Презентация элементы концепции математического образования на уроках. Проблемы математического образования мотивационные


Концепция развития математического образования в РФ Основная цель Концепции: вывести российское математическое образование на лидирующее положение в мире. Задача российского педагогического сообщества заключается в том, чтобы математика в России стала передовой и привлекательной областью знания и деятельности, а получение математических знаний – осознанным и внутренне мотивированным процессом.




МОТИВАЦИЯ Низкая учебная мотивация школьников связана: – с общественной недооценкой значимости математического образования, – с перегруженностью образовательных программ, а также оценочных и методических материалов техническими элементами и устаревшим содержанием, – с отсутствием программ, отвечающих потребностям обучающихся и действительному уровню их подготовки. Концепция развития математического образования в РФ


Цели математического образования Приоритеты математического образования – это развитие способностей к: логическому мышлению, коммуникации и взаимодействию на широком математическом материале (от геометрии до программирования); реальной математике: математическому моделированию (построению модели и интерпретации результатов), применению математики, в том числе, с использованием ИКТ; поиску решений новых задачи, формированию внутренних представлений и моделей для математических объектов, преодолению интеллектуальных препятствий. Особое внимание именно к самостоятельному решению задач, в том числе – новых, находящихся на границе возможностей ученика, было и остается важной чертой отечественного математического образования.


Предметное содержание образования будет включать все больше элементов прикладной математики, информатики, «компьютерной математики» (в том числе – созданных для описания и исследования процессов мышления, коммуникации, деятельности человека); Математическая (как и вся образовательная) деятельность будет во все большой степени идти в (цифровой, электронной) информационной среде, обеспечивающей взаимодействие участников образовательного процесса, доступ к информационным источникам, фиксацию хода и результатов образовательного процесса, возможность их автоматизированного анализа и внешнего наблюдения


Математика в общем образовании Для каждого ребенка должен индивидуально проектироваться его «коридор ближайшего развития». Понятие «ребенок, не способный к математике» должно потерять смысл и исчезнуть из лексикона учителей, родителей, школьников и общества.


Концепция развития математического образования в РФ Дошкольное и начальное образование: – создание условий, способствующих развитию логико- математических и коммуникативных способностей; – использование математических, логических и стратегических игр, предметных и экранных соревнований. Основная школа: – многообразие приложений; – компьютерные инструменты и модели. Старшая школа: выделить три потока, обеспечивающих – базовую математическую компетентность для учащихся, – широкую общекультурную программу математической – подготовки; – углубленное изучение математики.


Школы, детские сады, учреждения дополнительного образования детей, высшего и дополнительного профессионального образования должны быть очагами математической культуры в обществе: доступная, яркая математика должна присутствовать в информационной среде городских пространств, помещений и сайтов, учебно- методические комплексы должны включать материал для работы родителей с ребенком. Математика в общем образовании


Учащиеся с низкими академическими результатами, с «накапливающимся незнанием» из социально- незащищенных семей, с ограниченными возможностями здоровья, пропустившие занятия по болезни, должны быть обеспечены постоянной тьюторской поддержкой, которая позволит им вернуться «в основной поток». Это важно как для повышения гарантированного минимума математической компетентности в обществе, так и для повышения эффективности обучения основной массы учащихся. Математика в общем образовании

ПРОБЛЕМЫ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ Мотивационные. Общественная недооценка значимости математического образования, Перегруженность школьных и вузовских программ техническими элементами и устаревшим содержанием Нереалистичность аттестационных требований для значительной части выпускников Содержательные. Устаревание содержания и формальность изучения математики на всех ступенях образования. Оторванность программ от жизни. Содержание математического образования на всех его ступенях продолжает устаревать и остается формальным и оторванным от жизни, его преемственность между ступенями - недостаточна. Потребности будущих специалистов в математических знаниях и методах, в частности, опирающихся на информационные технологии учитываются слабо. Фактическое отсутствие различий в учебных программах и аттестационных требованиях для разных групп учащихся приводит к низкой эффективности учебного процесса, подмене обучения «натаскиванием» на экзамен, игнорированию действительных способностей и особенностей подготовки учащихся. Наблюдается отрыв вузовского образования Вузовское образование оторвано от современной науки и практики, его уровень падает, что частично обусловлено недостаточной интегрированностью российской науки в мировую. Кадровые. В Российской Федерации не хватает учителей и преподавателей вузов, которые могут качественно преподавать математику, учитывая учебные интересы различных групп обучающихся. Сложившаяся система подготовки учителей, повышения квалификации и переподготовки педагогических кадров не отвечает современным нуждам. Выпускники педагогических вузов в своем большинстве не имеют достаточной предметной (прежде всего - в школьной математике) и практической подготовки


