Все про алкены. Непредельные углеводороды

Горят.

1. Горение на воздухе

2. Окисление водным раствором перманганата (реакция Вагнера)

В нейтральной среде получается коричневый оксид марганца (IV), а по двойной связи органического вещества присоединяются две ОН-группы:

Слева - алкен с перманганатом калия, справа - алкан. Органический слой (сверху) не смешивается с водным (снизу). Справа окраска перманганата не изменилась. Рис. 1.

Рис. 1. Реакция Вагнера

3. Окисление подкисленным раствором перманганата

В кислой среде раствор обесцвечивается: Мn +7 восстанавливается до Mn +2 . Обесцвечивание подкисленного раствора перманганата калия - качественная реакция на непредельные соединения .

5СН 2 =СН 2 + 12KMnO 4 + 18H 2 SO 4 = 12MnSO 4 + 10CO 2 + 6K 2 SO 4 + 28H 2 O.

Зависимость продуктов окисления от строения алкена:

Радикальное замещение в алкенах

Пропен и хлор при высокой температуре: 400-500 о С (условия, благоприятствующие радикальным реакциям) дают продукт не присоединения, а замещения.

В промышленности алкены получают крекингом или дегидрированием алканов нефти.

Лабораторные способы получения алкенов основаны на реакциях отщепления.

1. Дегалогенирование

Реакция дигалогеналканов, в молекулах которых атомы галогенов расположены у соседних атомов углерода, с магнием или цинком приводит к образованию двойной связи:

СН 2 Сl-CН 2 Сl + Zn → CH 2 =CH 2 + ZnCl 2

2. Дегидрогалогенирование

При взаимодействии галогеналканов с горячим спиртовым раствором щелочи отщепляется молекула галогеноводорода и образуется алкен:

СН 3 -СН 2 -СНCl-СН 3 + КОН спирт. CH 3 -CH=CH-CH 3 + KCl + H 2 O

3. Дегидратация

Нагревание спиртов с концентрированной серной или фосфорной кислотой приводит к отщеплению воды и образованию алкена.

Реакции отщепления несимметричных галогеналканов и спиртов часто протекают в соответствии с правилом Зайцева : Атом водорода преимущественно отщепляется от того из атомов С, который связан с наименьшим числом атомов Н.

Правило Зайцева, как и правило Марковникова, можно объяснить, сравнивая устойчивость промежуточных частиц, которые образуются в реакции.

Этилен, пропен и бутены - исходные вещества для нефтехимического синтеза, прежде всего для получения пластиков.

При присоединении хлора к алкенам получаются хлоропроизводные.

СН 2 =СН-СН 3 + Cl 2 CH 2 Cl - CHCl - CH 3 (1,2-дихлорпропан)

Но еще в 1884 году русский ученый Львов М.Д. (рис. 2) провел реакцию хлорирования пропена в более жестких условиях, при t = 400 0 С. В результате получился продукт не присоединения хлора, а замещения.

СН 2 =СН-СН 3 + Cl 2 СН 2 =СН-СН 2 Cl + HCl

Рис. 2. Русский ученый М.Д. Львов

Взаимодействие одних и тех же веществ при разных условиях приводят к разным результатам. Эта реакция широко используется для получения глицерина. Иногда этилен используют в овощехранилищах для ускорения созревания плодов.

Подведение итога урока

На этом уроке вы рассмотрели тему «Алкены. Химические свойства - 2. Получение и применение алкенов». В ходе занятия вы смогли углубить свои знания об алкенах, узнали о химических свойствах алкенов, а также об особенностях получения и применения алкенов.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 12, 13 (с. 39) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Какая реакция является качественной на этилен и его гомологи?

3. Может ли при хлорировании пропена происходить не присоединение, а замещение? С чем это связано?

