Функциональные производные карбоновых кислот. Диазосоединения: реакции солей диазония с выделением азота, синтетические возможности реакций Химические свойства

Функциональные производные карбоновых кислот. Двухосновные карбоновые кислоты. a , b -Ненасыщенные кислоты

Производные карбоновых кислот

1. Галогенангидриды .

При действии галогенидов фосфора или хлористого тионила происходит образование галогенагидридов:

CH 3 COOH + PCl 5 ® CH 3 COCl + POCl 3 + HCl

Галоген в галогенангидридах обладает большой реакционной способностью. Сильный индукционный эффект определяет легкость замещения галогена другими нуклеофилами: - OH , - OR , - NH 2, - N 3, - CN и др.:

CH 3 COCl + CH 3 COOAg ® (CH 3 CO) 2 O уксусный ангидрид + AgCl

1. Ангидриды.

Ангидриды образуются при взаимодействии солей кислот с их галогенангидридами:

CH 3 COONa + CH 3 COCl ® NaCl + (CH 3 CO ) 2 O

Ангидриды кислот обладают большой химической активностью и являются, как и галогенангидриды, хорошими ацилирующими агентами.

2. Амиды .

Амиды получают через галогенангидриды

CH 3 COCl +2 NH 3 ® CH 3 CONH 2 ацетамид + NH 4 Cl

или из аммонийных солей кислот, при сухой перегонке которых отщепляется вода и образуется амид кислоты. Также амиды кислот образуются как побочный продукт при гидролизе нитрилов. Процессы амидирования имеют важное значение в промышленности для производства ряда ценных соединений (N , N -диметилформамид, диметилацетамид, этаноламиды высших кислот).

4. Нитрилы . Важнейшими представителями нитрилов являются ацетонитрил CH 3 CN (применяется как полярный растворитель) и акрилонитрил CH 2 = CHCN (мономер для получения синтетического волокна нейрона и для производства дивинилнитрильного синтетического каучука, обладающего масло- и бензостойкостью). Основным способом получения нитрилов является дегидратация амидов на кислотных катализаторах:

CH 3 CONH 2 ® CH 3 C - CN + H 2 O

5. Сложные эфиры . Сложные эфиры карбоновых кислот имеют важное практическое значение в качестве растворителей, гидравлических жидкостей, смазочных масел, пластификаторов и мономеров. Их получают этерификацией спиртов кислотами, ангидридами и галогенангидридами или взаимодействием кислот и алкенов:

CH 3 -CH=CH 2 + CH 3 COOH ® CH 3 COOCH(CH 3) 2

Многие эфиры используются в качестве душистых веществ:

CH 3 COOCH 2 CH 3 грушевая эссенция
CH 3 CH 2 CH 2 COOCH 2 CH 2 CH 2 CH 2 CH 3 ананасовая эссенция
HCOOCH 2 CH 3 ромовая эссенция

Двухосновные насыщенные кислоты

Двухосновные предельные (насыщенные) кислоты имеют общую формулу C n H 2 n (COOH ) 2 . Из них важнейшими являются:

НООС-СООН - щавелевая, этандикарбоновая кислота;

НООС-СН 2 -СООН - малоновая, пропандикарбоновая кислота;

НООС-СН 2 -СН 2 -СООН - янтарная, бутандикарбоновая кислота;

НООС-СН 2 -СН 2 -СН 2 -СООН - глутаровая, пентандикарбоновая кислота.

Способы получения

Общие методы получения двухосновных кислот аналогичны способам получения одноосновных кислот (окисление гликолей, гидролиз динитрилов, синтез Кольбе - см. Лекцию№27).

1. Окисление оксикислот :

OH-CH 2 CH 2 COOH ® HOCCH 2 COOH ® HOOC-CH 2 -COOH

2. Окисление циклоалканов .

Это промышленный способ получения адипиновой кислоты HOOC - CH 2 CH 2 CH 2 CH 2 - COOH из циклогексана.

Побочно образуются также янтарная и щавелевая кислоты. Адипиновая кислота применяется для синтеза волокна найлон 6,6 и пластификаторов.

Химические свойства

Двухосновные кислоты более сильные, чем одноосновные. Это объясняется взаимным влиянием карбоксильных групп, облегчающих диссоциацию:

В целом реакции дикарбоновых кислот и их монокарбоновых аналогов почти не различаются между собой. Механизм реакций образования диамидов, диэфиров и др. из карбоновых кислот тот же, что и для монокарбоновых кислот. Исключение составляют дикарбоновые кислоты, содержащие меньше четырех атомов углерода между карбоксильными группами. Такие кислоты, две карбоксильные группы которых способны реагировать с одной функциональной группой или друг с другом, обнаруживают необычное поведение в реакциях, протекающих с образованием пяти- или шестичленных замкнутых активированных комплексов или продуктов.

Примером необычного поведения карбоновых кислот могут служить реакции, протекающие при нагревании.

При 150 о С щавелевая кислота разлагается на муравьиную кислоту и СО 2 :

HOOC-COOH ® HCOOH + CO 2

2. Циклодегидратация .

При нагревании g -дикарбоновых кислот, у которых карбоксильные группы разделены атомами углерода, происходит циклодегидратация, в результате чего образуются циклические ангидриды:

3. Синтезы на основе малонового эфира .