НАПРАВЛЕНИЯ МОДЕРНИЗАЦИИ, ОТРАЖЕННЫЕ В ПРИМЕРНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЕ Результаты освоения программы не разбиваются по предметам. Используется понятие математической компетентности как совокупности знаний, умений и навыков и способности их применять, относящихся к области математики


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Современное содержание курса математики и информатики начального общего образования, отраженное в ФГОС, базируется на фундаментальных понятиях математики и информатики: символа, совокупности и цепочки, основных операциях над ними, понятиях логики и алгоритмики. Принципиальным является то, что осваиваемые объекты, операции, конструкции, действия всегда, когда это возможно, являются наглядными, доступными зрительному восприятию ребенка (на бумаге или на экране), а иногда даже и тактильному, и кинестетическому (когда объекты материализуются), и слуховому.


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Важное место в математической компетентности, формируемой во время обучения в основной школе, занимают элементы, применение (и тем самым - освоение) которых традиционно начинается на уроках физики. В современном курсе физики активно используются понятия перпендикулярности, параллельности, вектора (и «откладывания вектора от точки»), операций над векторами (в частности, разложения вектора по двум осям), тригонометрических функций (угла, меньшего развернутого), производной (скорости изменения), подобия (в частности - в оптике).


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Варианты построения курсов математики и физики: материал вводится в рассмотрение курса математики после того, как он используется в курсе физики. Таким образом, его изучение в курсе математики логически может быть представлено как «теоретическое осмысление», система определений и доказательств для понятий, содержательно, интуитивно, наглядно уже освоенных. построение курсов физики и математики, где приложения в физике появляются после прохождения соответствующего материала в курсе математики. более раннее изучение разделов геометрии, обеспечивающее «теоретическую» базу для физики. Это может быть сделано как с сохранением дедуктивной структуры современного («классического») курса геометрии, так и одновременно с его перестройкой.


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Межпредметная синхронизация: Начальная школа. Осваивается логика математических рассуждений, использование имен, утверждений о существовании и всеобщности (через которые выражаются и утверждения типа «и», «или»). Вводятся структуры данных: линейные (цепочки) и иерархические (деревья), используемые в русском и иностранных языках (грамматика), истории, биологии (классификации); таблицы и столбчатые диаграммы, как один из инструментов представления данных, в том числе о внешнем мире. Осваиваются измерения и анализ данных, в том числе автоматически получаемых цифровыми измерительными приборами, данные визуализируются на компьютере. Осваиваются алгоритмы: в визуальной среде - использующие основные конструкции структурного программирования (без присваивания), в числовой среде - линейные с последовательным присваиванием: «решение арифметических задач по вопросам».


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Межпредметная синхронизация: 5-6 кл. Изучаются рациональные числа, алгебраические выражения, уравнения, подстановка одного выражения в другое, эквивалентные преобразования. Формируется представление об уравнениях, отражающих закономерности (в частности - физические) реального мира. Выполняются задания, где, располагая математической формулировкой физической закономерности, можно выразить одну переменную через другие, можно найти ее значения, имея значения этих других.


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Межпредметная синхронизация: 7 кл. Появляется двумерная декартова плоскость (пока с рациональными координатами). Получают представление о функциях так, как это понимается в современной математике, в том числе о функциях, заданных алгебраическими выражениями, и о функциях, возникающих в результате измерений, проводимых цифровыми датчиками в физических процессах (отчасти возможна замена на ручное измерение). Сопоставляются теоретические и экспериментальные кривые. Физические величины, по существу, одномерны.


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Межпредметная синхронизация: 8 кл. Возникает представление о континууме действительных чисел, как отражающем физическую реальность. Полученные знания о пропорциональности геометрических объектов подкрепляются и используются в геометрической оптике. 9 кл. Аппарат метрической геометрии (теорема Пифагора, расстояние на плоскости, теорема косинусов) и тригонометрии (тригонометрические функции углов меньше развернутого), векторной алгебры осваивается параллельно в курсе математики и их приложения – в курсе физики. В курсе физики, в динамике, происходит переход от «скалярной» к «векторной»: скорость, ускорение, сила становятся векторами (по существу - двумерными).


