Мкт физика все термины. Основные положения МКТ

Определение 1

Молекулярно-кинетическая теория – это учение о строении и свойствах вещества, основанное на представлении о существовании атомов и молекул, как наименьших частиц химических веществ.

Основные положения молекулярно-кинетической теории молекулы:

  1. Все вещества могут быть в жидком, твердом и газообразном состоянии. Они образуются из частиц, которые состоят из атомов. Элементарные молекулы могут иметь сложное строение, то есть иметь в своем составе несколько атомов. Молекулы и атомы – электрически нейтральные частицы, которые в определенных условиях приобретают дополнительный электрический заряд и переходят в положительные или отрицательные ионы.
  2. Атомы и молекулы движутся непрерывно.
  3. Частицы с электрической природой силы взаимодействуют друг с другом.

Основные положения мкт и их примеры были перечислены выше. Между частицами имеется малое гравитационное воздействие.

Рисунок 3 . 1 . 1 . Траектория Броуновской частицы.

Определение 2

Броуновское движение молекул и атомов подтверждает существование основных положений молекулярно кинетической теории и опытно обосновывает его. Данное тепловое движение частиц происходит с взвешенными в жидкости или газе молекулами.

Опытное обоснование основных положений молекулярно кинетической теории

В 1827 году Р. Броун открыл это движение, которое было обусловлено беспорядочными ударами и перемещениями молекул. Так как процесс происходил хаотично, то удары не могли уравновесить друг друга. Отсюда вывод, что скорость броуновской частицы не может быть постоянной, она постоянно меняется, а движение направления изображается в виде зигзага, показанное на рисунке 3 . 1 . 1 .

О броуновском движении говорил еще А. Эйнштейн в 1905 году. Его теория нашла подтверждение в опытах Ж. Перрена 1908 - 1911 гг.

Определение 3

Следствие из теории Эйнштейна : квадрат смещения < r 2 > броуновской частицы относительно начального положения, усредненное по многим броуновским частицам, пропорционален времени наблюдения t .

Выражение < r 2 > = D t объясняет диффузионный закон. По теории имеем, что D монотонно возрастает с увеличением температуры. Беспорядочное движение проглядывается при наличии диффузии.

Определение 4

Диффузия – это определение явления проникновения двух или нескольких соприкасающихся веществ друг в друга.

Данный процесс происходит быстро в неоднородном газе. Благодаря примерам диффузии с разными плотностями можно получить однородную смесь. При нахождении в одном сосуде кислорода O 2 и водорода H 2 с перегородкой то при ее удалении газы начинают смешиваться, образую опасную смесь. Процесс возможен при нахождении вверху водорода, а внизу кислорода.

Процессы взаимопроникновения также протекают в жидкостях, но намного медленней. Если растворить твердое тело, сахар, в воде, то получим однородный раствор, который является наглядным примером диффузионных процессов в жидкостях. При реальных условиях смешивание в жидкостях и в газах замаскировано быстрыми процессами перемешивания, к примеру, при возникновении конвекционных потоков.

Диффузия твердых тел отличается своей замедленной скоростью. Если поверхность взаимодействия металлов очистить, то можно увидеть, что с течением большого периода времени в каждом из них появятся атомы другого металла.

Определение 5

Диффузия и броуновское движение считаются родственными явлениями.

При взаимопроникновении частиц обоих веществ движение беспорядочно, то есть, наблюдается хаотичное тепловое перемещение молекул.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы имеют в своем составе положительные и отрицательные заряды. При больших расстояниях преобладают силы межмолекулярного притяжения, при небольших – силы отталкивания.

Рисунок 3 . 1 . 2 показывает зависимость результирующей силы F и потенциальной энергии E р взаимодействия между молекулами от расстояния между их центрами. На расстоянии r = r 0 сила взаимодействияобращается в ноль. Данное расстояние условно принимается в качестве диаметра молекулы. При r = r 0 потенциальная энергиявзаимодействия минимальная.

Определение 6

Чтобы отдалить две молекулы с расстоянием r 0 , следует сообщить E 0 , называемую энергией связи или глубиной потенциальной ямы.

Рисунок 3 . 1 . 2 . Сила взаимодействия F и потенциальная энергия взаимодействия E р двух молекул. F > 0 – сила отталкивания, F < 0 – сила притяжения.