Алкены химически активны. Их химические свойства во многом определяются наличием двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения и реакции радикального присоединения. Реакции нуклеофильного присоединения обычно требуют наличие сильного нуклеофила и для алкенов не типичны. Алкены легко вступают в реакции окисления, присоединения а также способны к алильному радикальному замещению.

Реакции присоединения

    Гидрирование Присоединение водорода (реакция гидрирования) к алкенам проводят в присутствии катализаторов. Чаще всего используют измельченные металлы - платину, никель, палладий и др. В результате образуются соответствующие алканы (насыщенные углеводороды).

    $CH_2=CH_2 + H2 → CH_3–CH_3$

    Присоединение галогенов. Алкены легко при обычных условиях вступают в реакции с хлором и бромом с образованием соответствующих дигалогеналканов, в которых атомы галогена находятся у соседних атомов углерода.

    Замечание 1

    При взаимодействии алкенов с бромом наблюдается обесцвечивание желто-бурой окраски брома. Это одна из старейших и самых простых качественных реакций на ненасыщенные углеводороды, поскольку аналогично реагируют также алкины и алкадиены.

    $CH_2=CH_2 + Br_2 → CH_2Br–CH_2Br$

    Присоединение галогеноводородов. При взаимодействии этиленовых углеводородов с галогеноводородами ($HCl$, $HBr$) образуются галогеналканы, направление реакции зависит от строения алкенов.

    В случае этилена или симметричных алкенов реакция присоединения происходит однозначно и ведет к образованию только одного продукта:

    $CH_2=CH_2 + HBr → CH_3–CH_2Br$

    В случае несимметричных алкенов возможно образование двух разных продукта реакции присоединения:

    Замечание 2

    На самом деле в основном образуется только один продукт реакции. Закономерность направлении прохождения таких реакций установил российский химик В.В. Марковников в 1869 Она носит название правило Марковникова. При взаимодействии галогеноводородов с несимметричными алкенами атом водорода присоединяется по месту разрыва двойной связи в наиболее гидрированного атома углерода, то есть до того, что соединен с большим количеством атомов водорода.

    Данное правило Марковников сформулировал на основе экспериментальных данных и только значительно позже оно получило теоретическое обоснование. Рассмотрим реакцию пропилена с хлористым водородом.

    Одной из особенностей $p$-связи является его способность легко поляризоваться. Под влиянием метильной группы (положительный индуктивный эффект + $I$) в молекуле пропена электронная плотность $p$-связи смещается к одному из атомов углерода (= $CH_2$). Вследствие этого на нем возникает частичный отрицательный заряд ($\delta -$). На другом атоме углерода двойной связи в соответствии возникает частичный положительный заряд ($\delta +$).

    Такое распределение электронной плотности в молекуле пропилена определяет место будущей атаки протоном. Это - атом углерода метиленовой группы (= $CH_2$), который несет частичный отрицательный заряд $\delta-$. А хлор, соответственно, атакует атом углерода с частичным положительным зарядом $\delta+$.

    Как следствие, основным продуктом реакции пропилена с хлористым водородом является 2-хлорпропан.

    Гидратация

    Гидратация алкенов происходит в присутствии минеральных кислот и подчиняется правилу Марковникова. Продуктами реакции являются спирты

    $CH_2=CH_2 + H_2O → CH_3–CH_2–OH$

    Алкилирование

    Присоединение алканов к алкенам в присутствии кислотного катализатора ($HF$ или $H_2SO_4$) при низких температурах приводит к образованию углеводородов с большей молекулярной массой и часто используется в промышленности для получения моторного топлива

    $R–CH_2=CH_2 + R’–H → R–CH_2–CH_2–R’$

Реакции окисления

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета:

Реакции полимеризации

Молекулы алкенов способны присоединяться при определенных условиях друг к другу с раскрытием $\pi$-связей и образования димеров, триммеров или высокомолекулярных соединений - полимеров. Полимеризация алкенов может протекать как по свободнорадикальному, так и катионно-анионому механизму. Как инициаторы полимеризации применяют кислоты, перекиси, металлы и др. Реакцию полимеризации осуществляют также под действием температуры, облучения, давления. Типичным примером является полимеризация этилена с образованием полиэтилена