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Освоение понятий: Оценка. В случае, когда для имен, входящих в математическое (в частности - алгебраическое) выражение, известны ограничения на их численные значения, иногда бывает возможно сделать вывод об ограничениях на значение всего выражения. Прикидка. В некоторых ситуациях, например, чтобы усомниться в правильности вычисления, человек высказывает не заведомо верное, но правдоподобное утверждение о значениях промежуточных результатов вычислений, а потом и о значении всего вычисляемого выражения. Приближенное значение. Простейшим видом оценки является оценка, получаемая отбрасыванием всех знаков десятичной записи числа, начиная с некоторого (приближение с недостатком), или аналогичная операция, дающая «оценку сверху».


СОДЕРЖАНИЕ ПРОГРАММЫ Целые, рациональные и действительные числа Измерения, приближения, оценки Алгебраические выражения Уравнения Неравенства Функции Числовые последовательности Описательная статистика Комбинаторика Геометрия Информация и способы ее представления Основы алгоритмической культуры Использование программных систем и сервисов Моделирование Математика в историческом развитии


ГЕОМЕТРИЯ Содержание должно проектироваться с учетом: развития визуального мышления, пространственного воображения; формирования математического словаря, относящегося к общекультурному багажу; уникального двухтысячелетнего источника и последующей интеллектуальной традиции, драмы идей, в которую имеет возможность погрузиться учащийся, уникальной красоты геометрических фактов, построений и доказательств; обеспечения каждого учащегося максимальным опытом самостоятельного доказывания, решения задач на построение; указанной выше задачи обоснования приложений геометрии в физике; применения геометрических понятий и фактов в повседневной и профессиональной деятельности; полезности решения геометрических задач для развития навыков формульных вычислений, в частности, с повышенными (за счет геометрической интерпретации) возможностями контроля правильности результата.


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ПРОГРАММЫ В требованиях к результатам освоения программы зафиксированы и описаны уровни математической компетентности по завершении каждого класса школы. Описание результатов освоения программы по классам состоит в указании новых элементов компетентности, приобретаемых к завершению очередного класса.


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ПРОГРАММЫ 5 класс В математическую компетентность после 5 класса входят все элементы математической компетентности после начальной школы, расширенные за счет перехода от целых чисел к рациональным: обыкновенным и десятичным дробям, возможность использовать имена (переменные) в алгебраических выражениях, решение уравнений. 6 класс В математическую компетентность после 6 класса входят все элементы математической компетентности после 5 класса.


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ПРОГРАММЫ 7 класс математическую компетентность после 7 класса входят все элементы математической компетентности после 6 класса. Основным расширением является «функциональный взгляд». 8 класс Основными элементами компетентности к концу 8 класса являются: расширение представления о числах, умение решать квадратные уравнения умение работать с многочленами, представление о пропорциональности в геометрии.


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ПРОГРАММЫ 9 класс Основными элементами компетентности к концу 9 класса являются умение: строить графики тригонометрических функций, применять понятие производной, распознавать кривые и фигуры, заданные уравнениями и неравенствами на плоскости, знать и применять свойства векторов, в том числе в их приложениях в геометрии и физике.


I. Значение математики в современном мире Качественное математическое образование необходимо каждому для его успешной жизни в современном обществе. Без высокого уровня математического образования невозможны выполнение поставленной задачи по созданию инновационной экономики, реализации долгосрочных целей и задач социально-экономического развития РФ. Повышение уровня математической образованности сделает более полноценной жизнь россиян в современном обществе, обеспечит потребности в квалифицированных специалистах для наукоемкого и высокотехнологичного производства.


II. Проблемы развития математического образования 1. Проблемы мотивационного характера: - низкая учебная мотивация школьников связанная с общественной недооценкой значимости математического образования; - устаревшее содержание и отсутствие учебных программ, отвечающих потребностям обучающихся и действительному уровню их подготовки. 2. Проблемы содержательного характера: - с одержание математического образования продолжает устаревать и остается формальным и оторванным от жизни; - потребности будущих специалистов в математических знаниях учитываются недостаточно; - подмена обучения «натаскиванием» на экзамен.