Так как молекулы имеют малые размеры, то простые одноатомные могут быть не более 10 – 10 м. Сложные могут достигать размеров в сотни раз больше.

Определение 7

Беспорядочное хаотичное движение молекул называют тепловым движением.

При возрастании температуры увеличивается кинетическая энергия теплового движения. При пониженных температурах средняя кинетическая энергия, в большинстве случаев, оказывается меньше значения глубины потенциальной ямы E 0 . Данный случай показывает, что молекулы перетекают в жидкое или твердое вещество со средним расстоянием между ними r 0 . Если температура повышается, то средняя кинетическая энергия молекулы превышает E 0 , тогда они разлетаются и образуют газообразное вещество.

В твердых телах молекулы двигаются беспорядочно около фиксированных центров, то есть, положений равновесий. В пространстве может быть распределены нерегулярным образом (у аморфных тел) или с образованием упорядоченных объемных структур (кристаллических тел).

Агрегатные состояния веществ

Свобода теплового движения молекул просматривается в жидкостях, так как у них нет привязки к центрам, что позволяет производить перемещения по всему объему. Этим объясняется ее текучесть.

Определение 8

Если молекулы располагаются близко, то могут образовывать упорядоченные структуры с несколькими молекулами. Данное явление получило название ближнего порядка. Дальний порядок характерен для кристаллических тел.

Расстояние в газах между молекулами намного больше, поэтому действующие силы малы, а их движения идут вдоль прямой, ожидая очередного соударения. Значение 10 – 8 м является средним расстоянием между молекулами воздуха в нормальных условиях. Так как взаимодействие сил слабое, газы расширяются и могут заполнять любой объем сосуда. Когда их взаимодействие стремится к нулю, то говорят о представлении идеального газа.

Кинетическая модель идеального газа

В мкт количество вещества считается пропорциональным числу частиц.

Определение 9

Моль – это количество вещества, содержащее столько частиц (молекул), сколько содержится атомов в 0 , 012 к г углерода C 12 . Молекула углерода состоит из одного атома. Отсюда следует, что 1 моль вещества имеет одно и то же количество молекул. Данное число называется постоянной Авогадро N А: N А = 6 , 02 ċ 1023 м о л ь – 1 .

Формула определения количества вещества ν записывается отношением N числа частиц на постоянную Авогадро N A: ν = N N A .

Определение 10

Массой одного моля вещества называют молярную массу М. Она фиксируется в виде формулы M = N А ċ m 0 .

Выражение молярной массы производится в килограммах на моль (к г / м о л ь) .

Определение 11

Если вещество имеет в составе один атом, тогда имеет место говорить об атомной массе частицы. Единица атома – это 1 12 массы изотопа углерода C 12 , называется атомной единицей массы и записывается как (а. е. м. ): 1 а. е. м. = 1 , 66 ċ 10 – 27 к г.

Данная величина совпадает с массой протона и нейтрона.

Определение 12

Отношение массы атома или молекулы данного вещества к 1 12 массы атома углерода называют относительной массой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Вещество состоит из частиц.

Молекула - это самая маленькая частица вещества, которая обладает его основными химическими свойствами.

Молекула состоит из атомов. Атом - наименьшая частица вещества, которая не делится при химических реакциях.

Многие молекулы состоят из двух или больше атомов, удерживаемых вместе химическими связями. Некоторые молекулы состоят из сотен тысяч атомов.

Второе положение молекулярно-кинетической теории

Молекулы находятся в непрерывном хаотическом движении. Это движение не зависит от внешних воздействий. Движение происходит в непредсказуемом направлении из-за столкновения молекул. Доказательством является броуновское движение частиц (открыто Р.Броуном 1827г). Частицы помещают в жидкость или газ и наблюдают их непредсказуемое движение из-за соударений с молекулами вещества.


Броуновское движение

Доказательством хаотического движения является диффузия - проникновение молекул одного вещества в промежутки между молекулами другого вещества. Например, запах освежителя воздуха мы ощущаем не только в том месте, где его распылили, но он постепенно перемешивается с молекулами воздуха во всей комнате.

Агрегатное состояние вещества

В газах среднее расстояние между молекулами в сотни раз превышает их размеры. В основном молекулы движутся поступательно и равномерно . После столкновений начинают вращаться.