Двухосновные кислоты с двумя карбоксильными группами при одном углеродном атоме, т.е. малоновая кислота и ее моно- и дизамещенные гомологи, при нагревании несколько выше их температур плавления разлагаются (подвергаются декарбоксилированию ) с отщеплением одной карбоксильной группы и образованием уксусной кислоты или ее моно- и дизамещенных гомологов:

HOOCCH 2 COOH ® CH 3 COOH + CO 2

HOOCCH(CH 3)COOH ® CH3CH2COOH + CO 2

HOOCC(CH 3) 2 COOH ® (CH3) 2 CHCOOH + CO 2

Атомы водорода метиленовой группы, находящейся между ацильными группами диэтилового эфира малоновой кислоты (малоновый эфир ), обладают кислотными свойствами и дают натриевую соль с этилатом натрия. Эту соль – натрий-малоновый эфир – алкилируют по механизму нуклеофильного замещения S N 2 . На основе натрий-малонового эфира получают одно- и двухосновные кислоты:

- Na + + RBr ® RCH(COOCH 2 CH 3) 2 + 2 H 2 O ®

R-CH(COOH) 2 алкилмалоновая кислота ® R-CH 2 COOH алкилуксусная кислота + CO 2

4. Пиролиз кальциевых и бариевых солей .

При пиролизе кальциевых или бариевых солей адипиновой (С 6 ), пимелиновой (С 7 ) и пробковой (С 8 ) кислот происходит отщепление СО 2 и образуются циклические кетоны:

Непредельные одноосновные карбоновые кислоты

Непредельные одноосновные кислоты этиленового ряда имеют общую формулу C n H 2 n -1 COOH , ацетиленового и диэтиленового рядов - C n H 2 n -3 COOH . Примеры непредельных одноосновных кислот:

Непредельные одноосновные кислоты отличаются от предельных большими константами диссоциации. Ненасыщенные кислоты образуют все обычные производные кислот - соли, ангидриды, галогенангидриды, амиды, сложные эфиры и др. Но за счет кратных связей они вступают в реакции присоединения, окисления и полимеризации.

Благодаря взаимному влиянию карбоксильной группы и кратной связи присоединение галогенводородов к a,b-непредельным кислотам происходит таким образом, что водород направляется к наименее гидрогенизированному атому углерода:

CH 2 = CHCOOH + HBr ® BrCH 2 CH 2 COOH b -бромпропионовая кислота

Этиленовые кислоты типа акриловой кислоты и их эфиры значительно легче подвергаются полимеризации, чем соответствующие углеводороды.

отдельные представители

Акриловую кислоту получают из этилена (через хлоргидрин или оксид этилена), гидролизом акрилонитрила или окислением пропилена, что более эффективно. В технике используются производные акриловой кислоты - ее эфиры, особенно метиловый (метилакрилат ). Метилакрилат легко полимеризуется с образованием прозрачных стекловидных веществ, поэтому его применяют в производстве органического стекла и других ценных полимеров.

Метакриловая кислота и ее эфиры получают в больших масштабах методами, сходными с методами синтеза акриловой кислоты и ее эфиров. Исходным продуктом является ацетон, из которого получают ацетонциангидрин, подвергают дегидратации и омылению с образованием метакриловой кислоты. Этерификацией метиловым спиртом получают метилметакрилат, который при полимеризации или сополимеризации образует стекловидные полимеры (органические стекла) с весьма ценными техническими свойствами.

кислот - мезовинная не относится к числу оптически активных веществ. Гомологом щавелевой кислоты является адипиновая кислота НООС(СН 2) 4 СООН, которая получа­ется окислением некоторых цикличе­ских соединений. Она входит в со­став чистящих средств для удаления ржавчины, а также служит исходным веществом для производства поли­амидных волокон (см. статью «Гиган­ты органического мира. Полимеры»).

КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ

Хотя карбоксильная группа состоит из карбонильной и гидроксильной групп, карбоновые кислоты по свойствам сильно отличаются и от спиртов, и от карбонильных соединений. Взаимное влияние ОН- и -групп приводит

к перераспределению электронной плотности. В результате атом водоро­да гидроксильной группы приобрета­ет кислотные свойства, т. е. легко от­щепляется при растворении кислоты в воде. Карбоновые кислоты изменя­ют окраску индикаторов и проявляют все свойства, характерные для раство­ров неорганических кислот.

Все одноосновные кислоты, не со­держащие заместителей (например, муравьиная и уксусная), являются сла­быми - лишь в незначительной сте­пени диссоциированными на ионы. Силу кислоты можно изменить, введя в a-положение к функциональной группе атом галогена. Так, трихлоруксусная кислота, образующаяся при хлорировании уксусной кислоты СН 3 СООН+3Сl 2 ®ССl 3 СООН+3НСl, в водном растворе в значительной сте­пени диссоциирует на ионы.

Карбоновые кислоты могут обра­зовывать функциональные производ­ные, при гидролизе которых вновь получаются исходные кислоты. Так, при действии на карбоновые кисло­ты хлорида и оксида фосфора(V) образуются, соответственно, хлорангидриды и ангидриды; при действии аммиака и аминов - амиды; спир­тов - сложные эфиры.

Кристаллы монохлоруксусной кислоты СН 2 ClСООН.

График зависимости температуры кипения алканов, спиртов, альдегидов и карбоновых кислот с неразветвлённой цепью от числа атомов углерода в молекуле.