II. Проблемы развития математического образования 3. Кадровые проблемы - Выпускники образовательных организаций высшего образования педагогической направленности в своем большинстве не отвечают квалификационным требованиям, профессиональным стандартам, имеют мало опыта педагогической деятельности и опыта применения педагогических знаний.




III. Цели и задачи Концепции Задачи: -модернизация содержания учебных программ математического образования на всех уровнях (с обеспечением их преемственности); -обеспечение отсутствия пробелов в базовых знаниях для каждого обучающегося; -обеспечение наличия общедоступных информационных ресурсов, необходимых для реализации учебных программ математического образования; -повышение качества работы преподавателей математики; -поддержка лидеров математического образования; -обеспечение обучающимся, имеющим высокую мотивацию и проявляющим выдающиеся математические способности, всех условий для развития и применения этих способностей; -популяризация математических знаний и математического образования.


IV. Основные направления реализации Концепции 1. Дошкольное и начальное общее образование: Система учебных программ математического образования при участии семьи должна обеспечить: в начальном образовании – широкий спектр математической занятости обучающихся на уроках и во внеурочной деятельности, материальные, информационные и кадровые условия для развития обучающихся средствами математики


IV. Основные направления реализации Концепции 2. Основное общее и среднее общее образование Математическое образование должно: -предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе; -обеспечить каждого обучающегося развивающей интеллектуальной деятельностью на доступном уровне; -обеспечивать необходимое стране число выпускников, математическая поддержка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики.


IV. Основные направления реализации Концепции 2. Основное общее и среднее общее образование Необходимо предоставить каждому учащемуся возможность достижения соответствия любого уровня подготовки с учетом его индивидуальных потребностей и способностей Возможность достижения высокого уровня подготовки должна быть обеспечена развитием системы специализированных ОО и специализированных классов, системы дополнительного образования детей в области математики. Необходимо стимулировать индивидуальный подход и индивидуальные формы работы с отстающими обучающимися, прежде всего привлекая педагогов с большим опытом работы.


IV. Основные направления реализации Концепции 5. Математическое просвещение и популяризация математики, дополнительное образование Для математического просвещения и популяризации математики предусматривается: -Обеспечение государственной поддержки доступности математики для всех возрастных групп населения; - создание общественной атмосферы позитивного отношения к достижениям математической науки и работе в этой области; -Обеспечение непрерывной поддержки и повышения уровня математических знаний. Система дополнительного образования: математические кружки, соревнования, получение математического образования в дистанционной форме, интерактивные музеи математики, математические проекты на интернет-порталах, профессиональные математические интернет-сообщества.



«Математическая симметрия» - Симметрия в химии. Поступательная симметрия. Симметрия в искусствах. Поступательная. Осевая. Центральная симметрия. Лучевая (радиальная) симметрия. Так что симметрия – пожалуй, чуть ли не самая главная вещь во Вселенной. Вращательная симметрия. В отличии от физической симметрии, математическая симметрия встречается во многих науках.

«Математическая индукция» - В XVIII веке Л.Эйлер нашел, что при n=5. Составное число. Перед нами последовательность нечетных чисел натурального ряда. 1,3,5,7,9,11,13… Алгоритм доказательства методом математической индукции. Принцип математической индукции. Каждый человек в мире пожал какое-то количество рук. Докажите, что число людей пожавших нечетное число рук – четно.

«Математические науки» - Нужно только понять и увидеть. Сложение. Один из крупнейших математиков. Создатель классической механики. Примеры по математике. Карл Гаусс (1777-1855). Пять землекопов за 5 часов выкапывают 5 м канавы. На четырёх ногах стою, ходить же вовсе не могу. Установил принцип действия жидкостей и газов. Исаак Ньютон.

«Математические игры» - Основные функции. Игра – один из основных видов человеческой деятельности. Групповые игры. Групповые. Регата. Математические игры – прекрасный способ не только выявления, но и обучения талантливых детей. Игра - исследование. Индивидуальные игры. Развитие умений и навыков, необходимых для исследовательской деятельности.

«Математические загадки» - Только стружки белели. Да в печи четыре штуки, Пироги считают внуки. Отгадка. Не поставишь комарят наших в ряд. Сколько было сестренок? Да еще один пирог Кот под лавку уволок. Насчитала Комариха сорок пар, А продолжил счет сам Комар. Помогали мне братья. Посадила бабка в печь Пирожки с капустой печь.