В жидкостях расстояние между молекулами значительно меньше. Молекулы совершают колебательное и поступательное движения. Молекулы через малые промежутки времени скачкообразно переходят в новые положения равновесия (мы наблюдаем текучесть жидкости).

В твердых телах молекулы колеблются и очень редко перемещаются (только при увеличении температуры).

Третье положение молекулярно-кинетической теории

Между молекулами существуют силы взаимодействия, которые имеют электромагнитную природу . Эти силы позволяют объяснить возникновение сил упругости . Когда вещество сжимают, молекулы сближаются, между ними возникает сила отталкивания, когда внешние силы отдаляют молекулы друг от друга (растягивают вещество), между ними возникает сила притяжения.

Плотность вещества

Это скалярная величина, которая определяется по формуле

Плотность веществ - известные табличные значения

Химические характеристики вещества

Постоянная Авогадро N A - число атомов, содержащихся в 12г изотопа углерода

Данный видеоурок посвящен теме «Основные положения МКТ. Строение вещества. Молекула». Здесь вы узнаете, что изучает молекулярно-кинетическая теория (МКТ) в физике. Познакомитесь с тремя основными положениями, на которых базируется МКТ. Узнаете, чем определяются физические свойства вещества и что представляют собой атом и молекула.

Для начала давайте вспомним все предыдущие разделы физики, которые мы изучали, и поймём, что всё это время мы рассматривали процессы, происходящие с макроскопическими телами (или объектами макромира). Теперь же мы будем изучать их строение и процессы, протекающие внутри них.

Определение. Макроскопическое тело - тело, состоящее из большого числа частиц. Например: машина, человек, планета, бильярдный шар…

Микроскопическое тело - тело, состоящее из одной или нескольких частиц. Например: атом, молекула, электрон… (рис. 1)

Рис. 1. Примеры микро- и макрообъектов соответственно

Определив таким образом предмет изучения курса МКТ, следует теперь поговорить об основных целях, которые ставит перед собой курс МКТ, а именно:

  1. Изучение процессов, происходящих внутри макроскопического тела (движение и взаимодействие частиц)
  2. Свойства тел (плотность, масса, давление (для газов)…)
  3. Изучение тепловых явлений (нагревание-охлаждение, изменения агрегатных состояний тела)

Изучение этих вопросов, которое будет проходить на протяжении всей темы, начнётся сейчас с того, что мы сформулируем так называемые основные положения МКТ, то есть некоторые утверждения, истинность которых уже давно не подвергается сомнениям, и, отталкиваясь от которых, будет строиться весь дальнейший курс.

Разберём их по очереди:

Все вещества состоят из большого количества частиц - молекул и атомов.

Определение. Атом - мельчайшая частица химического элемента. Размеры атомов (их диаметр) имеет порядок см. Стоит отметить, что различных типов атомов, в отличие от молекул, относительно немного. Все их разновидности, которые на сегодняшний день известны человеку, собраны в так называемой таблице Менделеева (см. рис. 2)

Рис. 2. Периодическая таблица химических элементов (по сути разновидностей атомов) Д. И. Менделеева

Молекула - структурная единица вещества, состоящая из атомов. В отличие от атомов, они больше и тяжелее последних, а главное, они обладают огромным разнообразием.

Вещество, молекулы которого состоят из одного атома, называются атомарными , из большего количества - молекулярными . Например: кислород, вода, поваренная соль () - молекулярные; гелий серебро (He, Ag) - атомарные.

Причём следует понимать, что свойства макроскопических тел будут зависеть не только от количественной характеристики их микроскопического состава, но и от качественной.

Если в строении атомов вещество имеет какую-то определённую геометрию (кристаллическую решётку ), или же, наоборот, не имеет, то этим телам будут присущи различные свойства. Например, аморфные тела не имеют строгой температуры плавления. Самый известный пример - это аморфный графит и кристаллический алмаз. Оба вещества состоят из атомов углерода.

Рис. 3. Графит и алмаз соответственно

Таким образом «из скольких, в каком взаимном расположении и каких атомов и молекул состоит вещество?» - первый вопрос, ответ на который приблизит нас к пониманию свойств тел.

