Открытия о строении вселенной форме земли. Тема: как менялись представления людей о вселенной

С помощью рентгенографическое исследования сделано великое открытие: подтверждено, что тело мумии принадлежит египетскоймумии 2500-летней давности, известной как «Тахема». Фото: Leon Neal/AFP/Getty Images

Пытливая человеческая мысль прошла нелегкий путь, чтобы предоставить миру великие открытия и изобретения в области химии, физики, физиологии и медицины за последние 100 лет со дня учреждения Нобелевского Фонда.

Это те великие открытия и изобретения, которые в действительности потрясли и изменили мир людей. Все великие открытия и изобретения имеют свою историю. Общечеловеческая история великих изобретений проходит путь от первых примитивных орудий труда до современных компьютеров; от лодок-каноэ до атомных ледоколов; от воздушных шаров до космических ракет и космических станций и так далее.

В начале ноября этого года сотрудники лондонского Музея науки опросили 50 тысяч человек. Участников попросили назвать великие открытия и изобретения современности, которые они считают наиболее выдающимися. 10 тысяч из них указали, что из всех великих открытий и изобретений именно рентген оказал наибольшее влияние на прошлое, настоящее и будущее человечества.

Рентген впервые позволил заглянуть внутрь объектов, не нарушив их структуры, и позволил медикам заглянуть в человеческое тело без проведения операции. Открытие и использование рентгеновского излучения опередило все имеющиеся достижения инженерной мысли.

Изобретатель

Изобретатель рентгена Вильгельм Конрад Рёнтген (Röntgen) (1845-1923), немецкий физик, с 1875 года профессор в Гогенгейме, в 1876 профессор физики в Страсбурге, с 1879 в Гиссене, с 1885 в Вюрцбурге, с 1899 в Мюнхене. Работы физика, главным образом, проводились в области соотношения между световыми и электрическими явлениями. В 1895 году Вильгельм Конрад открыл излучение, названное рентгеновским, исследовал его свойства. Рентге́н сделал некоторые открытия о свойствах кристаллов и магнетизма.

Все великие изобретения и открытия физика детально изложены в созданных учёным трудах. Рентге́н Вильгельм Конрад был первым лауреатом Нобелевской премии по физике, присуждённой ему в 1901 году «В знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей», названных впоследствии в его честь. Это открытие действительно оказалось великим открытием века.

Открытие лучей

Главное открытие в своей жизни - икс-излучение (позже названное рентгеновским), Рентге́н Вильгельм Конрад сделал когда ему было уже 50 лет. Будучи руководителем физического отделения Вюрцбургского университета, он имел обыкновение допоздна засиживаться в лаборатории, когда его ассистенты уходили домой, Рентген продолжал работать.

Как обычно, однажды он включил ток в катодной трубке, плотно закрытой со всех сторон чёрной бумагой. Кристаллы платиноцианистого бария, лежавшие неподалёку, начали светиться зеленоватым светом. Учёный выключил ток - свечение кристаллов прекратилось. При повторной подаче напряжения на катодную трубку, свечение в кристаллах возобновилось.

В результате дальнейших исследований учёный пришёл к выводу, что из трубки исходит неизвестное излучение, названное им впоследствии икс-лучами. В этот момент и явилось миру великое открытие. Эксперименты Рентгена показали, что икс-лучи возникают в месте столкновения катодных лучей с преградой внутри катодной трубки.

Для проведения исследований учёный изобрёл трубку специальной конструкции, в которой антикатод был плоским, что обеспечивало интенсификацию потока икс-лучей. Благодаря этой трубке (она впоследствии будет названа рентгеновской) он изучил и описал основные свойства ранее неизвестного излучения, которое получило название «рентгеновское».

Физические свойства рентгеновских лучей

В результате исследований были сделаны открытия, и зафиксированы свойства рентгеновских лучей: икс-излучение способно проникать сквозь многие непрозрачные материалы, при этом икс-излучение не отражается и не преломляется. Если пропускать разряды электрического тока через достаточно разреженную трубку, то наблюдаются исходящие из трубки особые лучи.