«Математическое образование» - Сам материал дает возможность научить ребенка интеллектуально работать. Б.П.Гейдман, "О школьном математическом образовании". Об обучении математике сверх минимума скажу позже. Нужны уникальные специалисты, совмещающие педагогическое мастерство с хорошей математической подготовкой. Б.П. Гейдман.

КОНЦЕПЦИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ В РОССИЙСКОЙ ФЕДЕРАЦИИ

Утверждена

распоряжением Правительства

Российской Федерации



Проблемы развития математического образования:

  • Низкая мотивация школьников и студентов, которая связана с
  • недооценкой математического образования
  • перегруженностью программ техническими элементами
  • устаревшим содержанием;

3. Кадровая. В России не хватает учителей и преподавателей вузов, которые могли бы качественно преподавать математику.


Цель Концепции

вывести российское математическое образование на лидирующее положение в мире.

Математика в России должна стать передовой и привлекательной областью знания и деятельности, получение математических знаний - осознанным и внутренне мотивированным процессом.


  • сохранить достоинства советской системы математического образования и «преодолеть серьезные недостатки»;
  • обеспечить отсутствие пробелов в базовых знаниях для каждого обучающегося с применением современных технологий образовательного процесса;
  • модернизировать содержание учебных программ, исходя из потребностей в специалистах различного профиля;
  • повысить качество работы преподавателей математики (от школьных до институтских);
  • усилить материальную и социальную поддержку преподавателей математики;
  • сформировать у учеников и учителей установку: «нет неспособных к математике детей»;
  • стимулировать индивидуальные формы работы с отстающими обучающимися, привлекая к работе учителей с большим опытом работы и др.

Основные направления реализации Концепции

  • Дошкольное и начальное общее образование
  • в дошкольном образовании – освоение воспитанниками форм деятельности, первичных математических представлений и образов, используемых в жизни;
  • в начальном общем образовании – обеспечение математической активности обучающихся как на уроках, так и во внеурочной деятельности (прежде всего решение логических и арифметических задач, построение алгоритмов в визуальной и игровой среде).

2. Основное общее и среднее общее образование

  • предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе;
  • обеспечивать каждого обучающегося развивающей интеллектуальной деятельностью на доступном уровне, используя присущую математике красоту и увлекательность;
  • обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности.

В основном общем и среднем общем образовании необходимо предусмотреть подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования.

Необходимо стимулировать индивидуальный подход и индивидуальные формы работы с отстающими обучающимися, прежде всего привлекая педагогов с большим опытом работы.


В результате реализации концепции будут введены уровни математического образования:

  • первый уровень - для успешной жизни в современном обществе;
  • второй уровень - для профессионального использования математики в дальнейшей учебе и профессиональной деятельности;
  • третий уровень - для дальнейшей подготовки к творческой работе в математике и смежных научных областях.

3. Профессиональное образование

должно обеспечивать необходимый уровень математической подготовки кадров для нужд математической науки, экономики, научно-технического прогресса, безопасности и медицины.

4. Дополнительное профессиональное образование

подготовка научно-педагогических работников образовательных организаций высшего образования и научных работников.


Реализация Концепции

  • Реализация настоящей Концепции обеспечит новый уровень математического образования, что улучшит преподавание других предметов и ускорит развитие не только математики, но и других наук и технологий.
  • Реализация настоящей Концепции будет способствовать разработке и апробации механизмов развития образования, применимых в других областях.

План мероприятий по реализации Концепции развития математического образования в Богучарском муниципальном районе в 2016 году.

Наименование мероприятия

Семинар-практикум для учителей математики

Предполагаем. срок проведения мероприятия

Место проведения

Май 2016г

Заседание РМО учителей математики на тему: «Реализация Концепции развития математического образования в РФ: математика нужна каждому»

Анализ качества математического образования учителя

МКОУ «Богучарская СОШ№ 1»

Июнь 2016г

Разработка плана ОУ по повышению качества математического образования учащихся

МКОУ «Богучарская СОШ №1»

Июль 2016г

МКУ «Управление по образованию и молодежной политике»

Заседание РМО:

а) «Проблемы математического образования в свете результатов ЕГЭ, ОГЭ»

б) «Экспертиза рабочих программ по математике»

Август 2016г

Общеобразовательное учреждение

Август 2016г

МКОУ «Богучарская СОШ №1»