Реакция образования сложных эфиров носит название этерификации (от греч. «этер» - «эфир»). Обыч­но её проводят в присутствии мине­ральной кислоты, играющей роль катализатора. При нагревании слож­ный эфир (или вода, если эфир кипит при температуре выше 100 °С) отгоня­ется из реакционной смеси, и равно­весие смещается вправо. Так, из уксус­ной кислоты и этилового спирта получают этилацетат - растворитель, входящий в состав многих видов клея:

Многие сложные эфиры предста­вляют собой бесцветные жидкости с приятным запахом. Так, изоамилацетат пахнет грушей, этилбутират - ананасом, изоамилбутират - абрико­сом, бензилацетат - жасмином, а этилформиат - ромом. Многие слож­ные эфиры используются в качестве

вкусовых добавок при изготовлении различных напитков, а также в пар­фюмерии. Особенно нежный запах у производных 2-фенилэтилового спирта: эфир этого спирта и фенилуксусной кислоты пахнет мёдом и ги­ацинтами. А аромат эфира муравьи­ной кислоты заставляет вспомнить благоухание букета роз и хризантем. В присутствии щёлочи сложные эфиры могут быть гидролизованы - разложены на исходный спирт и соль карбоновой кислоты. При гидро­лизе жиров (сложных эфиров глице­рина и высших карбоновых кислот) образуются основные компоненты мыла - пальмитат и стеарат натрия,

НАЗВАНИЯ НЕКОТОРЫХ КАРБОНОВЫХ КИСЛОТ И ИХ СОЛЕЙ

*Этилацетат- бесцвет­ная нерастворимая в воде жидкость с приятным эфир­ным запахом (t кип =77,1 °C), смешивается с этиловым спиртом и другими органи­ческими растворителями.

**Названия сложных эфиров образованы из названий соответствующих спиртов и кислот: этилацетат - эфир этилового спирта и уксусной кислоты (уксусноэтиловый эфир), изоамилформиат - эфир изоамилового спирта и му­равьиной кислоты (муравьиноизоамиловый эфир).

ЛЕДЯНАЯ КИСЛОТА

В уксусе, который образуется при про­кисании вина, содержится около 5% ук­сусной кислоты (столовым уксусом на­зывают 3-15-процентный раствор). Перегонкой такого уксуса получают уксусную эссенцию - раствор с кон­центрацией уже 70-80%. А чистая (100-процентная) уксусная кислота вы­деляется в результате воздействия кон­центрированной серной кислоты на ацетаты: CH 3 COOHNa+H 2 SO 4 (конц.)= CH 3 COOH­+NaHSO 4 .

Такая чистая уксусная кислота, не содержащая воды, при охлаждении до 16,8 °С превращается в прозрачные кристаллы, напоминающие лёд. Вот почему её иногда называют ледяной.

Сходство не только внешнее: в кри­сталлах молекулы уксусной кислоты,

Жидкая при комнатной температуре ледяная уксусная кислота при охлаждении ниже 1 7 °С превращается в бесцветные кристаллы, действительно похожие на лёд.

подобно молекулам воды, образуют систему водородных связей. Межмоле­кулярное взаимодействие оказывается настолько прочным, что даже в парах уксусной кислоты содержатся не от­дельные молекулы, а их агломераты.

Многие соли уксусной кислоты не­устойчивы к нагреванию. Так, при раз­ложении ацетата кальция образуется ацетон:

А при нагревании смеси ацетата натрия со щёлочью выделяется метан:

В течение многих столетии главным методом синтеза уксусной кислоты было брожение. Таким способом и сейчас производят пищевой уксус. А для производства сложных эфиров и искусственных волокон в качестве сы­рья используют кислоту, которая полу­чается при каталитическом окислении углеводородов, например бутана:

СН 3 -СН 2 -СН 2 -СН 3 +2,5О 2 ®2СН 3 -СООН+Н 2 О.

ГЛАВА 6. РЕАКЦИОННАЯ СПОСОБНОСТЬ КАРБОНОВЫХ КИСЛОТ И ИХ ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ

ГЛАВА 6. РЕАКЦИОННАЯ СПОСОБНОСТЬ КАРБОНОВЫХ КИСЛОТ И ИХ ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ

6.1. Карбоновые кислоты

6.1.1. Общая характеристика

Карбоновыми кислотами называют соединения, функциональной группой в которых является карбоксильная группа -СООН.

В зависимости от природы органического радикала карбоновые кислоты могут быть алифатическими (насыщенными или ненасыщенными) RCOOH и ароматическими ArCOOH (табл. 6.1). По числу карбоксильных групп они подразделяются на монокарбоновые, дикарбоновые и трикарбоновые. В настоящей главе рассматриваются только монокарбоновые кислоты.

Систематическая номенклатура кислот рассмотрена выше (см. 1.2.1). Для многих кислот используются их тривиальные названия (см. табл. 6.1), которые часто предпочтительнее систематических.

Карбоновые кислоты благодаря карбоксильной группе полярны и могут участвовать в образовании межмолекулярных водородных связей (см. 2.2.3). Такими связями с молекулами воды объясняется неограниченная растворимость низших кислот (C 1 -C 4). В молекулах карбоновых кислот можно выделить гидрофильную часть (карбоксильную группу СООН) и гидрофобную часть (органический радикал R). По мере возрастания доли гидрофобной части снижается растворимость в воде. Высшие карбоновые кислоты алифатического ряда (начиная с С 10) в воде практически нерастворимы. Для карбоновых кислот характерна межмолекулярная ассоциация. Так, жидкие карбоновые кислоты, например уксусная кислота, существуют в виде димеров. В водных растворах димеры распадаются на мономеры.

Таблица 6.1. Монокарбоновые кислоты


Увеличение способности к ассоциации при переходе от альдегидов к спиртам и далее кислотам отражается на изменении температур кипения соединений этих классов с близкой молекулярной массой.