Они, во-первых, вызывают флуоресценцию (свечение) платиново-синеродистого бария, во-вторых, беспрепятственно проходят через картон, бумагу, толстые слои дерева (толщиной 2-3 см) и алюминий (толщиной до 15 мм), в-третьих, лучи задерживаются металлами, костями и т. д. Лучи не обладают способностью отражаться, преломляться, интерферировать, не испытывают дифракции, не подвергаются двойному лучепреломлению и не могут быть поляризованы.

Рентгеном были сделаны первые снимки с помощью рентгеновского излучения. Так же было сделано ещё одно открытие, что рентгеновское излучение ионизирует окружающий воздух и засвечивает фото-пластины.

Использование изобретения во всём мире

Для использования открытых рентгеновских лучей были изобретены различные приборы. Для фотографирования частей человеческого тела при помощи рентгеновских лучей был изобретён рентгеновский аппарат, что нашло применение в хирургии: мягкие ткани тела человека пропускают лучи, а кости, а равно и металлы, кольцо, например, их задерживают. Позже такое фотографирование стало называться рентгеноскопией, что тоже являлось одним из великих изобретений века.

Это великое открытие и изобретения немецкого учёного очень сильно повлияло на развитие науки. Эксперименты и исследования с использованием рентгеновских лучей помогли получить новые сведения о строении вещества, которые вместе с другими открытиями того времени заставили пересмотреть целый ряд положений классической физики. Через короткий промежуток времени рентгеновские трубки нашли применение не только в медицине, но и в различных областях техники.

К Рентгену не раз обращались представители промышленных фирм с предложениями о выгодной покупке прав на использование изобретения. Но Вильгельм отказался запатентовать открытие, так как не считал свои исследования источником дохода.

К 1919 году рентгеновские трубки получили широкое распространение и применялись во многих странах. Благодаря им, появились новые направления науки и техники -рентгенология, рентгенодиагностика, рентгенометрия, рентгеноструктурный анализ и др. Рентген используется во многих сферах науки. С помощью новейших изобретений и аппаратов производятся всё новые и новые открытия в медицине, космосе, археологии и других областях.

Какова предпосылка изобретения рентгеновских лучей?

В настоящее время современная наука делает ряд открытий в области исследований человеческого тела. Всем известно, что в древние времена все великие медики обладали экстрасенсорными способностями. Из исторических записей известно, что в Китае были медики такие, как Сунь Сымяо, Хуа То, Ли Шичжэнь, Бянь Цуэ - все они обладали экстрасенсорными способностями, то есть могли видеть внутренности человека без рентгена и, на основе увиденного, поставить диагноз.

Таким образом, эффект лечения был намного лучше, чем в настоящее время. Чем могли отличаться эти медики древних времён от обычных людей? На основании открытия, сделанного наукой можно сделать заключение, что для просвечивания тела нужен свет. Значит, эти медики обладали такой энергией, которая использовалась ими как рентгеновские лучи для просвечивания тела больного. Откуда же взялась у этих древних медиков такая энергия, подобная электричеству?

Когда в 90-х годах в Китае возрождалась практика цигун, многие мастера цигун были обследованы. Исследования показали, что в их теле существует энергия, которой нет у обычных людей. Откуда же появилась эта энергия у мастеров цигун? Эта энергия появилась в результате занятий цигун, то есть в результате самосовершенствования.

Наука пришла на помощь человеку – великое изобретение человечества рентген, позволяет людям компенсировать утраченную способность проницательного видения вещей. Рентген делает то, что человек имел от природы, но со временем потерял. Чтобы иметь эти способности, человеку необходимо встать на путь совершенствования своей души, возрасти нравственно. Наука может сделать великое открытие, при этом подтвердив то, что человек имел от природы.

Весной 2009 года в итальянском городе Флоренция проходило празднование юбилея одного из величайших открытий мира. 400 лет назад Галилео Галилей изобрел первый в мире телескоп. Это изобретение изменило представление человечества о Вселенной.

Галилей родился 15 февраля 1564 в городе Пиза. