Тело брошенное под углом к горизонту теория. Свободное падение тел

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря - падение в пустоте. Конечно, отсутствие сопротивления воздуха - это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения - ускорение, с которым все тела падают на Землю.

Ускорение свободного падения приблизительно равно 9 , 81 м с 2 и обозначается буквой g . Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 м с 2 .

Земля - не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения - на полюсах (≈ 9 , 83 м с 2) , а самое малое - на экваторе (≈ 9 , 78 м с 2) .

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Свободное падение - прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h = v 0 + g t 2 2 .

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h:

Принимая во внимание, что v = g t , найдем скорость тела в момент падения, то есть максимальную скорость:

v = 2 h g · g = 2 h g .

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Подставив v = 0 , найдем время подъема тела на максимальную высоту:

Время падения совпадает со временем подъема, и тело вернется на Землю через t = 2 v 0 g .

Максимальная высота подъема тела, брошенного вертикально:

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a = - g . Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10 м с 2 .

Первый график - это падение тела с некоторой высоты без начальной скорости. Время падения t п = 1 с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h = 5 м.

Второй график - движение тела, брошенного вертикально вверх с начальной скоростью v 0 = 10 м с. Максимальная высота подъема h = 5 м. Время подъема и время падения t п = 1 с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси O Y тело движется равноускоренно с ускорением g , начальная скорость этого движения - v 0 y . Движение вдоль оси O X - равномерное и прямолинейное, с начальной скоростью v 0 x .

Условия для движения вдоль оси О Х:

x 0 = 0 ; v 0 x = v 0 cos α ; a x = 0 .

Условия для движения вдоль оси O Y:

y 0 = 0 ; v 0 y = v 0 sin α ; a y = - g .

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t = 2 v 0 sin α g .

Дальность полета тела:

L = v 0 2 sin 2 α g .

Максимальная дальность полета достигается при угле α = 45 ° .

L m a x = v 0 2 g .

Максимальная высота подъема:

h = v 0 2 sin 2 α 2 g .

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука - баллистика.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Обновлено:

На нескольких примерах (которые я изначально решал, как обычно, на otvet.mail.ru) рассмотрим класс задач элементарной баллистики: полет тела, запущенного под углом к горизонту с некоторой начальной скоростью, без учета сопротивления воздуха и кривизны земной поверхности (то есть направление вектора ускорения свободного падения g считаем неизменным).

Задача 1. Дальность полета тела равна высоте его полета над поверхностью Земли. Под каким углом брошено тело? (в некоторых источниках почему-то приведен неправильный ответ - 63 градуса).

Обозначим время полета как 2*t (тогда в течение t тело поднимается вверх, и в течение следующего промежутка t - спускается). Пусть горизонтальная составляющая скорости V1, вертикальная - V2. Тогда дальность полета S = V1*2*t. Высота полета H = g*t*t/2 = V2*t/2. Приравниваем
S = H
V1*2*t = V2*t/2
V2/V1 = 4
Отношение вертикальной и горизонтальной скоростей есть тангенс искомого угла α, откуда α = arctan(4) = 76 градусов.

Задача 2. Тело брошено с поверхности Земли со скоростью V0 под углом α к горизонту. Найти радиус кривизны траектории тела: а) в начале движения; б) в верхней точке траектории.

В обоих случая источник криволинейности движения - это гравитация, то есть ускорение свободного падения g, направленное вертикально вниз. Все что здесь требуется - найти проекцию g, перпендикулярную текущей скорости V, и приравнять ее центростремительному ускорению V^2/R, где R - искомый радиус кривизны.

Как видно из рисунка, для начала движения мы можем записать
gn = g*cos(a) = V0^2/R
откуда искомый радиус R = V0^2/(g*cos(a))

Для верхней точки траектории (см. рисунок) имеем
g = (V0*cos(a))^2/R
откуда R = (V0*cos(a))^2/g

Задача 3. (вариация на тему) Снаряд двигался горизонтально на высоте h и разорвался на два одинаковых осколка, один из которых упал на землю через время t1 после взрыва. Через какое время после падения первого осколка упадёт второй?