6.1.2. Реакционные центры в карбоновых кислотах

Химические свойства карбоновых кислот обусловлены прежде всего карбоксильной группой, которая в отличие от изученных ранее функциональных групп (спиртовой, карбонильной) имеет более сложное строение. Внутри самой группы имеется р,л-сопряжение в результате взаимодействия р-орбитали атома кислорода группы ОН с π-связью группы С=О (см. также 2.3.1).

Карбонильная группа по отношению к группе ОН выступает в роли электроноакцептора, а гидроксильная группа за счет +М-эффек- та - в роли электронодонора, подающего электронную плотность на карбонильную группу. Особенности электронного строения карбоновых кислот обусловливают существование нескольких реакционных центров (схема 6.1):

ОН-кислотный центр, обусловленный сильной поляризацией связи О-Н;

Электрофильный центр - атом углерода карбоксильной группы;

N- основный центр - атом кислорода карбонильной группы с неподеленной парой электронов;

Слабый СН-кислотный центр, проявляющийся только в производных кислот, так как в самих кислотах имеется несравненно более сильный ОН-кислотный центр.

Схема 6.1. Реакционные центры в молекуле карбоновых кислот

6.1.3. Кислотные свойства

Кислотные свойства карбоновых кислот проявляются в их способности отщеплять протон. Повышенная подвижность водорода обусловлена полярностью связи О-Н за счетр,п -сопряжения (см. схему 6.1). Сила карбоновых кислот зависит от стабильности карбоксилат-иона RCOO , образующегося в результате отрыва протона. В свою очередь, стабильность аниона определяется прежде всего степенью делокализации в нем отрицательного заряда: чем лучше делокализован заряд в анионе, тем он стабильнее (см. 4.2.1). В карбоксилат-ионе заряд делокализуется по р,π-сопряженной системе с участием двух атомов кислорода и распределен поровну между ними

(см. 2.3.1).

Для карбоновых кислот значения рл а лежат в интервале 4,2-4,9. Эти кислоты обладают существенно более высокой кислотностью, чем спирты (рК а 16-18), фенолы (рК а ~10) и тиолы (рК а 11-12) (см. табл. 4.5).

Длина и разветвленность насыщенного алкильного радикала не оказывает существенного влияния на кислотные свойства карбоновых кислот. В целом алифатические монокарбоновые кислоты обладают практически одинаковой кислотностью (pK a 4,8-5,0), за исключением муравьиной кислоты, у которой кислотность на порядок выше.

Объяснить более высокую кислотность муравьиной кислоты можно с привлечением еще одного фактора, влияющего на стабильность аниона, а именно сольвата- ции. В водной среде заряд в небольшом по размеру формиат-ионе НСОО лучше делокализован с участием полярных молекул растворителя, чем в более крупных карбоксилат-ионах.

Надо отметить, что ароматические кислоты незначительно превышают алифатические по кислотности (pK a бензойной кислоты 4,2). В делокализации заряда в бензоат-ионе бензольное кольцо выступает как слабый электроноакцептор, не принимая участия в сопряжении с электронами, обусловливающими отрицательный заряд.

На кислотность карбоновых кислот значительно влияют заместители, введенные в углеводородный радикал. Независимо от механизма

передачи электронного влияния заместителя в радикале (индуктивного или мезомерного), электроноакцепторные заместители способствуют делокализации отрицательного заряда, стабилизируют анионы и тем самым увеличивают кислотность. Электронодонорные заместители, напротив, ее понижают.

В водных растворах карбоновые кислоты слабо диссоциированы.

Кислотные свойства проявляются при взаимодействии карбоновых кислот со щелочами, карбонатами и гидрокарбонатами. Образующиеся при этом соли в заметной степени гидролизованы, поэтому их растворы имеют щелочную реакцию.

6.1.4. Нуклеофильное замещение

Нуклеофильное замещение у sp 2 -гибридизованного атома углерода карбоксильной группы представляет наиболее важную группу реакций карбоновых кислот.

Атом углерода карбоксильной группы несет частичный положительный заряд, т. е. является электрофильным центром (см. схему 6.1). Он может быть атакован нуклеофильными реагентами, в результате чего происходит замещение группы ОН на другую нуклеофильную частицу.

Гидроксид-ион является плохой уходящей группой, поэтому реакции нуклеофильного замещения в карбоксильной группе проводятся в присутствии кислотных катализаторов, особенно когда используются слабые нуклеофильные реагенты, такие, как спирты.

Наиболее важные реакции монокарбоновых кислот приведены на схеме 6.2.

Схема 6.2. Некоторые реакции нуклеофильного замещения в карбоновых кислотах

Реакция этерификации катализируется сильными кислотами.

Механизм реакции этерификации. Каталитическое действие серной кислоты состоит в том, что она активирует молекулу карбоновой кислоты, которая протонируется по основному центру - атому кислорода карбонильной группы (см. схему 6.1). Протонирование приводит к увеличению электрофильности атома углерода. Мезомерные структуры показывают делокализацию положительного заряда в об- разовавшемся катионе (I).

Далее молекула спирта за счет неподеленной пары электронов атома кислорода присоединяется к активированной молекуле кис- лоты. Последующая миграция протона приводит к формированию хорошей уходящей группы - молекулы воды. На последней стадии отщепляется молекула воды с одновременным выбросом протона (возврат катализатора).

Этерификация - обратимая реакция. Смещение равновесия вправо возможно отгонкой из реакционной смеси образующегося эфира, отгонкой или связыванием воды, либо использованием избытка одного из реагентов. Реакция, обратная этерификации, приводит к гидролизу сложного эфира с образованием карбоновой кислоты и спирта.

