Относительно чего сохраняется направление оси гироскопа. Закон сохранения момента импульса

ГИРОСКОП (от греч. gyreuо - кружусь, вращаюсь и skopeo - смотрю, наблюдаю) - быстровращающееся симметричное твёрдое тело, ось вращения (ось симметрии) к-рого может изменять своё направление в пространстве. Свойствами Г. обладают вращающиеся небесные тела, артиллерийские снаряды, роторы турбин, устанавливаемых на судах, винты самолётов и т. п. В совр. технике Г.- осн. элемент всевозможных гироскопич. устройств или приборов, широко применяемых для автоматич. управления движением самолётов, судов, торпед, ракет и в ряде др. систем гироскопич. стабилизации, для целей навигации (указатели курса, поворота, горизонта, стран света и др.), для измерения угловых или поступат. скоростей движущихся объектов (напр., ракет) и во мн. др. случаях (напр., при прохождении стволов штолен, строительстве метрополитенов, при бурении скважин).

Чтобы ось Г. могла свободно поворачиваться в пространстве, Г. обычно закрепляют в кольцах т. н. карданова подвеса (рис. 1), в к-ром оси внутр. и внеш. колец и ось Г. пересекаются в одной точке, наз. центром подвеса. Закреплённый в таком подвесе Г. имеет 3 степени свободы и может совершать любой поворот около центра подвеса. Если центр тяжести Г. совпадает с центром подвеса, Г. наз. уравновешенным, или астатическим. Изучение законов движения Г.- задача динамики твёрдого тела.

Рис. 1. Классический карданов подвес, а - внешнее кольцо, б - внутреннее кольцо, в - ротор.

Рис. 2. Прецессия гироскопа. Угловая скорость прецессии направлена так, что вектор собственного кинетического момента Н стремится к совмещению с вектором момента М пары, действующей на гироскоп.

Основные свойства гироскопа. Если к оси быстровращающегося свободного Г. приложить пару сил (P - F )с моментом (h - плечо силы) (рис. 2), то (против ожидания) Г. начнёт дополнительно поворачиваться не вокруг оси х , перпендикулярной к плоскости пары, а вокруг оси у , лежащей в этой плоскости и перпендикулярной к собств. оси тела z. Это дополнит. движение наз. прецессией. Прецессия Г. будет происходить по отношению к инерциалъной системе отсчета (к осям, направленным на неподвижные звёзды) с угловой скоростью

Рис 13. Гироскоп направления.

В ряде приборов используется также свойство Г. равномерно прецессировать под действием постоянно приложенных сил. Так, если посредством дополнит. груза вызвать прецессию Г. с угловой скоростью, численно равной и противоположно направленной вертикальной составляющей угловой скорости вращения Земли (где U - угловая скорость Земли, - широта места), то ось такого Г. с той или иной степенью точности будет сохранять неизменное направление относительно стран света. В течение неск. часов, пока не накопится ошибка в 1-2°, такой Г., именуемый гироазимутом, или Г. направления (рис. 13), может заменить компас (напр., на самолётах, в частности в полярной авиации, где показания магн. компаса ненадёжны). Аналогичным Г., но со значительно большим смещением центра тяжести от оси прецессии, можно определять поступат. скорость объекта, движущегося в направлении оси bb 1 , с любым ускорением (рис. 14). Если отвлечься от влияния силы тяжести, то можно считать, что на Г. действует момент переносной силы инерции Q , где т - масса Г., l - плечо. Тогда, по ф-ле (1), Г. будет прецессировать вокруг оси bb 1 с угловой скоростью . После интегрирования последнего равенства получаем , где - нач. скорость объекта. T. о., оказывается возможным определить скорость объекта v в любой момент времени по углу , на к-рый Г. повернётся к этому моменту вокруг оси bb 1 . Для этого прибор должен быть снабжён счётчиком оборотов и устройством, вычитающим из полного угла поворота угол, на к-рый Г. повернётся вследствие действия на него момента силы тяжести. Таким прибором (интегратором продольных кажущихся ускорений) определяют скорости вертик. взлёта ракеты; при этом ракета должна быть стабилизирована так, чтобы она не имела вращения вокруг своей оси симметрии.

Рис. 14. Гироскопический измеритель скорости подъема ракеты. - ускорение подъёма; g - ускорение свободного падения; P - сила тяжести, Q - сила инерции, - собственный кинетический момент.

В ряде совр. конструкций применяют т. н. поплавковый, или интегрирующий, Г. Ротор такого Г. помещён в кожух - поплавок, погружённый в жидкость (рис. 15). При вращении поплавка вокруг его оси х на Г. будет действовать момент M x вязкого трения, пропорциональный угловой скорости вращения . Благодаря этому оказывается, что если Г. сообщить принудит. вращение вокруг оси у , то угловая скорость этого вращения в соответствии с равенством (1) будет пропорциональна . В результате угол поворота поплавка вокруг оси х будет, в свою очередь, пропорционален интегралу по времени от (поэтому Г. и наз. интегрирующим). Дополнит. электрич. и электромеханич. устройства позволяют или измерять этим Г. угловую скорость, или сделать его элементом стабилизирующего устройства. В первом случае спец. электромагнитами создаётся момент относительно оси х , направленный против вращения поплавка; величина этого момента регулируется так, чтобы поплавок остановился. Тогда момент M 1 как бы заменит момент M x сил вязкого трения и, следовательно, по ф-ле (1), угловая скорость будет пропорциональна величине М 1 , определяемой по силе тока, протекающего по обмоткам электромагнита. Во втором случае, при стабилизации, напр., вокруг неподвижной оси у , корпус интегрирующего Г. размещается на платформе, к-рую может вращать вокруг оси у спец. электродвигатель (рис. 16). Для объяснения принципа стабилизации предположим, что основание, на к-ром расположены подшипники платформы, само повернётся вокруг оси у на нек-рый угол . При неработающем двигателе платформа повернётся в этом случае вместе с основанием на тот же угол , а поплавок совершит поворот вокруг оси х на угол , пропорциональный углу . Если теперь двигатель будет вращать платформу в обратном направлении до тех пор, пока поплавок не вернётся в исходное положение, то одновременно в исходное положение вернётся и платформа. Можно непрерывно управлять двигателем так, чтобы угол поворота поплавка сводился к нулю, тогда платформа окажется стабилизированной. Сочетание двух поплавковых Г. в общем подвесе с аналогично управляемыми электродвигателями приводит к стабилизации фиксированного направления, а трёх - к пространств. стабилизации, используемой, в частности, в схемах инерциальной навигации.

Рис. 15. Поплавковый интегрирующий гироскоп: а - ротор гироскопа; б - поплавок, в теле к-рого расположен подшипник оси ротора; в - поддерживающая жидкость; г - корпус; д - стальные цапфы в камневых опорах; е - датчик угла поворота поплавка относительно корпуса; ж - электромагнитное устройство, прилагающее момент вокруг оси поплавка.

Рис. 16. Стабилизация вокруг неподвижной оси посредством поплавкового гироскопа а - гироскоп-поплавок; б - усилитель, в - электродвигатель; г - платформа, д - основание.

Рис. 17. Силовая гироскопическая рама: а - собственно рама; б - гироскоп; в - спарник; г - датчик угла поворота гироскопа относительно рамы; д - усилитель сигнала датчика; е - стабилизирующий двигатель; ж - датчик момента.

В рассмотренной системе стабилизации Г. играет роль чувствит. элемента, обнаруживающего отклонения объекта от заданного положения, а возвращение в это положение производится электродвигателем, получающим соответствующий сигнал. Подобные системы гироскопич. стабилизации наз. индикаторными (стабилизаторы непрямого действия). Наряду с этим в технике применяются системы т. н. силовой гироскопич. стабилизации (стабилизаторы прямого действия), в к-рых Г. непосредственно воспринимают на себя усилия, мешающие осуществлению стабилизации, а двигатели играют вспомогат. роль, разгружая частично или полностью Г. и ограничивая тем самым углы их прецессии. Конструктивно такие системы проще индикаторных. Примером может служить одноосная двухгироскопич. рама (рис. 17); роторы находящихся в раме Г. вращаются в разные стороны. Допустим, что на раму подействует сила, стремящаяся повернуть её вокруг оси х и сообщить угловую скорость . Тогда, по правилу Жуковского, на кожух 1 начнёт действовать пара, стремящаяся совместить ось ротора с осью х . В результате Г. начнёт прецессировать вокруг оси y 2 с нек-рой угловой скоростью . Кожух 2 по той же причине будет прецессировать вокруг оси y 2 в противоположную сторону. Углы поворотов кожухов будут при этом одинаковы, т. к. кожухи связаны зубчатым сцеплением. Вследствие этой прецессии на подшипники кожуха 1 подействует новая пара, стремящаяся совместить ось ротора с осью y 1 . Такая же пара будет действовать на подшипники кожуха 2 . Моменты этих пар направлены противоположно (что следует из правила Жуковского) и стабилизируют раму, т. е. удерживают её от поворота вокруг оси х . Однако если прецессии Г. не будут ограничены, то, как видно из ф-лы (3), при повороте кожухов вокруг осей y 1 , у 2 на угол 90° стабилизация прекратится. Поэтому на оси одного из кожухов имеется датчик, регистрирующий угол поворота кожуха относительно рамы и управляющий двигателем стабилизации. Возникающий у двигателя вращающий момент направлен противоположно моменту, стремящемуся повернуть раму вокруг оси х; вследствие этого прецессия Г. прекращается. Рассмотренная рама стабилизирована по отношению к поворотам вокруг оси х . Повернуть раму вокруг любой оси, перпендикулярной х , можно беспрепятственно, но возникающий при этом гироскопич. момент может вызвать значит. давления на подшипники Г. и их кожухов. Сочетание трёх таких рам с взаимно перпендикулярными осями приводит к пространств. стабилизации (напр., искусств. спутника).

В силовых гироскопич. системах, в отличие от свободных Г., из-за больших моментов инерции стабилизируемых масс возникают весьма заметные колебат. движения типа нутаций. Должны быть приняты спец. меры для того, чтобы эти колебания были затухающими, иначе в системе возникают автоколебания. В технике применяются и др. гироскопич. приборы, принципы действия к-рых основаны на свойствах Г.

Лит.: Булгаков Б. В., Прикладная теория гироскопов, 3 изд., M., 1976; Николаи E. Л., Гироскоп в кардановом подвесе, 2 изд., M., 1964; Малеев П. И., Новые типы гироскопов, Л., 1971; Магнус К., Гироскоп. Теория и применение, пер. с нем., M., 1974; Ишлинский А. Ю, Ориентация, гироскопы и инерциальная навигация, M., 1976; его же, Механика относительного движения и силы инерции, M., 1981; Климов Д. M., Харламов С. А., Динамика гироскопа в кардановом подвесе, M., 1978; Журавлев В. Ф., Климов Д. M., Волновой твердотельный гироскоп, M., 1985; Новиков Л. 3., Шаталов M. Ю., Механика динамически настраиваемых гироскопов, M., 1985.

А. Ю. Ишлинский .

Гироскопом называется массивное осесимметричное тело (симметричный волчок), быстро вращающееся вокруг оси симметрии, причем ось вращения может изменять положение в пространстве. Ось симметрии называется осью фигуры гироскопа.

Видео 7.6. Что же такое гироскоп?

Рис. 7.17. Движение системы гироскопов

Ось симметрии является одной из главных осей гироскопа. Поэтому его момент импульса совпадает по направлению с осью вращения.

Для того, чтобы изменить положение в пространстве положение оси фигуры гироскопа, необходимо подействовать на него моментом внешних сил.

Видео 7.7. Гироскопические силы:большой гироскоп рвет веревку

При этом наблюдается явление, получившее название гироскопического : под действием сил, которые, казалось бы, должны были вызвать поворот оси 1 вокруг оси 2 (рис. 7.19), наблюдается поворот оси фигуры вокруг оси 3.

Рис. 7.19. Движение оси фигуры гироскопа под действием момента внешних сил

Видео 7.8. Гироскоп с перегрузами: направление и скорость прецессии, нутации

Гироскопические явления проявляются всюду, где имеются быстро вращающиеся тела, ось которых может поворачиваться в пространстве.

Рис. 7.20. Реакция гироскопа на внешнее воздействие

Странное на первый взгляд поведение гироскопа, рис. 7.19 и 7.20, полностью объясняется уравнением динамики вращательного движения твердого тела

Видео 7.9. «Любвеобильный» гироскоп: ось гироскопа бежит вдоль направляющей, не покидая её

Видео 7.10. Действие момента силы трения: «Колумбово» яйцо

Если гироскоп привести в быстрое вращение, он будет обладать значительным моментом импульса. Если на гироскоп будет действовать внешняя сила в течение времени , то приращение момента импульса будет

Если сила действует в течение короткого времени , то

Другими словами, при коротких воздействиях (толчках) момент импульса гироскопа практически не меняется. С этим связана замечательная устойчивость гироскопа по отношению к внешним воздействиям, которая используется в различных приборах, таких как гирокомпасы, гиростабилизированные платформы и т. д.

Видео 7.11. Модель гирокомпаса, гиростабилизация

Видео 7.12. Большой гирокомпас

7.21. Гиростабилизатор орбитальной станции

В гироскопах, применяющихся в авиации и космонавтике, используется карданов подвес, который позволяет сохранять направление оси вращения гироскопа независимо от ориентации самого подвеса:

Видео 7.13. Гироскопы в цирке: езда на одном колесе по проволоке

Дополнительная информация

http://www.plib.ru/library/book/14978.html Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 245–249 (§ 47): кинематическая теорема Эйлера о вращениях твердого тела вокруг неподвижной точки.

Рассмотрим движение гироскопа с неподвижной точкой опоры, как показано на на рис. 7.22.

Движение гироскопа под действием внешней силы называется вынужденной прецессией .

Рис. 7.22. Вынужденная прецессия гироскопа: 1 - общий вид; 2 - вид сверху

Приложим в точке А силу . Если гироскоп не вращается, то, естественно, правый маховик будет опускаться, а левый - подниматься. Другая ситуация будет, если предварительно гироскоп привести в быстрое вращение. В этом случае под действием силы ось гироскопа будет вращаться с угловой скоростью вокруг вертикальной оси. То есть ось гироскопа приобретает скорость в направлении, перпендикулярном направлению действующей силы.

Таким образом, прецессия гироскопа представляет собой движение под действием внешних сил, происходящее таким образом, что ось фигуры описывает коническую поверхность.

Рис. 7.23. К выводу формулы прецессии гироскопа.

Объяснение этого явления заключается в следующем. Момент силы относительно точки 0 будет

Приращение момента импульса гироскопа за время равно

Это приращение перпендикулярно моменту импульса и, следовательно, меняет его направление, но не величину.

Вектор момента импульса ведет себя подобно вектору скорости при движении частицы по окружности. В последнем случае приращения скорости перпендикулярно скорости частицы и равно по модулю

В случае гироскопа элементарное приращение момента импульса

и равно по модулю

За время вектор момента импульса повернется на угол

Угловая скорость вращения плоскости, проходящей через ось конуса, описываемого осью фигуры, и ось фигуры, называется угловой скоростью прецессии гироскопа.

Возникающие при определенных условиях колебания оси фигуры гироскопа в плоскости, проходящей через ось указанного выше конуса и саму ось фигуры, называются нутациями . Нутации могут быть вызваны, например, коротким толчком оси фигуры гироскопа вверх или вниз (см. рис. 7.24):

Рис. 7.24. Нутации гироскопа

Угловая скорость прецессии в рассматриваемом случае равна

Отметим важное свойство гироскопа - его безынерционность, заключающееся в том, что после прекращения действия внешней силы вращение оси фигуры прекращается.

Дополнительная информация

http://www.plib.ru/library/book/14978.html Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 288–293 (§ 52): изложены основы точной теории гироскопа.

http://femto.com.ua/articles/part_1/0796.html - физическая энциклопедия. Описаны разнообразные механические гироскопы, которые используются для навигации - гирокомпасы.

http://femto.com.ua/articles/part_1/1901.html - физическая энциклопедия. Описан лазерный гироскоп для целей космической навигации.

Влияние гироскопических сил в технике иллюстрируется следующими рисунками.

Рис. 7.25. Гироскопические силы,действующие на самолет при вращении винта

Рис. 7.26. Перевертывание волчка под действием гироскопических сил

Рис. 7.27. Как поставить яйцо «на попа»

Дополнительная информация

http://kvant.mirror1.mccme.ru/1971/10/mehanika_vrashchayushchegosya.htm - журнал «Квант» - механика волчка (С. Кривошлыков).

http://www.pereplet.ru/nauka/Soros/pdf/9809_096.pdf - Соросовский образовательный журнал, 1998 г., № 9, - в статье обсуждаются проблемы динамики вращающихся тел (кельтских камней), соприкасающихся с твердой поверхностью (А.П. Маркеев).

http://ilib.mirror1.mccme.ru/djvu/bib-kvant/kvant_35.djvu - Михайлов А.А. Земля и ее вращение, Библиотечка Квант, выпуск 35 стр. 50–56 - планета Земля - большой волчок, ее ось прецессирует в пространстве.

Приложение

О принципе работы колеса

Раз уж мы много говорили в этой главе о вращении тел, остановимся на самом великом и важном открытии человечества - изобретении колеса. Всем известно, что волочить груз гораздо труднее, чем перевозить его на колесах. Встает вопрос, почему? Колесо, играющее огромную роль в современной технике, по праву считается одним из гениальнейших изобретений человечества.