Все упомянутые выше частицы находятся в непрерывном тепловом хаотическом движении.

Так же, как и в рассматриваемых выше примерах, важно понимание не только количественных аспектов этого движения, но и качественных для различных веществ.

Молекулы и атомы твёрдых тел совершают лишь небольшие колебания относительно своего постоянного положения; жидких - также совершают колебания, но из-за больших размеров межмолекулярного пространства иногда меняются местами друг с другом; частички газа, в свою очередь, практически не сталкиваясь, свободно перемещаются в пространстве.

Частицы взаимодействуют друг с другом.

Взаимодействие это носит электромагнитный характер (взаимодействия ядер и электронов атома) и действует в обе стороны (как притягивание, так и отталкивание).

Здесь: d - расстояние между частицами; a - размеры частиц (диаметр).

Впервые понятие «атом» было введено древнегреческим философом и естествоведом Демокритом (рис. 4). В более поздний период активно задался вопросом о структуре микромира русский учёный Ломоносов (рис. 5).

Рис. 4. Демокрит

Рис. 5. Ломоносов

На следующем занятии мы введём методы качественного обоснования основным положениям МКТ.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Elementy.ru ().
  2. Samlib.ru ().
  3. Youtube ().

Домашнее задание

  1. *Благодаря какой силе возможно сделать эксперимент по измерению размеров молекулы масла, показанный в видеоуроке?
  2. Почему молекулярно-кинетическая теория не рассматривает органические соединения?
  3. Почему даже очень маленькая песчинка песка является объектом макромира?
  4. Силы преимущественно какой природы действуют на частицы со стороны других частиц?
  5. Как определить, является ли некая химическая структура химическим элементом?

Основные положения молекулярно-кинетической теории.

Молекулярно-кинетическая теория (МКТ) занимается изучением свойств веществ, основываясь при этом на представлениях о частицах вещества.

МКТ базируется на трех основных положениях:

1. Все вещества состоят из частиц - молекул, атомов и ионов.

2. Частицы вещества беспрерывно и беспорядочно движутся.

3. Частицы вещества взаимодействуют друг с другом.

Беспорядочное (хаотичное) движение атомов и молекул в веществе называют тепловым движением, потому что скорость движения частиц увеличивается с ростом температуры. Экспериментальным подтверждением непрерывного движения атомов и молекул в веществе является броуновское движение и диффузия.

Частицы вещества.

Все вещества и тела в природе состоят из атомов и молекул - групп атомов. Такие большие тела называются макроскопическими. Атомы и молекулы относятся к микроскопическим телам. Современные приборы (ионные проекторы, туннельные микроскопы) позволяют видеть изображения отдельных атомов и молекул.
Основа строения вещества - атомы. Атомы тоже имеют сложную структуру, они состоят из элементарных частиц - протонов, нейтронов, входящих в состав ядра атома, электронов, а также других элементарных частиц.
Атомы могут объединяться в молекулы, а могут быть вещества, состоящие только из атомов. Атомы в целом электронейтральны. Атомы, имеющие избыток или недостаток электронов называются ионами. Бывают положительные и отрицательные ионы.

На иллюстрации показаны примеры разных веществ, имеющих строение соответственно в виде атомов, молекул и ионов.

Силы взаимодействия между молекулами.

На очень малых расстояниях между молекулами действуют силы отталкивания. Благодаря этому молекулы не проникают друг в друга и куски вещества никогда не сжимаются до размеров одной молекулы. Молекула - это сложная система, состоящая из отдельных заряженных частиц: электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, но между ними на малых расстояниях действуют значительные электрические силы: происходит взаимодействие электронов и атомных ядер соседних молекул. Если молекулы находятся на расстояниях, превышающих их размеры в несколько раз, то силы взаимодействия практически не сказываются. Силы между электрически нейтральными молекулами являются короткодействующими. На расстояниях, превышающих 2 - 3 диаметра молекул, действуют силы притяжения. По мере уменьшения расстояния между молекулами сила притяжения сначала увеличивается, а затем начинает убывать и убывает до нуля, когда расстояние между двумя молекулами становится равным сумме радиусов молекул. При дальнейшем уменьшении расстояния электронные оболочки атомов начинают перекрываться, и между молекулами возникают быстро нарастающие силы отталкивания.

Идеальный газ. Основное уравнение МКТ.

Известно, что частицы в газах, в отличие от жидкостей и твердых тел, располагаются друг относительно друга на расстояниях, существенно превышающих их собственные размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше энергии межмолекулярного взаимодействия. Для выяснения наиболее общих свойств, присущих всем газам, используют упрощенную модель реальных газов - идеальный газ. Основные отличия идеального газа от реального газа:

1. Частицы идеального газа - сферические тела очень малых размеров, практически материальные точки.
2. Между частицами отсутствуют силы межмолекулярного взаимодействия.
3. Соударения частиц являются абсолютно упругими.

Реальные разреженные газы действительно ведут себя подобно идеальному газу. Воспользуемся моделью идеального газа для объяснения происхождения давления газа. Вследствие теплового движения, частицы газа время от времени ударяются о стенки сосуда. При каждом ударе молекулы действуют на стенку сосуда с некоторой силой. Складываясь друг с другом, силы ударов отдельных частиц образуют некоторую силу давления, постоянно действующую на стенку. Понятно, что чем больше частиц содержится в сосуде, тем чаще они будут ударяться о стенку сосуда, и тем большей будет сила давления, а значит и давление. Чем быстрее движутся частицы, тем сильнее они ударяют в стенку сосуда. Мысленно представим себе простейший опыт: катящийся мяч ударяется о стенку. Если мяч катится медленно, то он при ударе подействует на стенку с меньшей силой, чем если бы он двигался быстро. Чем больше масса частицы, тем больше сила удара. Чем быстрее движутся частицы, тем чаще они ударяются о стенки сосуда. Итак, сила, с которой молекулы действуют на стенку сосуда, прямо пропорциональна числу молекул, содержащихся в единице объема (это число называется концентрацией молекул и обозначается n), массе молекулы m o , среднему квадрату их скоростей и площади стенки сосуда. В результате получаем: давление газа прямо пропорционально концентрации частиц, массе частицы и квадрату скорости частицы (или их кинетической энергии). Зависимость давления идеального газа от концентрации и от средней кинетической энергии частиц выражается основным уравнением молекулярно-кинетической теории идеального газа. Мы получили основное уравнение МКТ идеального газа из общих соображений, но его можно строго вывести, опираясь на законы классической механики. Приведем одну из форм записи основного уравнения МКТ:
P=(1/3)· n· m o · V 2 .

Основные итоги.

Молекулярно-кинетическая теория описывает поведение и свойства особого идеального объекта, называемого идеальным газом . В основе данной физической модели лежит молекулярное строение вещества. Создание молекулярной теории связано с работами Р. Клаузиуса, Дж. Максвелла, Д. Джоуля и Л. Больцмана.

Идеальный газ . Молекулярно-кинетическая теория идеального газа строится на следующих посылках:

    атомы и молекулы можно рассматривать как материальные точки, находящиеся в непрерывном движении;

    собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

    все атомы и молекулы являются различимыми, то есть существует принципиальная возможность следить за движением каждой частицы;

    до столкновения молекул газа между ними отсутствуют силы взаимодействия, а соударения молекул между собой и со стенками сосуда предполагаются абсолютно упругими;

    движение каждого атома или молекулы газа описывается законами классической механики.

Законы, полученные для идеального газа можно использовать при изучении реальных газов. Для этого создают экспериментальные модели идеального газа, в которых свойства реального газа близки характеристикам идеального газа (например, при низких давлениях и высоких температурах).

Законы идеального газа

Закон Бойля-Мариотта :

для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная: рV = const , (1.1)

при T = const , m = const .

Кривая, изображающая зависимость между величинами р и V , характеризует свойства вещества при постоянной температуре, и называется изотермой  это гипербола (рис.1.1.), а процесс, протекающий при постоянной температуре, называется изотермическим.

Законы Гей-Люссака :

    Объем данной массы газа при постоянном давлении изменяется линейнос температурой

V = V 0 (1 + t ) при Р = const , m = const . (1.2)

p = p 0 (1 +  t ) при V = const , m = const . (1.3)

В уравнениях (1.2) и (1.3) температура выражена по шкале Цельсия, давление и объем – при 0 С, при этом
.

Процесс, протекающий при постоянном давлении, называется изобарным , его можно представить в виде линейной функции (рис. 1.2.).

Процесс, протекающий при постоянном объеме, называется изохорным (рис. 1.3.).

Из уравнений (1.2) и (1.3) следует, что изобары и изохоры пересекают ось температур в точке t = 1/ =  273,15 С. Если перенести начало отсчета в эту точку, то перейдем к шкале Кельвина.

Вводя в формулы (1.2) и (1.3) термодинамическую температуру, законам Гей-Люссака можно придать более удобный вид:

V = V 0 (1+t ) = = V 0 = =V 0 T ;

p = p 0 (1+t ) = p 0 = p 0 T ;


при p = const, m = const ; (1.4)


при V = const, m = const , (1.5)

где индексы 1 и 2 относятся к произвольным состояниям, лежащим на одной изобаре или изохоре.

Закон Авогадро :

моли любых газов при одних и тех же температурах и давлениях занимают одинаковые объемы.

При нормальных условиях этот объем равен V  ,0 = 22,4110 -3 м 3 /моль. По определению, в одном моле различных веществ содержится одно и то же число молекул, равное постоянной Авогадро : N A = 6,02210 23 моль -1 .

Закон Дальтона :

давление смеси разных идеальных газов равно сумме парциальных давлений р 1 , р 2 , р 3 … р n , входящих в нее газов:

р = р 1 + р 2 + р 3 + …+ р n .

Парциальное давление это давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре.

Уравнение состояния идеального газа

(уравнение Клапейрона-Менделеева)

Между температурой, объемом и давлением существует определенная связь. Эта связь может быть представлена функциональной зависимостью:

f (p, V, T) = 0.

В свою очередь каждая из переменных (р, V, T ) является функцией двух других переменных. Вид функциональной зависимости для каждого фазового состояния вещества (твердого, жидкого, газообразного) отыскивается экспериментально. Это весьма трудоемкий процесс и уравнение состояния установлено лишь для газов, которые находятся в разреженном состоянии, и в приближенной форме – для некоторых сжатых газов. Для веществ, находящихся не в газообразном состоянии, эта задача до сих пор не решена.

Французский физик Б. Клапейрон вывел уравнение состояния идеального газа , объединив законы Бойля-Мариотта, Гей-Люссака, Шарля:


. (1.6)

Выражение (1.6) и есть уравнение Клапейрона, где В – газовая постоянная. Она различна для разных газов.

Д.И. Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (1.6) к одному молю и использовав молярный объем V  . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем V . . Поэтому постоянная В будет одинаковой для всех идеальных газов. Данная постоянная обычно обозначается R и равна R = 8,31
.

Уравнение Клапейрона-Менделеева имеет следующий вид:

p V  . = R T .

От уравнения (1.7) для одного моля газа можно перейти к уравнению Клапейрона-Менделеева для произвольной массы газа :

, (1.7)

где молярная масса (масса одного моля вещества, кг/ моль); m масса газа;  количество вещества.

Чаще пользуются другой формой уравнения состояния идеального газа, вводя постоянную Больцмана :
.

Тогда уравнение (1.7) выглядит так:


, (1.8)

где
концентрация молекул (число молекул в единице объема). Из этого выражения следует, что давление идеального газа прямо пропорционально концентрации его молекул или плотности газа. При одних и тех же температурах и давлениях все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м 3 при нормальных условиях, называется числом Лошмидта :

N L = 2,68 10 25 м -3 .

Основное уравнение молекулярно-кинетической

теории идеальных газов

Важнейшей задачей кинетической теории газовявляется теоретический расчет давления идеального газа на основе молекулярно-кинетических представлений. Основное уравнение молекулярно-кинетической теории идеальных газов выводится с использованием статистических методов .

Предполагается, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, и эти соударения абсолютно упругие. На стенке сосуда выделяют некоторую элементарную площадку S и вычисляют давление, которое будут оказывать молекулы газа на эту площадку.

Необходимо учитывать то, что реально молекулы могут двигаться к площадке под разными углами и могут иметь различные скорости, которые к тому же при каждом соударении могут меняться. В теоретических расчетах хаотические движения молекул идеализируется, их заменяют движением вдоль трех взаимно перпендикулярных направлений.