Какую бы вертикальную скорость V ни приобрел первый осколок, второй приобретет ту же по модулю вертикальную скорость, но направленную в противоположную сторону (это следует из одинаковой массы осколков и сохранения импульса). Кроме того, V направлена вниз, поскольку иначе второй осколок прилетит на землю ДО первого.

h = V*t1+g*t1^2/2
V = (h-g*t1^2/2)/t1
Второй полетит вверх, потеряет вертикальную скорость через время V/g, и затем через такое же время долетит вниз до начальной высоты h, и время t2 его задержки относительно первого осколка (не время полета от момента взрыва) составит
t2 = 2*(V/g) = 2h/(g*t1)-t1

дополнено 2018-06-03

Цитата:
Камень брошен со скоростью 10 м/с под углом 60° к горизонту. Определить тангенциальное и нормальное ускорение тела спустя 1,0 с после начала движения, радиус кривизны траектории в этот момент времени, длительность и дальность полета. Какой угол образует вектор полного ускорения с вектором скорости при t = 1,0 с

Начальная горизонтальная скорость Vг = V*cos(60°) = 10*0.5 = 5 м/с, и она не меняется в течение всего полёта. Начальная вертикальная скорость Vв = V*sin(60°) = 8.66 м/с. Время полёта до максимально высокой точки t1 = Vв/g = 8.66/9.8 = 0.884 сек, а значит длительность всего полёта 2*t1 = 1.767 с. За это время тело пролетит по горизонтали Vг*2*t1 = 8.84 м (дальность полёта).

Через 1 секунду вертикальная скорость составит 8.66 - 9.8*1 = -1.14 м/с (направлена вниз). Значит угол скорости к горизонту составит arctan(1.14/5) = 12.8° (вниз). Поскольку полное ускорение здесь единственное и неизменное (это ускорение свободного падения g , направленное вертикально вниз), то угол между скоростью тела и g в этот момент времени составит 90-12.8 = 77.2°.

Тангенциальное ускорение - это проекция g на направление вектора скорости, а значит составляет g*sin(12.8) = 2.2 м/с2. Нормальное ускорение - это перпендикулярная к вектору скорости проекция g , она равна g*cos(12.8) = 9.56 м/с2. И поскольку последнее связано со скоростью и радиусом кривизны выражением V^2/R, то имеем 9.56 = (5*5 + 1.14*1.14)/R, откуда искомый радиус R = 2.75 м.

Движение тела, брошенного под углом к горизонту

Основные формулы криволинейного движения

1 . Скорость движения материальной точки

\(\vec V=\frac{d\vec r}{dt}\) ,

где \(\vec r\) - радиус-вектор точки.

2 . Ускорение материальной точки

\(\vec a=\frac{d\vec V}{dt}=\frac{d^2\vec r}{dt^2}\) ,

\(a=\sqrt{a^2_{\tau}+a^2_n}\) ,

где \(a_{\tau}\) - тангенциальное ускорение, \(a_n\) - нормальное ускорение.

3 . Тангенциальное ускорение

\(a_{\tau}=\frac{dV}{dt}=\frac{d^2s}{dt^2}\)

4 . Нормальное ускорение

\(a_n=\frac{V^2}{R}\) ,

где \(R\) - радиус кривизны траектории.

5 . для равнопеременного движения

\(S=V_0t+\frac{at^2}{2}\)

\(V=V_0+at\)

Выразив из второго равенства \(t\) и подставив в первое, получим полезную формулу

\(2aS=V^2-V_0^2\)

Примеры решения задач

В задачах о движении тела в поле силы тяжести будем полагать \(a=g=9.8\) м/с 2 .

Задача 1.

Снаряд вылетает из орудия с начальной скоростью 490 м/с под углом 30 0 к горизонту. Найти высоту, дальность и время полета снаряда, не учитывая его вращение и сопротивление воздуха.

Решение задачи

Найти: \(h, S, t\)

\(V_0=490\) м/с

\(\alpha=30^0\)

Свяжем ИСО с орудием.

Составляющие скорости по осям Ox и Oy в начальный момент времени равны:

\(V_{0x}=V_0\cos\alpha\) - остается неизменной во все время полета снаряда,

\(V_{0y}=V_0\sin\alpha\) - меняется согласно уравнению равнопеременного движения

\(V_y=V_0\sin\alpha-gt\) .

В наивысшей точке подъема \(V_y=V_0\sin\alpha-gt_1=0\) , откуда

\(t_1=\frac{V_0\sin\alpha}{g}\)

Полное время полета снаряда

\(t=2t_1=\frac{2V_0\sin\alpha}{g}=50\) c.