Образование амидов. При действии на карбоновые кислоты аммиака (газообразного или в растворе) непосредственно замещения группы ОН не происходит, а образуется аммониевая соль. Лишь при значительном нагревании сухие аммониевые соли теряют воду и превращаются в амиды.

Образование ангидридов кислот. Нагревание карбоновых кислот с оксидом фосфора(V) приводит к образованию ангидридов кислот.

6.2. Функциональные производные карбоновых кислот

6.2.1. Общая характеристика

Функциональные производные карбоновых кислот содержат модифицированную карбоксильную группу, а при гидролизе образуют карбоновую кислоту.

Наиболее важными функциональными производными карбоновых кислот являются соли, сложные эфиры, тиоэфиры, амиды, ангидриды (табл. 6.2). Галогенангидриды кислот - наиболее реакционноспособные производные, имеющие широкое применение в органической химии, однако они не участвуют в биохимических превращениях ввиду их чрезвычайной чувствительности к влаге, т. е. легкости гидролиза.

Номенклатура. Названия производных карбоновых кислот строятся с учетом родства их структур со структурой самой карбоновой кислоты, при котором общим фрагментом является ацильный радикал RC(O)-. Эти радикалы называют путем замены сочетания -овая кислота на -оил. Тривиальные названия ацильных радикалов приведены в табл. 6.3.

Соли кислот называют, перечисляя названия аниона кислоты и катиона (в родительном падеже), например, ацетат калия. Названия анионов кислот в свою очередь образуются заменой суффикса -ил в названии ацильного радикала на -ат.

Сложные эфиры называют аналогично солям, только вместо названия катиона употребляют название соответствующего алкила или арила, которое помещают перед названием аниона и пишут слитно

Таблица 6.2. Некоторые функциональные производные карбоновых кислот

с ним. Сложноэфирную группу COOR можно отразить и описательным способом, например «R-овый эфир такой-то кислоты».

Таблица 6.3. Тривиальные названия ацильных радикалов и производных кислот

Симметричные ангидриды кислот называют путем замены в названии кислоты слова кислота на ангидрид, например бензойный ангидрид.

Названия амидов с незамещенной группой NH 2 производят от названий соответствующих ацильных радикалов заменой суффикса -оил (или -ил) на -амид. В N-замещенных амидах названия радикалов при атоме азота указывают перед названием амида с символом N- (азот).

6.2.2. Сравнительная характеристика реакционной способности

Производные карбоновых кислот, как и сами кислоты, способны вступать в реакции нуклеофильного замещения у sp 2 --гибридизован- ного атома углерода с образованием других функциональных производных. Механизм такого замещения отличается от рассмотренного выше механизма нуклеофильного замещения у sp 3 --гибридизованного атома углерода в галогеноалканах и спиртах (см. 4.3).

Тетраэдрический механизм нуклеофильного замещения. Сначала нуклеофил присоединяется к атому углерода группы С=О с образованием нестабильного промежуточного аниона (интермедиата). Механизм реакции называют тетраэдрическим, так как атом углерода при этом переходит из sp 2 - в sр 3 -гибридное состояние и принимает тетраэдрическую конфигурацию.

На второй стадии от интермедиата отщепляется частица Z и атом углерода вновь становится sp 2 -гибридизованным. Таким образом, эта реакция замещения включает стадии присоединения и отщепления.

По такому механизму реакция протекает при наличии достаточно сильного нуклеофила и хорошей уходящей группы Z, напри- мер, в случае щелочного гидролиза сложных эфиров и других функциональных производных карбоновых кислот. Легкость нуклеофильной атаки зависит от величины частичного положительного заряда δ+ на атоме углерода карбонильной группы. В функциональных производных карбоновых кислот он увеличивается с ростом -I-эффекта заместителя Z и уменьшается с увеличением его M-эффекта. В результате этих эффектов величина заряда и, следовательно, способность подвергаться нуклеофильной атаке в рассматриваемых соединениях уменьшаются в приведенной ниже последовательности. К этому же выводу приводит и анализ стабильности уходящих групп Z - , которые выделены цветом (см. 4.2.1).

Производные карбоновых кислот по сравнению с альдегидами и кетонами труднее подвергаются нуклеофильной атаке, так как электрофильность карбонильного атома углерода обычно снижается

за счет +M-эффекта заместителя Z. По этой причине в нуклеофильных реакциях функциональных производных карбоновых кислот часто оказывается необходимым кислотный катализ путем протонирования атома кислорода карбонильной группы. Примером такой активации служит уже рассмотренная реакция этерификации (см. 6.1.3).

В результате взаимодействия карбоновых кислот и их функциональных производных со спиртами или аминами в молекулы этих соединений вводится ацильный остаток. По отношению к таким реакциям используют общее название - реакции ацилирования. С этой позиции реакцию этерификации можно рассматривать как ацилирование молекулы спирта.

Функциональные производные кислот обладают разной реакционной способностью в реакциях ацилирования. Наиболее активны хлорангидриды и ангидриды; из них можно получать практически любые производные кислот. Сами кислоты и сложные эфиры (с остатками алифатических спиртов) - значительно менее активные ацилирующие агенты. Реакции замещения с их участием проводятся в присутствии катализаторов. Амиды вступают в реакции ацилирования еще труднее, чем кислоты и сложные эфиры.

Соли карбоновых кислот ацилирующей способностью не обладают, поскольку анион карбоновой кислоты не может быть атакован отрицательно заряженным нуклеофилом или молекулой с неподеленной парой электронов.

6.2.3. Сложные эфиры

Сложные эфиры - широко распространенные в природе производные кислот. Многие лекарственные средства содержат в своей структуре сложноэфирные группировки.