Передвижение груза с помощью катка . Прототипом колеса был каток, подкладываемый под груз. Его первые применения теряются во мгле веков. Прежде чем разбираться с колесом, поймем принцип действия катка. Для этого рассмотрим пример.

Пример . Груз массой M положен на цилиндрический каток массой и радиусом , который может двигаться по плоскому горизонтальному настилу. К грузу приложена горизонтальная сила (рис. 7.28). Найдем ускорения груза и катка. Силой трения качения пренебречь. Считать, что движение системы происходит без проскальзывания.

Рис. 7.28. Передвижение груза с помощью катка

Обозначим силу трения между катком и грузом и - между катком и настилом. За положительное направление примем направление внешней силы . Тогда положительным значениям и соответствуют направления сил трения, показанные на рис. 7.28.

Таким образом, на груз действуют силы и , а на каток - силы и . Обозначим a ускорение груза и a 1 - ускорение катка. Кроме того, каток вращается по часовой стрелке с угловым ускорением .

Уравнения поступательного движения принимают вид:

Уравнение вращательного движения катка записывается так:

Обратимся теперь к условиям отсутствия проскальзывания. Из-за вращения катка его нижняя точка имеет линейное ускорение и, кроме того, участвует в поступательном движении с ускорением . В отсутствие проскальзывания между катком и настилом полное ускорение нижней точки катка должно быть равно нулю, так что

Верхняя точка катка приобретает из-за вращения противоположно направленное линейное ускорение и то же ускорение поступательного движения. Чтобы не было проскальзывания между катком и грузом, полное ускорение верхней точки должно быть равно ускорению груза:

Из полученных уравнений для ускорений следует, что ускорение катка в два раза меньше ускорения груза:

и, соответственно,

Из непосредственного опыта каждый знает, что каток действительно отстает от груза.

Подставляя соотношения для ускорений в уравнения движения и решая их относительно неизвестных , , , получаем следующие выражение для ускорения груза

Обе силы трения и оказываются при этом положительными, так что на рис. 12 их направления выбраны правильно:

Как видно, радиус катка особой роли не играет: отношение зависит только от его формы. При данных массе и радиусе момент инерции катка максимален, когда каток представляет собой трубу: . В этом случае сила трения между катком и настилом отсутствует ( = 0) а уравнения для ускорения груза и силы трения между грузом и катком принимают вид:

При уменьшении массы катка сила трения уменьшается, ускорение груза увеличивается - груз легче перемещать.

В случае катка-цилиндра (бревна) /2 и мы находим силы трения

и ускорение груза.

Сравнивая с результатами для катка-трубы, видим, что эффективно масса катка как бы уменьшилась: ускорение груза возрастает при прочих равных условиях.

Главный итог рассмотренного примера: ускорение отлично от нуля (то есть груз начинает двигаться) при сколь угодно малой внешней силе. При волочении же груза по настилу для его смещения необходимо приложить как минимум силу .

Второй вывод: ускорение вовсе не зависит от величины трения между частями данной системы. Коэффициент трения не вошел в найденные решения, он появится только в условиях отсутствия проскальзывания, которые сводятся к тому, что приложенная сила не должна быть слишком велика.

Полученный результат, что каток как бы полностью «уничтожает» силу трения, не удивителен. Действительно, в отсутствие относительного перемещения соприкасающихся поверхностей силы трения не совершают работы. На самом деле каток «заменяет» трение скольжения на трение качения, которым мы пренебрегли. В реальном случае минимальная сила, необходимая для движения системы, отлична от нуля, хотя и гораздо меньше, чем при волочении груза по настилу. В современной технике принцип действия катка реализуется в шарикоподшипниках.

Качественное рассмотрение работы колеса . Разобравшись с катком, перейдем к колесу. Первое колесо в виде деревянного диска, насаженного на ось, появилось, по-видимому, в IV тысячелетии до н.э. в цивилизациях Древнего Востока. Во II тыс. до н.э. конструкция колеса совершенствуется: появляются спицы, ступица и гнутый обод. Изобретение колеса дало гигантский толчок развитию ремесел и транспорта. Однако многие не понимают самого принципа действия колеса. В ряде учебников и энциклопедий можно найти неверное утверждение, что колесо, подобно катку, также дает выигрыш, заменяя силу трения скольжения на силу трения качения. Иногда приходится слышать ссылки на использование смазки или подшипников, но дело не в этом, поскольку колесо с очевидностью появилось раньше, чем додумались до смазки (и, тем более, подшипников).

Действие колеса проще всего понять, исходя из энергетических соображений. Древние повозки устроены просто: кузов прикрепляется к деревянной оси радиусом (общая масса кузова с осью равна M ). На ось насаживаются колеса массой и радиусом R (рис. 7.29).

Рис. 7.29. Передвижение движение груза с помощью колеса

Предположим, что такую повозку везут по деревянному же настилу (тогда во всех соприкасающихся местах имеем тот же коэффициент трения ). Сначала заклиним колеса и, действуя силой , протащим повозку на расстояние s . Поскольку повозка скользит по настилу, сила трения достигает своего максимально возможного значения

Работа против этой силы равна

(так как обычно масса колес много меньше массы повозки <<M ).

Освободим теперь колеса и снова протащим повозку на то же расстояние s . Если колеса не скользят по настилу, то в нижней точке колеса сила трения не совершает работы. Но трение скольжения возникает между осью и колесом в нижней части оси радиусом . Там тоже имеется сила нормального давления. Она будет несколько отличаться от прежней за счет веса колес и других причин, которые мы обсудим ниже, но при небольшой массе колес и небольшом коэффициенте трения можно считать ее примерно равной . Поэтому между осью и колесом действует та же самая сила трения

Подчеркнем еще раз: колесо само по себе не уменьшает силу трения. Но работа A" против этой силы будет теперь гораздо меньше, чем в случае волочения повозки с заклиненными колесами. Действительно, когда повозка проходит расстояние S , ее колеса совершают оборотов. Значит, трущиеся об ось колеса поверхности сдвинутся друг относительно друга на меньшее расстояние . Поэтому работа против сил трения также будет в соответствующее число раз меньше:

Таким образом, надев колеса на оси, мы уменьшаем не силу трения, как в случае с катком, а путь, на котором она действует. Скажем, колесо радиусом R = 0,5 м и осью радиусом = 2 см уменьшает работу на 96 %. С остальными 4 % успешно справляются смазка и подшипники, уменьшающие само трение (смазка, кроме того, предотвращает износ ходовой части повозки). Теперь понятно, почему в старых экипажах и боевых колесницах делали такие большие колеса. Современные продуктовые коляски в супермаркетах могут катиться лишь благодаря подшипникам.

Транскрипт

1 Лекция 14 Гироскопы. Прецессия гироскопа. 1

2 Что такое гироскоп. Гироскопом называется массивное аксиально-симметричное твердое тело, способное вращаться вокруг оси симметрии с большой угловой скоростью. Ось симметрии гироскопа называют собственной осью гироскопа или просто осью гироскопа. Она может менять свое положение в пространстве. Примеры гироскопов: юла, маховики гироскопических компасов, роторы турбин различного назначения и пр. Движение гироскопа с необходимостью представляет собой движение твердого тела с одной неподвижной точкой, которая называется точкой опоры гироскопа. В случае, если неподвижная точка отсутствует, быстро вращающееся аксиально-симметричное тело называют волчком. 2

4 Уравновешенный гироскоп Уравновешенным или ненагруженным называется гироскоп, ось вращения которого вертикальна и момент М всех внешних сил относительно неподвижной точки гироскопа равен нулю: М=0 В этом случае поведение гироскопа совпадает со свободным вращением вокруг оси симметрии центральной главной оси: L(t) L(0) Ось гироскопа все время сохраняет свое направление Если ось гироскопа находится в вертикальном положении, то гироскоп может вращаться в этом положении довольно долго. 4

5 Гироскоп на кардановом подвесе Карданов подвес Гироскоп на кардановом подвесе Гироскоп находится в уравновешенном или ненагруженномсостоянии, если точка закрепления совмещена с центром инерции системы. Свободно движущиеся кольца подвеса удерживают ось ненагруженного гироскопа в неизменном направлении 5

6 AA ось ротора BB DD ось вращения внутреннего кольца, соединенного с осью ротора ось вращения внешнего кольца, укрепленного на неподвижной подставке 6

7 Прецессия нагруженного гироскопа Если ось быстро вращающегося гироскопа слегка отклонить от вертикали, то она начнет прецессировать вокруг вертикального положения, т.е. совершать вращательное движение по поверхности конуса. Прецессию гироскопа можно представить как суперпозицию вращений вокруг двух осей: быстрого вращение вокруг собственной оси и относительно медленного вращения вокруг вертикали. Пересечение этих осей вращения дает неподвижную точку гироскопа. Угловая скорость ω вращения вокруг собственной оси называется собственной угловой скоростью гироскопа. Ω Угловая скорость вращения вокруг вертикальной оси называется угловой скоростью прецессии гироскопа: Чем больше собственная частота вращения тем меньше частота прецессии 1/ 7