$nCH_2=CH_2 → (–CH_2–CH_{2^–})_n$

Реакции замещения

Реакции замещения для алкенов не являются характерными. Однако при высоких температурах (свыше 400 ° C) реакции радикального присоединения, что носят обратимый характер, и подавляются. В этом случае становится возможным провести замещение атома водорода, находящегося в аллильном положении при сохранении двойной связи

$CH_2=CH–CH_3 + Cl_2 – CH_2=CH–CH_2Cl + HCl$

ОПРЕДЕЛЕНИЕ

Алкены — непредельные углеводороды, молекулы которых содержат одну двойную связь; в названии алкенов присутствует суффикс –ен или -илен.

Общая формула гомологического ряда алкенов (табл. 2) – C n H 2n

Таблица 2. Гомологический ряд алкенов.

Углеводородные радикалы, образованные от алкенов: -CH = CH 2 – винил и –СН 2 -СН = СН 2 – аллил.

Для алкенов, начиная с бутена, характерна изомерия углеродного скелета:

СН 2 -С(СН 3)-СН 3 (2-метилпропен-1)

и положения двойной связи:

CH 2 = CH-CH 2 -CH 3 (бутен-1)

CH 3 -C = CH-CH 3 (бутен-2)

Для алкенов, начиная с бутена-2, характерна геометрическая (цис-транс) изомерия (рис. 1).

Рис. 1. Геометрические изомеры бутена-2.

Для алкенов, начиная с пропена, характерна межклассовая изомерия с циклоалканами. Так, составу C 4 H 8 отвечают вещества класса алкенов и циклоалканов – бутен-1(2) и циклобутан.

Атомы углерода в молекулах алкенов находятся в sp 2 -гибридизациии: 3σ-связи располагаются в одной плоскости под углом 120 друг к другу, а π-связь образована p-электронами соседних атомов углерода. Двойная связь является сочетанием σ- и π-связей.

Химические свойства алкенов

Большинство химических реакций алкенов протекают по механизму электрофильного присоединения:

— гидрогалогенирование – взаимодействие алкенов с галогенводородами (HCl, HBr), протекающее по правилу Марковникова (при присоединении полярных молекул типа НХ к несимметричным алкенам водород присоединяется к более гидрированному атому углерода при двойной связи)

CH 3 -CH = CH 2 + HCl = CH 3 -CHCl-CH 3

— гидратация — взаимодействие алкенов с водой в присутствии минеральных кислот (серной, фосфорной) с образованием спиртов, протекающее по правилу Марковникова

CH 3 -C(CH 3) = CH 2 + H 2 O = CH 3 -C(CH 3)OH-CH 3

— галогенирование — взаимодействие алкенов с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды

CH 2 = CH 2 + Br 2 = BrCH 2 -CH 2 Br

При нагревании смеси алкена с галогеном до 500С возможно замещение атома водорода алкена по радикальному механизму:

CH 3 -CH = CH 2 + Cl 2 = Cl-CH 2 -CH = CH 2 + HCl

По радикальному механизму протекает реакция гидрирования алкенов. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:

CH 2 = CH 2 + H 2 = CH 3 -CH 3

Алкены способны окисляться с образованием различных продуктов, состав которых зависит от условий проведения реакции окисления. Так, при окислении в мягких условиях (окислитель – перманганат калия) происходит разрыв π-связи и образование двухатомных спиртов:

3CH 2 = CH 2 + 2KMnO 4 +4H 2 O = 3CH 2 (OH)-CH 2 (OH) +2MnO 2 + 2KOH

При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием кетоны, карбоновых кислот или углекислого газа:

Окисление этилена кислородом при 200С в присутствии CuCl 2 и PdCl 2 приводит к образованию ацетальдегида:

CH 2 = CH 2 +1/2O 2 = CH 3 -CH = O

Алкены вступают в реакции полимеризации. Полимеризация — процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация может быть вызвана нагреванием, сверхвысоким давлением, облучением, действием свободных радикалов или катализаторов. Так, полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):

n CH 2 = CH 2 = -(-CH 2 -CH 2 -) n —

Физические свойства алкенов

При обычных условиях С 2 -С 4 – газы, С 5 -С 17 – жидкости, начиная с С 18 – твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

Получение алкенов

Основные способы получения алкенов:

— дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей

CH 3 -CH 2 -CHBr-CH 3 + KOH = CH 3 -CH = CH-CH 3 + KBr + H 2 O

— дегалогенирование дигалогенпроизводных алканов под действием активных металлов

CH 3 -CHCl-CHCl-CH 3 + Zn = ZnCl 2 + CH 3 -CH = CH-CH 3

— дегидратация спиртов при их нагревании с серной кислотой (t >150 C) или пропускании паров спирта над катализатором

CH 3 -CH(OH)- CH 3 = CH 3 -CH = CH 2 + H 2 O

— дегидрирование алканов при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)

CH 3 -CH 2 — CH 3 = CH 3 -CH = CH 2 + H 2

Алкены применяются в качестве исходных продуктов в производстве полимерных материалов (пластмасс, каучуков, пленок) и других органических веществ.

Примеры решения задач

ПРИМЕР 1

Задание Установите молекулярную формулу алкена, если известно, что одно и тоже количество его, взаимодействуя с галогенами, образует, соответственно, или 56,5 г дихлорпроизводного или 101 г дибромпроизводного.
Решение Химические свойства алкенов определяются их способностью присоединять вещества по механизму электрофильного присоединения, при этом двойная связь превращается в одинарную:

СnH 2 n + Cl 2 → CnH 2 nCl 2

CnH 2 n + Br 2 → CnH 2 nBr 2

Масса алкена, вступившего в реакцию одна и та же, значит в реакции участвует одинаковое количество моль алкена. Выразим количество моль углеводорода, если молярная масса дихлорпроизводного 12n+2n+71, молярная масса дибромпроизводного (12n+2n+160):

m(CnH 2 nCl 2) \ (12n+2n+71) = m(СnH 2 nBr 2) \ (12n+2n+160)

56.5 \ (12n+2n+71) = 101 \ (12n+2n+160)

Следовательно, алкен имеет формулу C 3 H 6 – это пропен.

Ответ Формула алкена C 3 H 6 – это пропен

ПРИМЕР 2

Задание Осуществите ряд превращений этан → этен → этанол → этен → хлорэтан → бутан
Решение Для получения этена из этана необходимо использовать реакцию дегидрирования этана, которая протекает в присутствии катализатора (Ni, Pd, Pt) и при нагревании:

С 2 H 6 →C 2 H 4 + H 2

Получение этанола из этена осуществляют по реакции гидратации, протекающей водой в присутствии минеральных кислот (серной, фосфорной):

С 2 H 4 + H 2 O = C 2 H 5 OH

Для получения этена из этанола используют реакцию дегидротации:

C 2 H 5 OH →(t, H 2 SO 4) → C 2 H 4 + H 2 O

Получение хлорэтана из этена осуществляют по реакции гидрогалогенирования:

С 2 H 4 + HCl → C 2 H 5 Cl

Для получения бутана из хлорэтана используют реакцию Вюрца:

2C 2 H 5 Cl +2Na → C 4 H 10 + 2NaCl

Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы. Например, пентан имеет температуру кипения 36 °С, а пентен-1 - 30 °С. При обычных условиях алкены С 2 — С 4 - газы. С 5 – С 15 - жидкости, начиная с C 16 - твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органического синтеза, разработаны многие способы их получения.