Помимо реакции этерификации, сложные эфиры образуются, причем значительно легче, при ацилировании спиртов или фенолов ангидридами кислот.

Некоторые реакции сложных эфиров приведены на схеме 6.3.

Схема 6.3. Реакции сложных эфиров

Сложные эфиры способны гидролизоваться и в кислой, и в щелочной среде. Как уже упоминалось (см. 6.1.3), кислотный гидро- лиз сложных эфиров - реакция, обратная реакции этерификации. Несмотря на обратимость этой реакции, кислотный гидролиз легко сделать необратимым при использовании большого избытка воды.

При щелочном гидролизе сложных эфиров щелочь выступает как реагент (на 1 моль сложного эфира расходуется 1 моль щелочи).

Щелочной гидролиз эфиров - необратимая реакция, поскольку образующийся карбоксилат-ион не способен взаимодействовать с алкоксид-ионом (частицы с одноименными зарядами). Такой гидролиз называют также омылением сложных эфиров. Этот термин связан с тем, что соли высших кислот, образующиеся при щелочном гидролизе жиров, называются мылами.

6.2.4. Тиоэфиры

Тиоэфиры - серные аналоги сложных эфиров - находят весьма ограниченное применение в классической органической химии, но играют важную роль в организме. Известно, что для проявления каталитической активности большинству ферментов, имеющих белковую природу, необходимо соучастие коферментов, которыми служат разнообразные по строению низкомолекулярные органические соединения небелковой природы. Одну из групп коферментов составляют

ацилкоферменты, выполняющие функцию переносчиков ацильных групп. Из них наиболее распространен ацетилкофермент А.

При всей сложности строения молекулы ацетилкофермента А с позиций химического подхода можно определить, что этот кофермент функционирует как тиоэфир.

В качестве тиола, участвующего в его образовании, выступает кофермент А (сокращенно обозначаемый CoASH), молекула которого построена из остатков трех компонентов - 2-аминоэтантиола, пантотеновой кислоты и аденозиндифосфата (дополнительно фосфорилированного по положению 3 в рибозном фрагменте). Аденозиндифосфат (АДФ) рассмотрен в дальнейшем как представитель другой важной группы коферментов - нуклеозидполифосфатов (см. 14.3.1). Пантотеновая кислота образует, с одной стороны, амидную связь с 2-аминоэтанти- олом, а с другой - сложноэфирную связь с остатком АДФ.

По ацилирующей способности все ацилкоферменты А и в том числе ацетилкофермент А, будучи тиоэфирами, занимают «золотую сере- дину» между высокореакционными ангидридами и малоактивными карбоновыми кислотами и сложными эфирами. Их достаточно высокая активность обусловлена, в частности, повышенной стабильностью уходящей группы - аниона CoA-S - - по сравнению с гидроксид- и алкоксид-ионами кислот и сложных эфиров соответственно.

Ацетилкофермент А in vivo является переносчиком ацетильных групп на нуклеофильные субстраты.

Этим путем, например, осуществляется ацетилирование гидроксилсодержащих соединений.

С использованием ацетилкофермента А протекает превращение холина в ацетилхолин, являющегося посредником при передаче нервного возбуждения в нервных тканях (нейромедиатором) (см. 9.2 1).

Кроме этого, можно отметить важное участие в процессах обмена веществ самого кофермента А, функционирующего в качестве тиола. В организме любые карбоновые кислоты активируются путем превращения в реакционноспособные производные - тиоэфиры.

6.2.5. Амиды и гидразиды

Наряду со сложными эфирами важной группой производных кислот являются амиды карбоновых кислот, также широко распростра- ненные в природе. Достаточно упомянуть пептиды и белки, в структуре которых содержатся многочисленные амидные группировки.

В зависимости от степени замещения у атома азота амиды могут быть монозамещенными и дизамещенными (см. 6.2.1).

Амиды образуются при ацилировании аммиака и аминов ангидридами или сложными эфирами.

Амиды обладают самой низкой ацилирующей способностью и гидролизуются намного труднее, чем другие производные кислот. Гидролиз амидов проводится в присутствии кислот или оснований.

Высокая устойчивость амидов к гидролизу объясняется электронным строением амидной группы, во многом сходным со стро- ением карбоксильной группы. Амидная группа представляет собой р,л-сопряженную систему, в которой неподеленная пара электронов атома азота сопряжена с π-электронами связи С=О. Вследствие сильного +M-эффекта аминогруппы частичный положительный заряд на карбонильном атоме углерода амидов меньше, чем у других функциональных производных кислот. В результате связь углерод-азот в амидах имеет частично двойной характер.

Следствием сопряжения является также чрезвычайно низкая основность атома азота амидной группы. Напротив, у амидов появляются слабые кислотные свойства. Следовательно, амиды обладают амфотерными свойствами.

Амидам родственны гидразиды - производные карбоновых кислот, содержащие остаток гидразина H 2 NNH 2. Немало лекарственных

средств являются по своей природе гидразидами, например, противотуберкулезное средство изониазид (см. 13.4.1). Как и амиды, гидразиды подвергаются гидролизу в достаточно жестких условиях с расщеплением связи C-N.

6.2.6. Ангидриды

Ангидриды кислот чаще встречаются in vivo в виде смешанных ангидридов, включающих ацильные остатки разных кислот, причем одна из кислот - неорганическая (чаще всего фосфорная).

Ацилфосфаты являются хорошими переносчиками ацильных групп, поскольку в реакциях нуклеофильного замещения фосфатные группы представляет собой хорошие уходящие группы.