8 Приближенная теория гироскопа dl dt В приближенной теории полагается, что вектор момента импульса L гироскопа все время ориентирован вдоль оси гироскопа и равен моменту импульса собственного вращения: I M LL Iω. 0 - момент инерции гироскопа относительно своей оси: I I Если скорость прецессии много ниже собственной скорости вращения отклонение вектора L от оси гироскопа незначительно и им можно пренебречь. 8

9 Внешние силы, действующие на гироскоп Ось гироскопа отклонена от вертикали на угол Момент внешних сил относительно неподвижной точки создает только сила тяжести гироскопа, приложенная к его центру масс, расположенному на оси гироскопа и удаленному от его неподвижной тоски на расстояние M r,mg r- радиус вектор, проведенный из неподвижной точки O в цент масс гироскопа Суммарная внешняя сила, действующая на гироскоп: N mg N F mg F F тр тр ц. стр r Эта сила приводит во вращение центр масс гироскопа. 9

10 Расчет угловой частоты вынужденной прецессии гироскопа M r, mg M r L const L r dl L Ω dl dt Ω, L M Ω, L r, mg mg, r Isin rmg sin ; rm Ω g I Угловая скорость прецессии не зависит от угла наклона оси гироскопа с вертикалью и обратно пропорциональна собственной угловой скорости ω 10

11 Направление вращения оси гироскопа при вынужденной регулярной прецессии, обусловленной силой тяжести гироскопа Ω, L r, mg mg, r ω r Ω, Iω mg, r, IΩ, mrg, r m Ω g ω,r I 2 ω r Ω g ω r Ω g

12 Нутации гироскопа Полученное решение является точным при определенном начальном условии: в начальный момент оси гироскопа придается угловая скорость, равная скорости вынужденной прецессии Ω В остальных случаях имеют место колебания оси симметрии волчка относительно направления силы тяжести нутация гироскопа. / L На рисунке показан след конца осевого репера L при различных соотношениях между скоростями вынужденной прецессии и периодом нутаций. e L 12

13 Геометрическая интерпретация возникновения нутаций Прецессия оси свободного волчка вокруг неподвижного вектора момента импульса Разложение движения оси гироскопа на два вращения 13

14 Траектории движения оси гироскопа при вынужденной прецессии 14

15 Гироскопические силы и моменты сил. OO При повороте оси гироскопа вокруг вертикальной оси на ось гироскопа будут действовать дополнительные гироскопические силы, создающие вращательные момент М - «гироскопический момент» - вдоль направления поворота оси гироскопа: M dl. Этим силам, в соответствие с третьим законом Ньютона, отвечает противоположно направленная пара сил, действующая на держатели оси - например, подшипники. Гироскопический эффект - это появление дополнительного давления в подшипниках, обусловленного гироскопическими силами и связанными с ними гироскопическими моментами. Это явление широко распространено в технике. Оно наблюдается у роторов турбин на кораблях при поворотах и качке, на вертолетах при выполнении виражей и т.п. Гироскопический эффект имеет негативные последствия, поскольку приводит к дополнительному изнашиванию подшипников, а при достаточной силе может привести и в разрушению механизма. 15

16 Правило Жуковского Вал АВ с насаженным на него колесом С. Пока колесо не раскручено, можно без труда поворачивать вал в пространстве произвольным образом. При попытке слегка повернуть в горизонтальной плоскости вал с быстро раскрученном колесом вал стремится вырваться из рук и повернуться в вертикальной плоскости. Требуется приложить ощутимое физическое усилие, чтобы удержать вал с вращающимся колесом в горизонтальной плоскости. Действие вала на руки («держатели оси») и есть гироскопический эффект, создаваемый гироскопическими силами. Направление гироскопических сил можно легко найти с помощью правила, сформулированного Н.Е. Жуковским: гироскопические силы стремятся совместить момент импульса L гироскопа (т.е. ось АВ вращения ротора) с направлением угловой скорости вынужденного поворота. 16

17 Действие гироскопических сил при повороте велосипеда Совершая, поворот налево (по ходу велосипеда), велосипедист смещает центр тяжести своего тела влево, «заваливая» велосипед. Возникшее принудительное вращение велосипеда с угловой скоростью приводит к появлению гироскопических сил с моментом M g. На заднем колесе этот момент будет погашен в подшипниках, жестко связанных с рамой. Переднее же колесо, имеющее по отношению к раме свободу вращения в рулевой колонке, под действием гироскопического момента начнет поворачиваться как раз в том направлении, которое было необходимо для левого поворота велосипеда: L Mgt 17 Опытные велосипедисты совершают подобные повороты "без рук".

18 Байкер управляет поворотом мотоцикла без помощи руля 18

19 Расчет величины гироскопических сил Ω, L M M 2 r, F r- вектор, проведенный из неподвижного центра Ω, Iω 2 r, F I 2rF F I 2r масс С к точке приложения силы 19

20 Применение гироскопов Полет снаряда по параболической траектории в безвоздушном пространстве Кувыркание снаряда в воздухе 20

21 Воздействие потока воздуха на снаряд 21

22 Вследствие вынужденной прецессии, вызываемой силами сопротивления воздушной среды, в которой летит пуля, продольная ось пули как бы следит за траекторией, описывая вокруг нее коническую поверхность 22

23 ЭФФЕКТ МАГНУСА Вращающийся объект создаёт в среде вокруг себя вихревое движение. С одной стороны объекта направление вихря совпадает с направлением обтекающего потока и, соответственно, скорость движения среды с этой стороны увеличивается. С другой стороны объекта направление вихря противоположно направлению движения потока, и скорость движения среды уменьшается. Ввиду этой разности скоростей возникает разность давлений, порождающая поперечную силу от той стороны вращающегося тела, на которой направление вращения и направление потока противоположны, к той стороне, на которой эти направления совпадают. 23

24 Девиация полета пули, обусловленная эффектом Магнуса Направление девиации совпадает с направлением нарезки ствола. 24

25 Стабилизация полета снаряда посредством его вращения Чтобы прецессионное вращение имело устойчивый характер, необходимо, чтобы собственный момент импульса наряда превосходил определенную критическую величину или L L кр кр Для этого винтовые нарезы в стволе орудия должны быть достаточно крутыми. 25

26 Сохранение ориентации оси вращения свободного гироскопа используется в корректировки (подстройки) курса движения различных аппаратов: кораблей самолетов, торпед и пр. В гирокомпасах гироскоп используется как устройство для указания направления. Для того чтобы ось гироскопа поворачивалась в требуемом направлении гироскоп должен испытывать определенное воздействие, т.е. он не может быть полностью свободным. 26

27 Автопилоты Уравновешенный гироскоп на кардановом подвесе: центр масс совпадает с точкой подвеса. Гироскоп находится в (почти)свободном состоянии и сохраняет момент импульса, направленный вдоль его оси. Если собственный момент гироскопа велик (угловая скорость его собственного вращения достаточно большая), а силы трения достаточно малы, то создаваемые при повороте судна моменты сил трения мало изменяют направление оси гироскопа в пространстве. При отклонении направления движения аппарата от направления, заданного осью гироскопа, рамы (кольца) карданова подвеса вместе с осью гироскопа меняют свое положение относительно аппарата. Поворот рам карданова подвеса при помощи тех или иных механизмов превращается в команды, которые вызывают отклонение рулей, возвращающие экипаж к заданному направлению. При движении в плоскости достаточно одного гироскопа. При движении в трехмерном пространстве (на самолете) нужны два гироскопа, задающие ориентацию в горизонтальной и вертикальной плоскостях. 27

28 Гирокомпасы В гирокомпасах используются свойства не вполне свободного гироскопа, т.е. гироскопа, ось которого может двигаться только в одной фиксированной плоскости. Ось N гироскопа может перемещаться только в плоскости, ортогональной к закрепленной оси OO Пусть подставка на которой установлен такой гироскоп вращается с постоянной угловой скоростью ω ω ω ; ω OO, ω t n t n ω n OO К составляющей гироскоп нечувствителен, поскольку это свободное движение в плоскости ортогональной к закрепленной оси OO ω Попытка привести гироскоп во вращение вокруг оси t, приводит к возникновению противоборствующего гироскопического момента сил M, действующего на закрепленную ось со стороны подставки. Под действием этого момента ось гироскопа поворачивается до тех пор, пока ее направлению ни совпадет с направлением скорости (правило Жуковского) ω t 28

29 Поведение гирокомпаса под влиянием вращения Земли. OO Закрепленное направление Совпадает с направлением отвеса Ось гироскопа может двигаться только в горизонтальной плоскости Под влиянием угловой скорости суточного вращения Земли ось гироскопа установится в направлении ω,т.е. в t направлении меридиана на Север. Гироскоп ведет себя как компас. Гирокомпасы обладают рядом преимуществ по сравнению с магнитными, поскольку на их показания не влияют магнитные бури и залежи железа, они менее чувствительны к качке и т.д. Поэтому гирокомпасы играют важную роль в навигации. В настоящий момент большое распространение получили спутниковые навигационные устройства, которые в определенной мере сузили ареал применимости гироскопов как навигационных устройств (в частности, автопилотов). Однако работа спутниковых навигационных систем значительно затруднена в условиях сильной облачности. Поэтому роль гироскопов в навигации остается весьма 29 значительной.