Высоту подъема снаряда определим из формулы пути равно замедленного движения

\(h=V_{0y}t_1-\frac{gt_1^2}{2}=\frac{V_0^2\sin^2\alpha}{2g}=3060\) м.

Дальность полета определим как

\(S=V_{0x}t=\frac{V_0^2\sin{2\alpha}}{g}=21000\) м.

Задача 2 .

Из точки А свободно падает тело. Одновременно из точки В под углом \(\alpha\) к горизонту бросают другое тело так, чтобы оба тела столкнулись в воздухе. Показать, что угол \(\alpha\) не зависит от начальной скорости \(V_0\) тела, брошенного из точки В, и определить этот угол, если \(\frac{H}{S}=\sqrt3\) . Сопротивлением воздуха пренебречь.

Решение задачи.

Найти: \(\alpha\)

Дано: \(\frac{H}{S}=\sqrt3\)

Свяжем ИСО с точкой В.

Оба тела могут встретиться на линии ОА (см. рис.) в точке С. Разложим скорость \(V_0\) тела, брошенного из точки В, на горизонтальную и вертикальную составляющие:

\(V_{0x}=V_0\cos\alpha\) ; \(V_{0y}=V_0\sin\alpha\) .

Пусть от начала движения до момента встречи пройдет время

\(t=\frac{S}{V_{0x}}=\frac{S}{V_0\cos\alpha}\) .

За это время тело из точки А опуститься на величину

\(H-h=\frac{gt^2}{2}\) ,

а тело из точки В поднимется на высоту

\(h=V_{0y}t-\frac{gt^2}{2}=V_0\sin\alpha{t}-\frac{gt^2}{2}\) .

Решая последние два уравнения совместно, находим

\(H=V_0\sin\alpha{t}\) .

Подставляя сюда ранее найденное время, получим

\(\tan\alpha=\frac{H}{S}=\sqrt3\) ,

т.е. угол бросания не зависит от начальной скорости.

\(\alpha=60^0\)

Задача 3.

С башни брошено тело в горизонтальном направлении со скоростью 40 м/с. Какова скорость тела через 3 с после начала движения? Какой угол образует с плоскостью горизонта вектор скорости тела в этот момент?

Решение задачи.

Найти: \(\alpha\)

Дано: \(V_0=40\) м/с. \(t=3\) c.

Свяжем ИСО с башней.

Тело одновременно участвует в двух движениях: равномерно в горизонтальном направлении со скоростью \(V_0\) и в свободном падении со скоростью \(V_y=gt\) . Тогда полная скорость тела есть

\(V=\sqrt{V_0^2+g^2t^2}=50 м/с.\)

Направление вектора скорости определяется углом \(\alpha\) . Из рисунка видим, что

\(\cos\alpha=\frac{V_0}{V}=\frac{V_0}{\sqrt{V_0^2+g^2t^2}}=0.8\)

\(\alpha=37^0\)

Задача 4.

Два тела брошены вертикально вверх из одной точки одно вслед за другим с интервалом времени, равным \(\Delta{t}\) , с одинаковыми скоростями \(V_0\) . Через какое время \(t\) после бросания первого тела они встретятся?

Решение задачи.

Найти: \(t\)

Дано: \(V_0\) , \(\Delta{t}\)

Из анализа условия задачи, ясно, что первое тело поднимется на максимальную высоту и на спуске встретится со вторым телом. Запишем законы движения тел:

\(h_1=V_0t-\frac{gt^2}{2}\)

\(h_2=V_0(t-\Delta{t})-\frac{g(t-\Delta{t})^2}{2}\) .

В момент встречи \(h_1=h_2\) , откуда сразу получаем

\(t=\frac{V_0}{g}+\frac{\Delta{t}}{2}\)

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Принцип решения этих задач заключается в разложении скорости свободно падающего тела на две составляющие - горизонтальную и вертикальную. Горизонтальная составляющая скорости постоянна, вертикальное движение происходит с ускорением свободного падения g=9.8 м/с 2 . Также может применяться закон сохранения механической энергии, согласно которому сумма потенциальной и кинетической энерги тела в данном случае постоянна.

Материальная точка брошена под углом к горизонту с начальной скоростью 15 м/с. Начальная кинетическая энергия в 3 раза больше кинетической энергии точки в верхней точке траектории. На какую высоту поднималась точка?

Тело брошено под углом 40 градусов к горизонту с начальной скоростью 10 м/с. Найти расстояние, которое пролетит тело до падения, высоту подъема в верхней точке траектории и время в полете.