1. Основным промышленным источником алкенов служит крекинг алканов, входящих в состав нефти:

3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная p -связь. К таким реакциям относятся следующие.

1) Дегидратация спиртов происходит при их нагревании с водоотнимающими средствами, например с серной кислотой при температуре выше 150 °С:

При отщеплении Н 2 O от спиртов, НВr и HCl от алкилгалогенидов атом водорода преимущественно отщепляется от того из соседних атомов углерода, который связан с наименьшим числом атомов водорода (от наименее гидрогенизированного атома углерода). Эта закономерность носит название правила Зайцева .

3) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами:

CH 2 Br —CHBr —CH 3 + Mg → СН 2 =СН-СН 3 + Mg Вr 2 .

Химические свойства алкенов определяются наличием в их молекулах двойной связи. Электронная плотность p -связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения , обозначаемому символом A E (от англ, addition electrophilic ). Реакции злектрофильного присоединения это ионные процессы, протекающие в несколько стадий.

На первой стадии электрофильная частица (чаще всего это бывает протон H +) взаимодействует с p -электронами двойной связи и образует p -комплекс, который затем превращается в карбокатион путем образования ковалентной s -связи между электрофильной частицей и одним из атомов углерода:

алкен p -комплекс карбокатион

На второй стадии карбокатион реагирует с анионом X — , образуя вторую s -связь за счет электронной пары аниона:

Ион водорода в реакциях электрофильного присоединения присоединяется к тому из атомов углерода при двойной связи, на котором больше отрицательный заряд. Распределение зарядов определяется смещением p -электронной плотности под влиянием заместителей: .

Электронодонорные заместители, проявляющие +I -эффект, смещают p -электронную плотность к более гидрогенизированному атому углерода и создают на нем частичный отрицательный заряд. Этим объясняется правило Марковникова : при присоединении полярных молекул типа НХ(X = Hal , ОН, CN и т.п.) к несимметричным алкенам водород преимущественно присоединяется к более гидрогенизированному атому углерода при двойной связи.

Рассмотрим конкретные примеры реакций присоединения.

1) Гидрогалогенирование . При взаимодействии алкенов с галогеноводородами (HCl , НВr ) образуются алкилгалогениды:

СН 3 -СН=СН 2 + НВr ® СН 3 -СНВr-СН 3 .

Продукты реакции определяются правилом Марковникова.

Следует, однако, подчеркнуть, что в присутствии какого-либо органического пероксида полярные молекулы НХ реагируют с алкенами не по правилу Марковникова:

R-O-O-R
СН 3 -СН=СН 2 + НВr СН 3 -СН 2 -СН 2 Вr

Это связано с тем, что присутствие перекиси обусловливает радикальный, а не ионный механизм реакции.

2) Гидратация . При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются спирты. Минеральные кислоты выполняют роль катализаторов и являются источниками протонов. Присоединение воды также идет по правилу Марковникова:

СН 3 -СН=СН 2 + НОН ® СН 3 -СН(ОН)-СН 3 .

3) Галогенирование . Алкены обесцвечивают бромную воду:

СН 2 =СН 2 + Вr 2 ® ВrСН 2 -СН 2 Вr.

Эта реакция является качественной на двойную связь.

4) Гидрирование . Присоединение водорода происходит под действием металлических катализаторов:

где R = Н, СН 3 , Cl , С 6 Н 5 и т.д. Молекула CH 2 =CHR называется мономером, полученное соединение - полимером , число n-степень полимеризации.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие.

Кроме присоединения, для алкенов характерны также реакции окисления. При мягком окислении алкенов водным раствором перманганата калия (реакция Вагнера ) образуются двухатомные спирты:

ЗСН 2 =СН 2 + 2КМn О 4 + 4Н 2 О ® ЗНОСН 2 -СН 2 ОН + 2MnO 2 ↓ + 2KOH .