30 Движение волчков в отсутствии неподвижной точки. Китайский волчок (волчок Томсона). 30

31 Переворачивание быстро крутящегося волчка

32 32

33 Движение волчка в отсутствии силы трения.

34 Действие силы трения скольжения на волчок F тр Сила трения скольжения действует в направлении прецессии точки опоры и стремиться ускорить эту прецессию. Момент M тр силы трения поднимает центр массы волчка. Дополнительное давление на точку опоры приводит к увеличению силы ее реакции: N P, N P 0

35 Сила трения скольжения поднимает центр массы китайского волчка


Лекция 12 Понятие о твердом теле вращающемся вокруг неподвижной точки. Свободные оси вращения. Гироскоп. Условия равновесия твердого тела. Виды равновесия. Л-1: 6.10-6.12; Л-2: с.255-265; Л-3: 49-51 Неподвижность

Лабораторная работа 107 ИЗУЧЕНИЕ ДВИЖЕНИЯ ГИРОСКОПА Принадлежности: прибор FPM-10. Цель работы: изучение прецессионного движения гироскопа. Введение. Гироскоп быстровращающееся симметричное твердое тело,

1 Лабораторная работа 9 Гироскоп Цель работы: наблюдение гироскопа, определение скорости гироскопа и ее зависимости от скорости вращения маховика гироскопа. Теория. Гироскоп твердое тело, симметричное

Федеральное агентство по образованию РФ Ухтинский государственный технический университет 10 Гироскоп Методические указания к лабораторной работе для студентов всех специальностей дневной и заочной формы

Динамика твердого тела Вращение вокруг неподвижной оси Момент импульса материальной точки относительно оси равен L где l - плечо импульса p - составляющая импульса перпендикулярная оси вращения При вращении

6.1. Однородный цилиндр массы M и радиуса R может вращаться без трения вокруг горизонтальной оси. На цилиндр намотана нить, к концу которой прикреплен груз массы m. Найти зависимость кинетической энергии

Глава 5. Кинематика и динамика твердого тела П.5.1.Кинематика твердого тела. П.5.1.1. Твердое тело как система материальных точек. Степени свободы. Изучение движения твердого тела проводится в предположении,

3 Цель работы: ознакомиться с гироскопическим эффектом, с условием его возникновения. Задача: измерить частоту прецессии при разных собственных частотах гироскопа, рассчитать момент инерции гироскопа.

14 Элементы динамики вращательного движения 141 Момент силы и момент импульса относительно неподвижных точек и оси 14 Уравнения моментов Закон сохранения момента импульса 143 Момент инерции твердого тела

МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра физики ЛАБОРАТОРНАЯ РАБОТА 1.09 ИЗУЧЕНИЕ ПРЕЦЕССИИ ГИРОСКОПА 1.04 ФИО студента Выполнил(а) Защитил(а) Шифр группы Москва 201_ г. Лабораторная работа N 1.09

Лекция Динамика вращательного движения твёрдого тела I. Основной закон динамики вращательного движения Если у тела есть ось вращения, то результат действия силы на него зависит от её точки приложения.

ЛАБОРАТОРНАЯ РАБОТА 1-1 Исследование свойств свободного гироскопа и определение его момента инерции 1. Теоретическое введение и описание установки Гироскопом называется быстро вращающееся симметричное

Комментарии к лекциям по физике Тема: Свободное вращение симметричного волчка Содержание лекции Главные оси инерции. Свободное вращение вокруг главных осей инерции. Устойчивость свободного вращения вокруг

ЛЕКЦИЯ 11 УРАВНЕНИЯ ДВИЖЕНИЯ ТВЁРДОГО ТЕЛА С НЕПОДВИЖНОЙ ТОЧКОЙ Выпишем динамические и кинематические уравнения Эйлера. Пусть p, q, r проекции угловой скорости тела на главные оси инерции, A, B, C главные

6. МЕХАНИКА ТВЕРДОГО ТЕЛА Динамика твердого тела Уравнение движения центра масс твердого тела. r r a C F Ускорение центра масс a r C зависит от массы тела и от суммы (конечно векторной) всех сил, действующих

КАЛМЫЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра экспериментальной и общей физики Лабораторная работа 10 Изучение движения гироскопа Лаборатория 210 Лабораторная работа 10 «ИЗУЧЕНИЕ ДВИЖЕНИЯ ГИРОСКОПА» Цель

ЛАБОРАТОРНАЯ РАБОТА М-11 ГИРОСКОП 1. Цель работы Изучение понятий внешних сил, момента импульса, момента инерции, закона динамики вращательного движения твердого тела, экспериментальное исследование закономерностей

ЛАБОРАТОРНАЯ РАБОТА 1.15 ИССЛЕДОВАНИЕ ЗАКОНОВ ГИРОСКОПА ОБЩИЕ СВЕДЕНИЯ Гироскопом называется быстровращающееся твердое тело, ось которого может изменить свое направление в пространстве. Большие скорости

Комментарии к лекциям по физике Тема: Прецессия и нутация гироскопа Содержание лекции Гироскоп. Приближенная теория гироскопа. Волчок в поле тяжести. Вынужденная прецессия гироскопа (псевдорегулярная прецессия

1 ЛАБОРАТОРНАЯ РАБОТА 3-7 Изучение прецессии гироскопа Теория метода Гироскопом называется массивное тело, быстро вращающееся вокруг своей оси симметрии. При вращении вокруг этой оси момент импульса гироскопа

ТРУДЫ МФТИ. 2013. Том 5, 4 Аэрокосмические исследования 11 УДК 531.36 Н. И. Амелькин 1, А. В. Сумароков 2 1 Московский физико-технический институт (государственный университет) 2 Ракетно-космическая корпорация

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ Основные формулы Момент силы F действующей на тело относительно оси вращения M = F l где F проекция силы F на плоскость перпендикулярную

Прецессия и нутация гироскопа Бутиков Евгений Иванович Гироскопом называют тело вращения (например, массивный диск), приведенное в быстрое вращение вокруг оси симметрии. Первое знакомство с гироскопом

ЛЕКЦИЯ 9 СКАТЫВАНИЕ ТЕЛ. ТЕНЗОР ИНЕРЦИИ. ЭЛЛИПСОИД ИНЕРЦИИ. ГИРОСКОП 1. Скатывание Продолжим рассматривать твердое тело которое скатывается с наклонной поверхности. В этом случае: mgh = I 2 u 2 (V R)

9.3. Колебания систем под действием упругих и квазиупругих сил Пружинным маятником называют колебательную систему, которая состоит из тела массой m, подвешенного на пружине жесткостью k (рис. 9.5). Рассмотрим

ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА Рис. 2.1 Имеется неподвижная система координат OXY Z. Обозначим её как S Рассмотрим твёрдое тело, имеющее жёстко привязанные

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 6 ГИРОСКОПИЧЕСКИЕ СИЛЫ ДИССИПАТИВНЫЕ СИЛЫ ФУНКЦИЯ ЛАГРАНЖА ОБОБЩЁННЫЙ ПОТЕНЦИАЛ НАТУРАЛЬНЫЕ СИСТЕМЫ Лектор: Батяев Евгений Александрович Батяев Е. А. (НГУ) ЛЕКЦИЯ

Лабораторная работа 16 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТРЕНИЯ КАЧЕНИЯ С ПОМОЩЬЮ НАКЛОННОГО МАЯТНИКА Цель работы: изучить физические причины возникновения сил сухого трения, изучить теорию метода определения коэффициента

ИЗУЧЕНИЕ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА Лабораторная работа 4 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 3 1. ОСНОВНЫЕ ПОНЯТИЯ... 4 1.1. Вращательное движение твердого тела... 4 1.2. Основные кинематические характеристики...