Если рассмотреть сосуд в виде куба, в котором беспорядочно движется N молекул газа в шести направлениях, то несложно заметить, что в любой момент времени вдоль каждого из них движется 1/3 количества всех молекул, причем половина из них (то есть. 1/6 количества всех молекул) движется в одну сторону, а вторая половина (тоже 1/6)  в противоположную. При каждом соударении отдельная молекула, движущаяся перпендикулярно площадке, отражаясь, передает ей импульс, при этом ее количество движения (импульс) меняется на величину

Р 1 =m 0 v – (– m 0 v ) = 2 m 0 v .

Число ударов молекул, движущихся в заданном направлении, о площадку будет равно: N = 1/6 n S v t . При столкновении с площадкой эти молекулы передадут ей импульс

P = N P 1 =2 m 0 v n S v t= m 0 v 2 n S t ,

где n – концентрация молекул. Тогда давление, которое газ оказываетна стенку сосуда, будет равно:

р =
=
n m 0 v 2 . (1.9)

Однако молекулы газа движутся с различными скоростями: v 1 , v 2 , …,v n , поэтому скорости необходимо усреднить. Сумма квадратов скоростей движения молекул газа, делённая на их количество, определяет среднеквадратичную скорость:


.

Уравнение (1.9) примет вид:


(1.10)

выражение (1.10) называется основным уравнением молекулярно-кинетической теории идеальных газов.

Учитывая, что
, получим:

р V = N
, (1.11)

где Е – суммарная кинетическая энергия поступательного движения всех молекул газа. Следовательно, давление газа прямо пропорционально кинетической энергии поступательного движения молекул газа.

Для одного моля газа m = , и уравнение Клапейрона-Менделеева имеет следующий вид:

p V . = R T ,

и так как из (1.11) следует, что p V . = v кв  2 , получим:

RT =  v кв  2 .

Отсюда средняя квадратичная скорость молекул газа равна

v кв =
=
=
,

где k = R / N A = 1,3810 -23 Дж/К – постоянная Больцмана. Отсюда можно найти среднюю квадратичную скорость молекул кислорода при комнатной температуре – 480 м/с, водорода – 1900 м/с.

Молекулярно-кинетический смысл температуры

Температура является количественной мерой «нагретости» тела. Для выяснения физического смысла абсолютной термодинамической температуры Т сопоставим основное уравнение молекулярно-кинетической теории газов (1.14) с уравнением Клапейрона-Менделеева p V = R T.

Приравняв правые части этих уравнений, найдем среднее значение кинетической энергии  0 одной молекулы ( = N /N A , k = R /N A ):


.

Из этого уравнения следует важнейший вывод молекулярно-кинетической теории: средняя кинетическая энергия поступательного движения одной молекулы идеального газа зависит только от температуры, при этом она прямо пропорциональна термодинамической температуре . Таким образом, термодинамическая шкала температур приобретает непосредственный физический смысл: при Т = 0 кинетическая энергия молекул идеального газа равна нулю. Следовательно, исходя из этой теории, поступательное движение молекул газа прекратится и его давление станет равным нулю.

Теория равновесных свойств идеального газа

Число степеней свободы молекул . Молекулярно-кинетическая теория идеальных газов приводит к весьма важному следствию: молекулы газа совершают беспорядочное движение, причем средняя кинетическая энергия поступательного движения молекулы определяется исключительно температурой.

Кинетическая энергия движения молекул не исчерпывается кинетической энергией поступательного движения : она также складывается из кинетических энергий вращения и колебания молекул. Для того, чтобы подсчитать энергию, идущую на все виды движения молекул, необходимо дать определение числу степеней свободы .

Под числом степеней свободы (i ) тела подразумевается число независимых координат, которые необходимо ввести для определения положения тела в пространстве.

Например, материальная точка обладает тремя степенями свободы, так как ее положение в пространстве определяется тремя координатами:х, у и z . Следовательно, одноатомная молекула обладает тремя степенями свободы поступательного движения.

Двухатомная молекула имеет 5 степеней свободы (рис. 1.4): 3 степени свободы поступательного движения и 2 степени свободы вращательного движения.

Молекулы из трех и более атомов имеют 6 степеней свободы: 3 степени свободы поступательного движения и 3 степени свободы вращательного движения (рис. 1.5).