Тело брошено с башни высотой H вниз, под углом α к горизонту, с начальной скоростью v. Найти расстояние от башни до места падения тела.

Тело массой 0,5 кг брошено с поверхност Земли под углом 30 градусов к горизонту, с начальной скоростью 10 м/с. Найти потенциальную и кинетическую энергии тела через 0,4 с.

Материальная точка брошена вверх с поверхности Земли под углом к горизонту с начальной скоростью 10 м/с. Определить скорость точки на высоте 3 м.

Тело брошено вверх с поверхности Земли под углом 60 градусов с начальной скоростью 10 м/с. Найти расстояние до точки падения, скорость тела в точке падения и время в полете.

Тело брошено вверх под углом к горизонту с начальной скоростю 20 м/с. Расстояние до точки падения в 4 раза больше максимальной высоты подъема. Найти угол, под которым брошено тело.

Тело брошено с высоты 5 м под углом 30 градусов к горизонту с начальной скоростью 22 м/с. Найти дальность полета тела и время полета тела.

Тело брошено с поверхности Земли под углом к горизонту с начальной скоростью 30 м/с. Найти тангенциальное и нормальное ускорения тела через 1с после броска.

Тело брошено с поверхности Зесли под углом 30 градусов к горизонту с начальной скоростью 14,7 м/с. Найти тангенциальное и нормальное ускорения тела через 1,25с после броска.

Тело брошено под углом 60 градусов к горизонту с начальной скоростью 20 м/с. Через какое время угол между скоростью и горизонтом станет равным 45 градусов?

Мяч, брошенный в спортзале под углом к горизонту, с начальной скоростью 20 м/с, в верхней точке траектории коснулся потолка на высоте 8м и упал на некотором расстоянии от места броска. Найти это расстояние и угол, под которым брошено тело.

Тело, брошеное с поверхности Земли под углом к горизонту, упало через 2,2с. Найти максимальную высоту подъема тела.

Камень брошен под углом 30 градусов к горизонту. На некоторой высоте камень побывал дважды - через время 1с и 3 с после броска. Найти эту высоту и начальную скорость камня.

Камень брошен под углом 30 градусов к горизонту с начальной скоростью 10 м/с. Найти расстояние от точки бросания до камня через 4 с.

Снаряд выпущен в момент, когда самолет пролетает над орудием, под углом к горизонту с начальной скоростью 500 м/с. Снаряд поразил самолет на высоте 3,5 км через 10с после выстрела. Какова скорость самолета?

Ядро массой 5 кг брошено с поверхности Земли под углом 60 градусов к горизонту. На разгон гири потрачена энергия 500Дж. Определить дальность полета и время в полете.

Тело брошено с высоты 100м вниз под углом 30 градусов к горизонту с начальной скоростью 5 м/с. Найти дальность полета тела.

Тело массой 200г, брошеное с поверхности Земли под углом к горизонту, упало на расстоянии 5м через время 1,2с. Найти работу по броску тела.

Движение тела, брошенного под углом к горизонту

Рассмотрим движение тела, брошенного со скоростью V 0 , вектор которой направлен под углом α к горизонту, в плоскости XOY, расположив тело в момент бросания в начало координат, как это изображено на рисунке 1.

В отсутствии сил сопротивления, движение тела, брошенного под углом к горизонту, можно рассматривать как частный случай криволинейного движения под действием силы тяжести. Применяя 2 - ой закон Ньютона

∑ F i

получаем

mg = ma ,

a = g

Проекции вектора ускорения a на оси ОХ и ОУ равны:

= −g

где g = const - это

ускорение свободного падения,

которого всегда

направлен вертикально вниз,

численное значение g = 9,8м/с2 ;

= −g

т.к. ось ОУ на

рисунке 1 направлена вверх, в случае, когда ось OY направлена вниз, то проекция вектора

2 a на ось ОУ будет положительна (читая условия задач, выбирайте сами направление осей, если это не прописано в условии).

Значения проекций вектора ускорения a на оси ОХ и ОУ дают основание сделать

следующий вывод:

тело, брошенное под углом к горизонту, одновременно участвует в двух движениях - равномерном по горизонтали и равнопеременном по

вертикали.

Скорость тела в таком случае

V = Vx + Vy

Скорость тела в начальный момент времени (в момент бросания тела)

V 0 = V 0 x

V 0 y .