Кузьмичев Сергей Дмитриевич СОДЕРЖАНИЕ ЛЕКЦИИ 9 Вращение твердого тела. 1. Вращение твердого тела вокруг неподвижной оси.. Момент инерции. Теорема Гюйгенса-Штейнера. 3. Кинетическая энергия вращающегося

Динамика машин УДК 6 ВА КУЗЬМИЧЕВ, АВ СЛОУЩ ИССЛЕДОВАНИЕ ДИНАМИКИ ЭКСЦЕНТРИКОВЫХ ВИБРОВОЗБУДИТЕЛЕЙ Вибрационные машины нашли широкое применение в различных отраслях народного хозяйства Колебания рабочих

Лабораторная работа 7 ОПЫТНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАССИВНОГО КОЛЬЦА С ПОМОЩЬЮ МАЯТНИКА МАКСВЕЛЛА Цель работы изучение плоского движения твердого тела на примере маятника Максвелла; определение

Санкт-Петербургский государственный университет Физический факультет Первая физическая лаборатория Лабораторная работа 7 Гироскоп. Санкт-Петербург 2007 г. Гироскоп. Лабораторная работа 7. Предварительные

Расчетно-графические работы по механике Задача 1. 1 Зависимость ускорения от времени при некотором движении тела представлена на рис. Определите среднюю путевую скорость за первые 8 с. Начальная скорость

3 ДИНАМИКА ТВЕРДОГО ТЕЛА Уравнения движения твердого тела в произвольной инерциальной системе отсчета имеют вид: () () где m масса тела скорость его центра инерции момент импульса тела внешние силы действующие

При изучении вращения твердого тела пользуются понятием момента инерции Глава 4 Механика твердого тела 4 Момент инерции Моментом инерции системы (тела) относительно оси вращения называется физическая величина,

Билет N 10 Билет N 9 Вопрос N 1 Гироскоп прецессирует вокруг нижней точки опоры. Момент инерции гироскопа равен I = 0,2 кг м 2, угловая скорость вращения 0 = 1000 с -1, масса m = 20 кг, центр масс находится

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1 СЕМЕСТР ЛЕКЦИЯ 15 ПАРА СИЛ О РАЗНЫХ ВИДАХ ТРЕНИЯ ТЕЛА ВРАЩЕНИЕ ТВЁРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ Лектор: Батяев Евгений Александрович Батяев Е. А. (НГУ) ЛЕКЦИЯ 15 Новосибирск,

С. А. Кривошлыков В редакцию нашего журнала пришло письмо. «Я купил волчок в магазине «Игрушка». При запуске он переворачивается и начинает вращаться на рукоятке. Меня интересует, какие законы физики лежат

ЛАБОРАТОРНАЯ РАБОТА 153.ИЗУЧЕНИЕ ПРЕЦЕССИИ ГИРОСКОПА Введение Гироскопом называется симметричный волчок (т.е. твёрдое тело, у которого совпадают, по крайней мере, два главных значения тензора инерции I

Лекция 3 Уравнения движения простейших механических колебательных систем при отсутствии трения. Пружинный, математический, физический и крутильный маятники. Кинетическая, потенциальная и полная энергия

1 Лабораторная работа 5 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ Теоретическое введение Один из методов определения момента инерции тел основан на зависимости

ЛАБОРАТОРНАЯ РАБОТА 7 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА ДИНАМИЧЕСКИМ МЕТОДОМ Краткая теория метода и описание установки Моментом инерции материальной точки относительно оси вращения называется

Тема 6. Механика твердого тела 6.1. Движение твердого тела 6.1. Движение твердого тела Абсолютно твердое тело (АТТ)- -система материальных точек с неизменным взаимным расположением Движение точки тела

Цель работы: Л А Б О Р А Т О Р Н А Я Р А Б О Т А ИЗМЕРЕНИЕ СКОРОСТИ ПУЛИ С ПОМОЩЬЮ БАЛЛИСТИЧЕСКОГО МАЯТНИКА.Изучить законы изменения и сохранения момента импульса и полной механической энергии системы..измерить

Лабораторная работа 6 Изучение законов движения универсального маятника ЦЕЛЬ РАБОТЫ Определение ускорения свободного падения, приведенной длины, положения центра тяжести и моментов инерции универсального

Вопросы для зачета по курсу «Теоретическая механика», раздел «Динамика» 1. Основные аксиомы классической механики.. Дифференциальные уравнения движения материальной точки. 3. Моменты инерции системы точек

Министерство образования и науки, молодежи и спорта Украины Государственное высшее учебное заведение «Национальный горный университет» Методические указания к лабораторной работе 1.0 СПРАВОЧНЫЙ МАТЕРИАЛ

Тема 4. Механика твердого тела 6.1. Движение твердого тела Тема 4. Механика твердого тела 4.1. Движение твердого тела Абсолютно твердое тело (АТТ)- -система материальных точек с неизменным взаимным расположением

Лекция 11 Момент импульса Закон сохранения момента импульса твердого тела, примеры его проявления Вычисление моментов инерции тел Теорема Штейнера Кинетическая энергия вращающегося твердого тела Л-1: 65-69;

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1 СЕМЕСТР ЛЕКЦИЯ 5 КИНЕМАТИКА ТВЁРДОГО ТЕЛА Лектор: Батяев Евгений Александрович Батяев Е. А. (НГУ) ЛЕКЦИЯ 5 Новосибирск, 2016 г. 1 / 19 Задача кинематики твёрдого тела состоит в

ВВЕДЕНИЕ Условие каждого задания контрольной или расчетно-графической работы сопровождается десятью рисунками и одной таблицей числовых значений заданных величин. Вариант выбирается согласно шифру студента.

Лекция 7 ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ (ПРОДОЛЖЕНИЕ) Термины и понятия Абсолютно неупругий удар Абсолютно упругий удар Беспорядочное (хаотическое) движение Восстановить (восстанавливать) Гантели Детали

Лекция 9 Введение в кинематику, динамику и статику абсолютно твердого тела Момент силы и момент импульса частицы относительно оси Рассмотрим произвольную прямую a. Пусть на частицу, находящуюся в некоторой

ЛАБОРАТОРНАЯ РАБОТА 3 ИЗУЧЕНИЕ ОСНОВНОГО ЗАКОНА ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ Цель и содержание работы Целью работы является изучение основного закона динамики вращательного движения. Содержание работы

ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА Плоским движением твердого тела называют такое его движение, при котором каждая его точка все время движется в одной и той же плоскости. Плоскости, в которых движутся отдельные

Сафронов В.П. 01 МЕХАНИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ - 1 - Глава 4 МЕХАНИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ 4.1. Кинетическая энергия вращательного движения. Момент инерции. Вывод формулы кинетической энергии вращательного

Лекция 11. Механика твёрдого тела Содержание 1. Поступательное движение абсолютно твердого тела 2. Вращательное движение абсолютно твердого тела 3. Момент силы 4. Пара сил 5. Момент инерции 6. Уравнение

1 Внешняя неуравновешенность и методы уравновешивания двигателей. Причины неуравновешенности. Понятие неуравновешенности поршневых двигателей связывается с действием в них циклически меняющихся сил и их

ВРАЩЕНИЕ ТВЕРДОГО ТЕЛА Кинетическая энергия вращения В этой лекции мы будем изучать «абсолютно твердые» тела. Это значит, что всякого рода деформациями, которые могут происходить при движении тела, мы

Л А Б О Р А Т О Р Н А Я Р А Б О Т А 6 ИЗМЕРЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ ОБОРОТНОГО МАЯТНИКА Цель работы: 1Ознакомиться с теорией механических гармонических колебаний Измерить ускорение свободного

ТЕМА Лекция 4 Вращательное движение. Кинематика и динамика. Закон всемирного тяготения. Матрончик Алексей Юрьевич кандидат физико-математических наук, доцент кафедры общей физики НИЯУ МИФИ, эксперт ГИА-11

ЛАБОРАТОРНАЯ РАБОТА 132. Определение момента инерции маятника Обербека. Цель работы: изучение основного закона динамики вращательного движения тела при вращении тела относительно неподвижной оси; экспериментальное

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ НОВОСИБИРСК ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ

З А Д А Ч А Первый (отборочный) этап академического соревнования Олимпиады школьников «Шаг в будущее» по общеобразовательному предмету «Физика» осень 7 г Вариант Снаряд вылетает из ствола с угловой скоростью

53 Силы инерции, действующие на тело во вращающейся системе отсчета Рассмотрим систему отсчета, вращающуюся в инерциальной системе отсчета вокруг неподвижной оси с постоянной угловой скоростью Очевидно,

6. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА 6.1. Динамика вращательного движения твердого тела относительно точки 6.. Динамика вращательного движения твердого тела относительно оси 6.3. Расчет моментов

Содержание статьи

ГИРОСКОП, навигационный прибор, основным элементом которого является быстро вращающийся ротор, закрепленный так, что ось его вращения может поворачиваться. Три степени свободы (оси возможного вращения) ротора гироскопа обеспечиваются двумя рамками карданова подвеса. Если на такое устройство не действуют внешние возмущения, то ось собственного вращения ротора сохраняет постоянное направление в пространстве. Если же на него действует момент внешней силы, стремящийся повернуть ось собственного вращения, то она начинает вращаться не вокруг направления момента, а вокруг оси, перпендикулярной ему (прецессия).

В хорошо сбалансированном (астатическом) и достаточно быстро вращающемся гироскопе, установленном на высокосовершенных подшипниках с незначительным трением, момент внешних сил практически отсутствует, так что гироскоп долго сохраняет почти неизменной свою ориентацию в пространстве. Поэтому он может указывать угол поворота основания, на котором закреплен. Именно так французский физик Ж.Фуко (1819–1868) впервые наглядно продемонстрировал вращение Земли. Если же поворот оси гироскопа ограничить пружиной, то при соответствующей установке его, скажем, на летательном аппарате, выполняющем разворот, гироскоп будет деформировать пружину, пока не уравновесится момент внешней силы. В этом случае сила сжатия или растяжения пружины пропорциональна угловой скорости движения летательного аппарата. Таков принцип действия авиационного указателя поворота и многих других гироскопических приборов. Поскольку трение в подшипниках очень мало, для поддержания вращения ротора гироскопа не требуется много энергии. Для приведения его во вращение и для поддержания вращения обычно бывает достаточно маломощного электродвигателя или струи сжатого воздуха.

Применение.

Гироскоп чаще всего применяется как чувствительный элемент указывающих гироскопических приборов и как датчик угла поворота или угловой скорости для устройств автоматического управления. В некоторых случаях, например в гиростабилизаторах, гироскопы используются как генераторы момента силы или энергии. См. также МАХОВИК.

Основные области применения гироскопов – судоходство, авиация и космонавтика (см . ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ). Почти каждое морское судно дальнего плавания снабжено гирокомпасом для ручного или автоматического управления судном, некоторые оборудованы гиростабилизаторами. В системах управления огнем корабельной артиллерии много дополнительных гироскопов, обеспечивающих стабильную систему отсчета или измеряющих угловые скорости. Без гироскопов невозможно автоматическое управление торпедами. Самолеты и вертолеты оборудуются гироскопическими приборами, которые дают надежную информацию для систем стабилизации и навигации. К таким приборам относятся авиагоризонт, гировертикаль, гироскопический указатель крена и поворота. Гироскопы могут быть как указывающими приборами, так и датчиками автопилота. На многих самолетах предусматриваются гиростабилизированные магнитные компасы и другое оборудование – навигационные визиры, фотоаппараты с гироскопом, гиросекстанты. В военной авиации гироскопы применяются также в прицелах воздушной стрельбы и бомбометания.

Гироскопы разного назначения (навигационные, силовые) выпускаются разных типоразмеров в зависимости от условий работы и требуемой точности. В гироскопических приборах диаметр ротора составляет 4–20 см, причем меньшее значение относится к авиационно-космическим приборам. Диаметры же роторов судовых гиростабилизаторов измеряются метрами.

ОСНОВНЫЕ ПОНЯТИЯ

Гироскопический эффект создается той же самой центробежной силой, которая действует на юлу, вращающуюся, например, на столе. В точке опоры юлы о стол возникают сила и момент, под действием которых ось вращения юлы отклоняется от вертикали, а центробежная сила вращающейся массы, препятствуя изменению ориентации плоскости вращения, вынуждает юлу вращаться и вокруг вертикали, сохраняя тем самым заданную ориентацию в пространстве.

Таким вращением, называемым прецессией, ротор гироскопа отвечает на приложенный момент силы относительно оси, перпендикулярной оси его собственного вращения. Вклад масс ротора в этот эффект пропорционален квадрату расстояния до оси вращения, поскольку чем больше радиус, тем больше, во-первых, линейное ускорение и, во-вторых, плечо центробежной силы. Влияние массы и ее распределения в роторе характеризуется его «моментом инерции», т.е. результатом суммирования произведений всех составляющих его масс на квадрат расстояния до оси вращения. Полный же гироскопический эффект вращающегося ротора определяется его «кинетическим моментом», т.е. произведением угловой скорости (в радианах в секунду) на момент инерции относительно оси собственного вращения ротора.

Кинетический момент – векторная величина, имеющая не только численное значение, но и направление. На рис. 1 кинетический момент представлен стрелкой (длина которой пропорциональна величине момента), направленной вдоль оси вращения в соответствии с «правилом буравчика»: туда, куда подается буравчик, если его поворачивать в направлении вращения ротора.

Прецессия и момент силы тоже характеризуются векторными величинами. Направление вектора угловой скорости прецессии и вектора момента силы связано правилом буравчика с соответствующим направлением вращения. См. также ВЕКТОР.

ГИРОСКОП С ТРЕМЯ СТЕПЕНЯМИ СВОБОДЫ

На рис. 1 дана упрощенная кинематическая схема гироскопа с тремя степенями свободы (тремя осями вращения), причем направления вращения на ней показаны изогнутыми стрелками. Кинетический момент представлен жирной прямой стрелкой, направленной вдоль оси собственного вращения ротора. Момент силы прикладывается нажатием пальца так, что он имеет составляющую, перпендикулярную оси собственного вращения ротора (вторую силу пары создают вертикальные полуоси, закрепленные в оправе, которая связана с основанием). Согласно законам Ньютона, такой момент силы должен создавать кинетический момент, совпадающий с ним по направлению и пропорциональный его величине. Поскольку же кинетический момент (связанный с собственным вращением ротора) фиксирован по величине (заданием постоянной угловой скорости посредством, скажем, электродвигателя), это требование законов Ньютона может быть выполнено только за счет поворота оси вращения (в сторону вектора внешнего момента силы), приводящего к увеличению проекции кинетического момента на эту ось. Этот поворот и есть прецессия, о которой говорилось ранее. Скорость прецессии возрастает с увеличением внешнего момента силы и убывает с увеличением кинетического момента ротора.

Гироскопический указатель курса.

На рис. 2 показан пример применения трехстепенного гироскопа в авиационном указателе курса (гирополукомпасе). Вращение ротора в шарикоподшипниках создается и поддерживается струей сжатого воздуха, направленной на рифленую поверхность обода. Внутренняя и наружная рамки карданова подвеса обеспечивают полную свободу вращения оси собственного вращения ротора. По шкале азимута, прикрепленной к наружной рамке, можно ввести любое значение азимута, выровняв ось собственного вращения ротора с основанием прибора. Трение в подшипниках столь незначительно, что после того как это значение азимута введено, ось вращения ротора сохраняет заданное положение в пространстве, и, пользуясь стрелкой, скрепленной с основанием, по шкале азимута можно контролировать поворот самолета. Показания поворота не обнаруживают никаких отклонений, если не считать эффектов дрейфа, связанных с несовершенствами механизма, и не требуют связи с внешними (например, наземными) средствами навигации.

ДВУХСТЕПЕННЫЙ ГИРОСКОП

Во многих гироскопических приборах используется упрощенный, двухстепенный вариант гироскопа, в котором наружная рамка трехстепенного гироскопа устранена, а полуоси внутренней закрепляются непосредственно в стенках корпуса, жестко связанного с движущимся объектом. Если в таком устройстве единственная рамка ничем не ограничена, то момент внешней силы относительно оси, связанной с корпусом и перпендикулярной оси рамки, заставит ось собственного вращения ротора непрерывно прецессировать в сторону от этого первоначального направления. Прецессия будет продолжаться до тех пор, пока ось собственного вращения не окажется параллельной направлению момента силы, т.е. в положении, при котором гироскопический эффект отсутствует. На практике такая возможность исключается благодаря тому, что задаются условия, при которых поворот рамки относительно корпуса не выходит за пределы малого угла.

Если прецессия ограничивается только инерционной реакцией рамки с ротором, то угол поворота рамки в любой момент времени определяется проинтегрированным ускоряющим моментом. Поскольку момент инерции рамки обычно сравнительно мал, она слишком быстро реагирует на вынужденное вращение. Имеются два способа устранить этот недостаток.

Противодействующая пружина и вязкостный демпфер.

Датчик угловой скорости.

Прецессию оси вращения ротора в направлении вектора момента силы, направленного вдоль оси, перпендикулярной оси рамки, можно ограничить пружиной и демпфером, воздействующими на ось рамки. Кинематическая схема двухстепенного гироскопа с противодействующей пружиной представлена на рис. 3. Ось вращающегося ротора закреплена в рамке перпендикулярно оси вращения последней относительно корпуса. Входной осью гироскопа называется направление, связанное с основанием, перпендикулярное оси рамки и оси собственного вращения ротора при недеформированной пружине.