Замещенные ацилфосфаты - метаболиты, с участием которых в организме осуществляется перенос ацильных остатков к гидроксильным, тиольным группам и аминогруппам различных соединений.

6.3. Сульфоновые кислоты

и их функциональные производные

Сульфоновые кислоты RSO 3 H можно рассматривать как производные углеводородов, в которых атом водорода замещен сульфогруппой SO 3 H. Наиболее известны сульфоновые кислоты аромати- ческого ряда; их простейшим представителем является бензолсульфоновая кислота. Подобно серной, сульфоновые кислоты обладают высокой кислотностью.

Сульфоновые кислоты, как и карбоновые кислоты, образуют функциональные производные - соли, эфиры, амиды и т. д.

Большое значение в медицинской практике приобрели N-заме- щенные амиды сульфаниловой (n-аминобензолсульфоновой) кислоты - сульфаниламидные средства (см. 9.3).

Функциональными производными называют производные карбоновых кислот, у которых ОН-группа замещена нуклеофильной частицей Z.

Таблица №3Функциональные производные карбоновых кислот R─ C(O)Z

6.1. Номенклатура.

Номенклатура производных карбоновых кислот очень проста и исходит из названий самих карбоновых кислот. Ангидриды кислот, например, называют добавляя слово «ангидрид » к названию соответствующей кислоты.

Для названия смешанных ангидридов требуется перечислить обе кислоты, образующие ангидрид.

Для обозначения ацилгалогенидов окончание кислоты «-овая » заменяется на «-оил » с добавлением названия галогена.

Для обозначения амидов окончание «-овая », характерное для кислот, заменяется на «-амид », или окончание «карбоновая кислота » заменяется на «карбоксамид ».

Замещенные при азоте амиды имеют префикс, где обозначаются эти заместители.

Название сложных эфиров строится таким образом, чтобы первую часть названия занимало обозначение алкильной группы, присоединенной к атому кислорода. Вторую часть названия составляет обозначение карбоновой кислоты, в котором окончание «-овая » заменено на окончание «-ат ».

Для нитрилов существует несколько систем названий. Согласно номенклатуре ИЮПАК они называются алканнитрилами, т.е. к названию алкана добавляется окончание «-нитрил ». Атом углерода нитрильной группы всегда имеет первый номер.

В другой системе названий окончание «-овая » заменяется на «-онитрил » или словосочетание «карбоновая кислота » заменяется на «-карбонитрил ».

В заключении этого раздела приведем названия некоторых типичных функциональных групп производных карбоксильной группы: COOR – группа называется «алкоксикарбоксил » , CONH 2 – «карбамоил » , COCl – «хлорформил » , CN – «циано » . Так называются эти группы в полифункциональнозамещенных циклоалканах и алканах.

6.2. Химические свойства производных карбоновых кислот.

Функциональные производные, подобно карбоновым кислотам, способны вступать в реакции ацилирования, и поэтому их можно рассматривать как ацильные производные различных нуклеофилов. Реакции ацилирования приводят к образованию других функциональных производных карбоновых кислот.

Для реакции нуклеофильного замещения у sp 2 -гибридного ацильного атома углерода реализуется двухстадийный механизм присоединения-отщепления. В первой стадии нуклеофильный агент присоединяется к производному карбоновой кислоты с образованием заряженного (для анионного нуклеофильного агента) или бетаина (для нейтрального нуклеофильного агента) тетраэдрического интермедиата. Во второй стадии от этого интермедиата отщепляется в виде аниона или нейтральной молекулы уходящая группа Z и образуется конечный продукт замещения.

В общем случае реакция обратима, однако если Z и Nu сильно различаются по своей основности и нуклеофильности, она становится необратимой. Движущей силой отщепления уходящей группы Z является образование π-связи между кислородом и карбонильным атомом углерода из анионного тетраэдрического интермедиата. В принципе на скорость реакции могут влиять обе стадии, однако, как правило, первая стадия присоединения нуклеофильного агента является медленной и определяет скорость всего процесса. И стерические, и электронные факторы важны при количественной оценке реакционной способности производных карбоновых кислот. Стерические затруднения для атаки нуклеофильного реагента по карбонильному атому углерода вызывают понижение реакционной способности в ряду:

Реакционная способность функциональных производных в реакциях ацилирования (ацилирующая способность) зависит от природы частицы Z и коррелируется со стабильностью уходящего аниона Z - :

чем стабильнее анион, тем выше реакционная способность ацильного производного.

Наибольшей ацилирующей активностью обладают галогенангидриды и ангидриды, так как их ацильные остатки соединены с хорошо уходящими группами – галогенид-ионами и анионами карбоновых кислот. Сложные эфиры и амиды проявляют более низкую ацилирующую способность, потому что соответственно алкоксид- и амид-ионы не относятся к стабильным анионам и не являются хорошо уходящими группами. Такой подход к оценке ацилирующей способности показан ниже на примере сопоставления наиболее важных функциональных производных карбоновых кислот:

6.3. Галогенангидриды.

Галогенангидридами называются функциональные производные карбоновых кислот общей формулы RC(O)Hal.

Галогенангидриды представляют собой жидкости или твердые вещества с резким навязчивым запахом, сильно раздражают кожу и слизистые оболочки. Практическое значение имеют ацилхлориды и ацилбромиды.

Можно заметить, что введение даже одного атома хлора в молекулу уксусной кислоты увеличивает кислотность на два порядка, а трихлоруксусная кислота по силе сравнима с неорганическими производными.

Изменение кислотности при переходе от a- к g-масляной кислоте иллюстрирует высказанное ранее утверждение, что индуктивный эффект (и донорный и акцепторный) наиболее заметен на соседнем атоме. Чем дальше расположен атом хлора, тем меньшее влияние он оказывает на кислотность.

В ароматическом ряду стабильность карбоксилат-аниона повышена за счет сопряжения с ароматическим циклом. Так, бензойная кислота примерно в 3,6 раза сильнее уксусной. Акцепторы в положениях 2,4,6- бензольного кольца увеличивают кислотность, а доноры – уменьшают. Причем особенно сильно влияют заместители в положениях 2- и 6-, что вызвано их близостью к карбокси-группе. Например, пара -хлорбензойная кислота только 1,6 раза, в орто -хлорбензойная кислота в 19 раз сильнее бензойной.


Лекция № 35

Карбоновые кислоты и их производные

Монокарбоновые кислоты.

· Химические свойства. Получение производных карбоновых кислот: солей, ангидридов, галогеноангидридов, сложных эфиров, амидов, нитрилов. Декарбоксилирование, восстановление и галогенирование кислот. Реакции замещения в кольце ароматических карбоновых кислот. Основные пути использования карбоновых кислот.

Производные карбоновых кислот.

· Соли. Получение. Химические свойства: декарбоксилирование, анодный синтез Кольбе, получение карбонильных соединений.

· Ангидриды. Получение: дегидратация кислот с помощью Р 2 О 5 ; ацилирование солей карбоновых кислот хлорангидридами. Химические свойства: реакции с нуклеофилами (ацилирование, этерификация).

· Хлорангидриды. Получение. Химические свойства: реакции с нуклеофилами (ацилирование, этерификация, взаимодействие с водой, аммиаком, аминами, фенолами), восстановление до альдегидов, реакции с магнийорганическими соединениями. Хлористый бензоил и реакции бензоилирования.

· Сложные эфиры. Получение: этерификация карбоновых кислот (механизм), ацилирование спиртов и их алкоголятов ацилгалогенидами и ангидридами, алкилирование карбоксилат-ионов. Химические свойства: гидролиз (механизм кислотного и основного катализа), переэтерификация; аммонолиз, каталитическое гидрирование, восстановление комплексными гидридами металлов и металлами в присутствии источников протонов.


Монокарбоновые кислоты.

Химические свойства. Производные карбоновых кислот

Соли

Получение солей – простейшая реакция карбоновых кислот.

Получение углеводородов декарбоксилированием солей карбоновых кислот и анодным синтезом Кольбе рассмотрены в разделе «Алканы».

Ангидриды

Ангидриды карбоновых кислот могут быть получены межмолекулярной дегидратацией или ацилированием карбоновых кислот хлорангидридами. Реакция ацилирования – введение ацильной группы (остатка карбоновой кислоты, но не альдегида).

Первым способом получают симметричные, вторым – симметричные и несимметричные ангидриды.

Сами по себе ангидриды карбоновых кислот не вызывают особого химического интереса. Как и ангидриды любых кислот – ангидриды карбоновых кислот - скрытая и более реакционоспособная форма кислот. Часто их используют вместо кислот в реакциях ацилирования (см. далее).

Ангидриды легко гидролизуются водой до соответствующей кислоты.

Галогенангидриды

Галогенангидриды (ацилгалогениды) – производные карбоновых кислот, в которых вместо ОН-группы атом галогена. В подавляющем большинстве случаев в молекуле присутствует атом хлора, значительно реже – бром, никогда - фтор. Когда говорят о галогенангидридах, почти всегда подразумевают хлорангидриды.

Хлорангидриды получают действием на кислоты галогенидов фосфора (PCl 3 , POCl 3 , PCl 5) или хлористого тионила (SOCl 2). Механизм реакций аналогичен описанному ранее замещению ОН-группы в спиртах на атом галогена.

Устойчивость хлорангидридов муравьиной кислоты столь низка, что их получить не удается.

Хлорангидриды, как и ангидриды, используют в качестве реагентов во многих реакциях получения производных карбоновых кислот.

Сложные эфиры

Взаимодействие карбоновых кислот со спиртами в присутствии минеральной кислоты (реакция этерификации) приводит к сложным эфирам.

Механизм реакции этерификации:

В образующемся нейтральном интермедиате скорости прямой и обратной реакций близки. В общем случае выходы в реакции не превышают 70% от теории. Для увеличения выхода обычно удаляют сложный эфир из сферы реакции.

Механизм реакции этерификации доказан с помощью изотопномеченного спирта.

В воде изотопная метка не обнаружена. Следовательно, сложноэфирный кислород – из спирта.

Реакция этерификации полностью обратима. Обратная реакция - гидролиз (кислый или щелочной). Механизм кислого гидролиза показан выше.

Механизм гидролиза в присутствии щелочей (реакция омыления):

Кислый гидролиз, как и этерификация полностью обратим. Щелочной гидролиз приводит к получению соли карбоновой кислоты и поэтому необратим.

Переэтерификация

Сложные эфиры могут быть получены также и реакцией переэтерификации.

По механизму реакция переэтерификации очень похожа на гидролиз (вместо Н-ОН - R-ОН).

Поскольку реакция полностью обратима, ее проводят в большом избытке спирта (R”-OH), чтобы сдвинуть равновесие вправо. В некоторых случаях переэтерификация дает даже лучшие результаты, чем этерификация.

Достоинством этерификации и переэтерификации является простота реакции и доступность исходных веществ, недостатком - обратимость реакции. В необратимых реакциях получения сложных эфиров исходят из ангидридов или хлорангидридов карбоновых кислот.


Получение сложных эфиров из ангидридов.

Получение сложных эфиров из хлорангидридов.