Каждая молекула газа обладает определенным числом степеней свободы, три из которых соответствуют ее поступательному движению.

Положение о равнораспределении энергии

по степеням свободы

Основной предпосылкой молекулярно-кинетической теории газов является предположение о полной беспорядочности движения молекул. Это относится и к колебательному, и к вращательному движениям, а не только поступательному. Считается, что все направления движения молекул в газе равновероятны. Поэтому можно предположить, что на каждую степень свободы молекулы в среднем приходится одно и то же количество энергии – это есть положение о равнораспределении энергии по степеням свободы. Энергия, приходящаяся на одну степень свободы молекулы, равна:


. (1.12)

Если молекула обладает i степенями свободы, то на каждую степень свободы приходится в среднем:


. (1.13)

Внутренняя энергия идеального газа

Если отнести полный запас внутренней энергии газа к одному молю, то получим ее значение, умножив  на число Авогадро:


. (1.14)

Отсюда следует, что внутренняя энергия одного моля идеального газа зависит только от температуры и числа степеней свободы молекул газа.

распределения Максвелла и Больцмана

Распределение молекул идеального газа по скоростям и энергиям теплового движения (распределение Максвелла). При постоянной температуре газа все направления движения молекул предполагаются равновероятными. В этом случае средняя квадратичная скорость каждой молекулы остаётся постоянной и равна

.

Это объясняется тем, что в идеальном газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. это распределение подчиняется определенному статистическому закону, который теоретически вывел Дж. Максвелл. Закон Максвелла описывается функцией


,

то есть функция f (v ) определяет относительное число молекул
, скорости которых лежат в интервале отv до v + d v . Применяя методы теории вероятностей, Максвелл нашел закон распределения молекул идеального газа по скоростям:


. (1.15)

Функция распределения в графическом виде представлена на рис. 1.6. Площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Это значит, что функция f (v ) удовлетворяет условию нормировки:


.

Скорость, при которой функция распределения молекул идеального газа по скоростям f (v ) максимальна, называется наиболее вероятной скоростью v B .

Значения v = 0 и v = соответствуют минимумам выражения (1.15). Наиболее вероятную скорость можно найти, продифференцировав выражение (1.23) и приравняв его к нулю:


=
=
1,41

При увеличении температуры максимум функции сместится вправо (рис.1.6), то есть при увеличении температуры увеличивается и наиболее вероятная скорость, однако, ограниченная кривой площадь остаётся неизменной. Следует заметить, что в газах и при небольших температурах всегда присутствует небольшое количество молекул, которые движутся с большими скоростями. Наличие таких «горячих» молекул имеет большое значение при протекании многих процессов.

Средняя арифметическая скорость молекулы определяется по формуле

.

Средняя квадратичная скорость


=
1,73
.

Отношение этих скоростей не зависит ни от температуры, ни от вида газа.

Функция распределения молекул по энергиям теплового движения . Эту функцию можно получить, подставив в уравнение распределения молекул (1.15) вместо скорости значение кинетической энергии:


.

Проинтегрировав выражение по значениям энергии от
до
, получимсреднюю кинетическую энергию молекулы идеального газа:

.

Барометрическая формула. Распределение Больцмана. При выводе основного уравнения молекулярно-кинетической теории газов и распределения Максвелла молекул по скоростям предполагалось, что на молекулы идеального газа не действуют внешние силы, поэтому молекулы равномерно распределены по всему объему. Однако молекулы любого газа находятся в поле тяготения Земли. При выводе закона зависимости давления от высоты, предполагается, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова:

. (1.16)

Выражение (1.16) называется барометрической формулой . Оно позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, можно найти высоту. Так как h 1 – это высота над уровнем моря, где давление считается нормальным, то выражение можно модифицировать:

.

Барометрическую формулу можно преобразовать, если воспользоваться выражением р = nkT :

,

гдеn концентрация молекул на высоте h , m 0 gh = П потенциальная энергия молекулы в поле тяготения. При постоянной температуре плотность газа больше там, где меньше потенциальная энергия молекулы. Графически закон убывания числа частиц в единице объема с высотой выглядит, как показано на рис. 1.7.

Для произвольного внешнего потенциального поля запишем следующее общее выражение

,