Момент внешней силы относительно опорной оси вращения ротора, приложенный к основанию в тот момент времени, когда основание не вращается в инерциальном пространстве и, следовательно, ось вращения ротора совпадает со своим опорным направлением, заставляет ось вращения ротора прецессировать в сторону входной оси, так что угол отклонения рамки начинает увеличиваться. Это эквивалентно приложению момента силы к противодействующей пружине, в чем состоит важная функция ротора, который в ответ на возникновение входного момента силы создает момент силы относительно выходной оси (рис. 3). При постоянной входной угловой скорости выходной момент силы гироскопа продолжает деформировать пружину, пока создаваемый ею момент силы, воздействующий на рамку, не заставит ось вращения ротора прецессировать вокруг входной оси. Когда скорость такой прецессии, вызванной моментом, создаваемым пружиной, сравняется с входной угловой скоростью, достигается равновесие и угол рамки перестает изменяться. Таким образом, угол отклонения рамки гироскопа (рис. 3), указываемый стрелкой на шкале, позволяет судить о направлении и угловой скорости поворота движущегося объекта.

На рис. 4 показаны основные элементы указателя (датчика) угловой скорости, ставшего в настоящее время одним из самых обычных авиакосмических приборов.

Вязкостное демпфирование.

Для гашения выходного момента силы относительно оси двухстепенного гироузла можно использовать вязкостное демпфирование. Кинематическая схема такого устройства представлена на рис. 5; она отличается от схемы на рис. 4 тем, что здесь нет противодействующей пружины, а вязкостный демпфер увеличен. Когда такое устройство поворачивается с постоянной угловой скоростью вокруг входной оси, выходной момент гироузла заставляет рамку прецессировать вокруг выходной оси. За вычетом эффектов инерционной реакции (с инерцией рамки связано в основном лишь некоторое запаздывание отклика) этот момент уравновешивается моментом сил вязкостного сопротивления, создаваемым демпфером. Момент демпфера пропорционален угловой скорости вращения рамки относительно корпуса, так что выходной момент гироузла тоже пропорционален этой угловой скорости. Поскольку этот выходной момент пропорционален входной угловой скорости (при малых выходных углах рамки), выходной угол рамки увеличивается по мере того, как корпус поворачивается вокруг входной оси. Стрелка, движущаяся по шкале (рис. 5), указывает угол поворота рамки. Показания пропорциональны интегралу угловой скорости вращения относительно входной оси в инерциальном пространстве, и поэтому устройство, схема которого представлена на рис. 5, называется интегрирующим двухстепенным гиродатчиком.

На рис. 6 изображен интегрирующий гиродатчик, ротор (гиромотор) которого заключен в герметично запаянный стакан, плавающий в демпфирующей жидкости. Сигнал угла поворота плавающей рамки относительно корпуса вырабатывается индукционным датчиком угла. Положение поплавкового гироузла в корпусе задает датчик момента в соответствии с поступающими на него электрическими сигналами. Интегрирующие гиродатчики обычно устанавливают на элементах, снабженных сервоприводом и управляемых выходными сигналами гироскопа. При таком расположении выходной сигнал датчика момента можно использовать как команду на поворот объекта в инерциальном пространстве. См. также ГИРОКОМПАС.

Опыт показывает, что прецессионное движение гироскопа под действием внешних сил в общем случае сложнее, чем то, которое было описано выше в рамках элементарной теории. Если сообщить гироскопу толчок, изменяющий угол (см. рис. 4.6), то прецессия перестанет быть равномерной (часто говорят: регулярной), а будет сопровождаться мелкими вращениями и дрожаниями вершины гироскопа - нутациями . Для их описания необходимо учесть несовпадение вектора полного момента импульса L , мгновенной угловой скорости вращения и оси симметрии гироскопа.

Точная теория гироскопа выходит за рамки курса общей физики. Из соотношения следует, что конец вектора L движется в направлении M , то есть перпендикулярно к вертикали и к оси гироскопа. Это значит, что проекции вектора L на вертикаль и на ось гироскопа остаются постоянными. Еще одной постоянной является энергия

(4.14)

где - кинетическая энергия гироскопа. Выражая и через углы Эйлера и их производные, можно, с помощью уравнений Эйлера , описать движение тела аналитически.

Результат такого описания оказывается следующим: вектор момента импульса L описывает неподвижный в пространстве конус прецессии, и при этом ось симметрии гироскопа движется вокруг вектора L по поверхности конуса нутаций. Вершина конуса нутаций, как и вершина конуса прецессии, находится в точке закрепления гироскопа, а ось конуса нутаций совпадает по направлению с L и движется вместе с ним. Угловая скорость нутаций определяется выражением

(4.15)

где и - моменты инерции тела гироскопа относительно оси симметрии и относительно оси, проходящей через точку опоры и перпендикулярной оси симметрии, - угловая скорость вращения вокруг оси симметрии (сравн. с (3.64)).

Таким образом, ось гироскопа участвует в двух движениях: нутационном и прецессионном. Траектории абсолютного движения вершины гироскопа представляют собой замысловатые линии, примеры которых представлены на рис. 4.7.

Рис. 4.7.

Характер траектории, по которой движется вершина гироскопа, зависит от начальных условий. В случае рис. 4.7а гироскоп был раскручен вокруг оси симметрии, установлен на подставке под некоторым углом к вертикали и осторожно отпущен. В случае рис. 4.7б ему, кроме того, был сообщен некоторый толчок вперед, а в случае рис. 4.7в - толчок назад по ходу прецессии. Кривые на рис. 4.7 вполне аналогичны циклоидам, описываемым точкой на ободе колеса, катящегося по плоскости без проскальзывания или с проскальзыванием в ту или иную сторону. И лишь сообщив гироскопу начальный толчок вполне определенной величины и направления, можно добиться того, что ось гироскопа будет прецессировать без нутаций. Чем быстрее вращается гироскоп, тем больше угловая скорость нутаций и тем меньше их амплитуда. При очень быстром вращении нутации делаются практически незаметными для глаза.

Может показаться странным: почему гироскоп, будучи раскручен, установлен под углом к вертикали и отпущен, не падает под действием силы тяжести, а движется вбок? Откуда берется кинетическая энергия прецессионного движения?

Ответы на эти вопросы можно получить только в рамках точной теории гироскопам. На самом деле гироскоп действительно начинает падать, а прецессионное движение появляется как следствие закона сохранения момента импульса. В самом деле, отклонение оси гироскопа вниз приводит к уменьшению проекции момента импульса на вертикальное направление. Это уменьшение должно быть скомпенсировано моментом импульса, связанным с прецессионным движением оси гироскопа. С энергетическое точки зрения кинетическая энергия прецессии появляется за счет изменения потенциальной энергии гироскопам

Если за счет трения в опоре нутации гасятся быстрее, чем вращение гироскопа вокруг оси симметрии (как правило, так и бывает), то вскоре после "запуска" гироскопа нутации исчезают и остается чистая прецессия (рис. 4.8). При этом угол наклона оси гироскопа к вертикали оказывается больше, чем он был вначале то есть потенциальная энергия гироскопа уменьшается. Таким образом, ось гироскопа должна немного опуститься, чтобы иметь возможность прецессировать вокруг вертикальной оси.

Рис. 4.8.

Гироскопические силы.

Обратимся к простому опыту: возьмем в руки вал АВ с насаженным на него колесом С (рис. 4.9). Пока колесо не раскручено, не представляет никакого труда поворачивать вал в пространстве произвольным образом. Но если колесо раскручено, то попытки повернуть вал, например, в горизонтальной плоскости с небольшой угловой скоростью приводят к интересному эффекту: вал стремится вырваться из рук и повернуться в вертикальной плоскости; он действует на кисти рук с определенными силами и (рис. 4.9). Требуется приложить ощутимое физическое усилие, чтобы удержать вал с вращающимся колесом в горизонтальной плоскости.

Раскрутим гироскоп вокруг его вокруг его оси симметрии до большой угловой скорости (момент импульса L ) и станем поворачивать раму с укрепленным в ней гироскопом вокруг вертикальной оси OO" с некоторой угловой скоростью как показано на рис. 4.10. Момент импульса L , получит при этом приращение которое должно быть обеспечено моментом сил M , приложенным к оси гироскопа. Момент M , в свою очередь, создан парой сил возникающих при вынужденном повороте оси гироскопа и действующих на ось со стороны рамы. По третьему закону Ньютона ось действует на раму с силами (рис. 4.10). Эти силы называются гироскопическими; они создают гироскопический момент Появление гироскопических сил называют гироскопическим эффектом . Именно эти гироскопические силы мы и чувствуем, пытаясь повернуть ось вращающегося колеса (рис. 4.9).


где - угловая скорость вынужденного поворота (иногда говорят: вынужденной прецессии). Со стороны оси на подшипники действует противоположный момент

(4.)

Таким образом, вал гироскопа, изображенного на рис. 4.10, будет прижиматься кверху в подшипнике В и оказывать давление на нижнюю часть подшипника А.

Направление гироскопических сил можно легко найти с помощью правила, сформулированного Н.Е. Жуковским: гироскопические силы стремятся совместить момент импульса L гироскопа с направлением угловой скорости вынужденного поворота. Это правило можно наглядно продемонстрировать с помощью устройства, представленного на рис. 4.11.