В результате протекания этой реакции фиолетовый раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV ). Эта реакция, как и реакция обесцвечивания бромной воды, является качественной на двойную связь. При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи с образованием кетонов, карбоновых кислот или СО 2 , например:

[О]
СН 3 -СН=СН-СН 3 2СН 3 -СООН

По продуктам окисления можно установить положение двойной связи в исходном алкене.

Как и все другие углеводороды, алкены горят, и при обильном доступе воздуха образуют диоксид углерода и воду:

С n Н 2 n + Зn /2О 2 ® n СО 2 + n Н 2 О.

При ограниченном доступе воздуха горение алкенов может приводить к образованию монооксида углерода и воды:

С n Н 2n + nО 2 ® nCO + nH 2 O .

Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200°С серебряным катализатором, то образуется оксид алкена (эпоксиалкан), например:

При любых температурах алкены окисляются озоном (озон более сильный окислитель, чем кислород). Если газообразный озон пропускают через раствор какого-либо алкена в тетрахлор-метане при температурах ниже комнатной, то происходит реакция присоединения, и образуются соответствующие озониды (циклические перекиси). Озониды очень неустойчивы и могут легко взрываться. Поэтому обычно их не выделяют, а сразу после получения разлагают водой - при этом образуются карбонильные соединения (альдегиды или кетоны), строение которых указывает на строение подвергавшегося озонированию алкена.

Низшие алкены - важные исходные вещества для промышленного органического синтеза. Из этилена получают этиловый спирт, полиэтилен, полистирол. Пропен используют для синтеза полипропилена, фенола, ацетона, глицерина.

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены) . Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены ), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных углеводородов - алканов.

Строение алкенов

Ациклические углеводороды, содержащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле СnН2n. Свое второе название - олефины - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел.
Атомы углерода, между которыми есть двойная связь, находятся в состоянии sр 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию σ-связи, а за счет негибридизованных р-орбиталей
соседних атомов углерода образуется вторая, π-связь. Таким образом, двойная связь состоит из одной σ- и одной π — связи. Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие π -связь, располагаются перпендикулярно плоскости молекулы. Двойная связь (0,132 им) короче одинарной, а ее энергия больше, т. к. она является более прочной. Тем не менее, наличие подвижной, легко поляризуемой π -связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Строение этилена

Образование двойной связи в алкенах

Гомологический ряд этена

Неразветвленные алкены составляют гомологи- ческий ряд этена (этилена ): С 2 Н 4 - этен, С 3 Н 6 - пропен, С 4 Н 8 - бутен, С 5 Н 10 - пентен, С 6 Н 12 - гексен, С 7 Н 14 - гептен и т.д.

Изомерия алкенов

Для алкенов характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, - это бутен:


Особым видом структурной изомерии является изомерия положения двойной связи:

Алкены изомерны циклоалканам (межклассовая изомерия), например:



Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис- и транс- изомерии .


Цис-изомеры отличаются от транс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости π -связи, а следовательно, и свойствами.

Номенклатура алкенов

1. Выбор главной цепи. Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.
2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь.
Например,правильное название соединения:

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

3. Формирование названия. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс -ен , обозначающий принадлежность соединения к классу алкенов. Например:

Физические свойства алкенов

Первые три представителя гомологического ряда алкенов - газы; вещества состава С5Н10 — С16Н32 - жидкости; высшие алкены - твердые вещества.
Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства алкенов

Реакции присоединения . Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения .
1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов - платины, палладия, никеля:

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т. к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов) . Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (СС14) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.
3. Гидрогалогенирование (присоединение галогеноводорода) .

Эта реакция подчиняется
При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.


4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта.

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты .

Эта реакция протекает также в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа - к менее гидрированному.
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободнорадикальному механизму.
Реакции окисления.
1. Горение. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О:

2. Окисление в растворах. В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь: