются неподвижными во время движения (рис. 2.16). Неподвижную прямую А В называют осью вращения.

Рис. 2.1В. К определению вращательного движения тела

Положение тела при вращательном движении определяет угол поворота ф, рад (см. рис. 2.16). При движении угол поворота меняется со временем, т.е. закон вращательного движения тела определяется как закон изменения во времени величины двугранного угла Ф = ф(/) между неподвижной полуплоскостью К () , проходящей через ось вращения, и подвижной п 1 полуплоскостью, связанной с телом и также проходящей через ось вращения.

Траектории всех точек тела при вращательном движении представляют собой концентрические окружности, расположенные в параллельных плоскостях с центрами на оси вращения.

Кинематические характеристики вращательного движения тела. Аналогично тому, как были введены кинематические характеристики для точки вводят кинематическое понятие, характеризующее быстроту изменения функции ф(с), которая определяет положение тела при вращательном движении, т.е. угловую скорость со = ф = с/ф/с//, размерность угловой скорости [со] = рад/с.

В технических расчетах часто используют выражение угловой скорости другой размерностью - через число оборотов в минуту: [я] = об/мин, а связь между п и со можно представить в виде: со = 27ш/60 = 7ш/30.

В общем случае угловая скорость изменяется во времени. Мерой быстроты изменения угловой скорости является угловое ускорение е = с/со/с//= со = ф, размерность углового ускорения [е] = рад/с 2 .

Введенные угловые кинематические характеристики полностью определяются заданием одной функции - угла поворота от времени.

Кинематические характеристики точек тела при вращательном движении. Рассмотрим точку М тела, находящуюся на расстоянии р от оси вращения. Эта точка движется по окружности радиуса р (рис. 2.17).


Рис. 2.17.

точек тела при его вращении

Длина дуги M Q M окружности радиуса р определяется как s = ptp, где ф - угол поворота, рад. В случае, если закон движения тела задан как ф = ф(г), то закон движения точки М по траектории определяет формула S = рф(7).

Пользуясь выражениями кинематических характеристик при естественном способе задания движения точки, получим кинематические характеристики для точек, вращающегося тела: скорость по формуле (2.6)

V = 5 = рф = рсо; (2.22)

касательное ускорение согласно выражению (2.12)

я т = К = сор = ер; (2.23)

нормальное ускорение по формуле (2.13)

а„ = И 2 /р = со 2 р 2 /р = огр; (2.24)

полное ускорение с использованием выражения (2.15)

а = -]а + а] = рх/е 2 + со 4 . (2.25)

За характеристику направления полного ускорения принимают р - угол отклонения вектора полного ускорения от радиуса окружности, описываемой точкой (рис. 2.18).

Из рис. 2.18 получаем

tgjLi = aja n =ре/рсо 2 =г/(о 2 . (2.26)

Рис. 2.18.

Отметим, что все кинематические характеристики точек вращающегося тела пропорциональны расстояниям до оси вращения. Ве-

личины их определяют через производные одной и той же функции - угла поворота.

Векторные выражения для угловых и линейных кинематических характеристик. Для аналитического описания угловых кинематических характеристик вращающегося тела вместе с осью вращения вводят понятие вектора угла поворота (рис. 2.19): ф = ф(/)А:, где к - еди

ничный вектор оси вращения

1; к =соп51 .

Направлен вектор ф по этой оси так, чтобы с «конца» его видеть

поворот, происходящим против хода часовой стрелки.

Рис. 2.19.

характеристик в векторной форме

Если известен вектор ф(/), то все остальные угловые характеристики вращательного движения можно представить в векторной форме:

  • вектор угловой скорости со = ф = ф к. Направление вектора угловой скорости определяет знак производной угла поворота;
  • вектор углового ускорения є = со = ф к. Направление этого вектора определяет знак производной угловой скорости.

Введенные векторы со и є позволяют получить векторные выражения для кинематических характеристик точек (см. рис. 2.19).

Заметим, что модуль вектора скорости точки совпадает с модулем векторного произведения вектора угловой скорости и радиуса-вектора: |сох г = согвіпа = сор. Учитывая направления векторов со и г и правило направления векторного произведения, можно записать выражение для вектора скорости:

V = со хг.

Аналогично легко показать, что

  • ? X Ґ
  • - егБіпа = єр = а т и

Сосор = со р = я.

(роме этого векторы этих кинематических характеристик совпадают по направлению с соответствующими векторными произведениями.

Следовательно, векторы касательного и нормального ускорений можно представить в виде векторных произведений:

  • (2.28)
  • (2.29)

а х = г х г

а = со х V.

В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

a = ω 2 r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

В скалярной форме

L = m i υ i r i sin(υ i , r i).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υ i , r i) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = m i υ i r i .

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

M i = r i F i sin(r i , F i).

Считая, что r i sinα = l i , M i = l i F i .

Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

L i = m i υ i r i .

Если вместо линейной скорости подставить ее выражение через угловую:

υ i = ωr i ,

то выражение для момента импульса примет вид

L i = m i r i 2 ω.

Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

L i = I i ω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I 0 + ma 2 ,

где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).