Проекции вектора начальной скорости на оси ОХ и ОУ равны

V cosα

V 0 y

V 0 sin α

Для равнопеременного движения зависимости скорости и перемещения от времени задаются уравнениями:

V 0 + at

S 0 + V 0 t +

и S 0 - это скорость и перемещение тела в начальный момент времени,

и S t - это скорость и перемещение тела в момент времени t.

Проекции векторного уравнения (8) на оси ОХ и ОУ равны

V 0 x

Ax t ,

V ty = V 0 y + a y t

Const

V 0 y - gt

Проекции векторного уравнения (9) на оси ОХ и ОУ равны

S ox + V ox t +

a y t 2

S 0 y

V oy t +

с учетом равенств (4), получаем

S 0 y

V oy t -

gt 2

где Sox и Soy -

координаты тела

в начальный момент времени,

а Stx и Sty -

координаты тела в момент времени t.

За время своего движения t (от момента бросания до момента падения на тот же

уровень) тело поднимается на максимальную высоту hmax , спускается с неё и отлетает от места бросания на расстояние L (дальность полета) - см. рисунок 1.

1) Время движения тела t можно найти, учитывая значения координат тела Sy в

Soy = 0, Sty = 0,

подставив значения Voy и (14) во второе уравнение системы (13), получаем

2) Дальность полета L можно найти, учитывая значения координат тела Sх в

начальный момент времени и в момент времени t (см. рис.1)

Soх = 0, Stх = L,

подставив значения Vox и (17) в первое уравнение системы (13), получаем

L = V 0 cosα × t ,

откуда, с учетом (16), получаем

L = V cosα ×

2V sin α

3) Максимальную высоту подъёма тела h max можно найти, учитывая значение

скорости тела V в точке максимального подъёма тела

V 0 x

Т.к. в этой точке V y

Используя вторые уравнения систем (11) и (13) ,

значение Voу , а также тот факт,

что в точке максимального подъёма тела Sy = hmax , получаем

0 = V 0 sin α - g × t под

gt под2

V 0 sin α × t -

h max

где tпод - время подъёма - время движения на высоту максимального подъёма тела.

Решая эту систему, получаем

t под =

V 0 sin α

sin 2 α

Сравнение значений (16) и (22), даёт основание сделать вывод

· время движения на высоту максимального подъёма тела (t под ) равно времени спуска тела (tсп ) с этой высоты и равно половине времени всего движения тела от момента бросания до момента падения на тот же уровень

t под

T сп

Изучать движение тела, брошенного со скоростью V 0 , вектор которой направлен под углом α к горизонту, в плоскости XOY, очень наглядно на компьютерной модели

"Свободное падение тел" в сборнике компьютерных моделей "Открытая физика"

компании ФИЗИКОН. В этой модели можно задавать разные начальные условия.

Например, рассмотренный нами случай нужно задавать (команда "Очистить") при начальном условии h = 0 и выбранных V0 и α. Команда "Старт" продемонстрирует движение тела и даст картинку траектории движения и направление векторов скорости тела в фиксированные моменты времени.

Рис.2. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело движется из точки начала координат и падает на том же уровне .

Если условие задачи отличается от рассмотренного нами случая, то необходимо

для решения задачи, выбрав направление осей, разместить тело в начальный момент

времени, изобразить траекторию движения тела до точки падения, таким образом

определив координаты тела в начальный и конечный моменты времени. Затем

использовать уравнения (3), (5), (8) и (9) как основу для решения и рассмотренный выше

алгоритм решения задачи.

Рассмотрим частные случаи.

6 1. Тело бросили со скоростью V 0 , вектор которой направлен под углом α к

горизонту, с высоты h и оно упало на расстоянии L от места бросания. y в начальный

Soy = h,

а значения остальных координат будут выбраны так же, как мы выбирали.

Рис.3. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело движется из точки h = 50м и падает на нулевой уровень .

2. Тело бросили горизонтально со скоростью V 0 , с высоты h и оно упало на расстоянии L от места бросания. Отличие от рассмотренного нами случая заключается в том, значения координат тела S y в начальный момент определится так же уравнением (25),

а значения остальных координат будут выбраны так же, как мы выбирали. Но в этом случае начальная скорость тела в проекции на ось ОУ равна нулю (так как α = 0), т.е.

проекции вектора начальной скорости на оси ОХ и ОУ равны

V 0 y

Рис.4. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело, брошенное горизонтально, движется из точки h = 50м и падает на нулевой уровень .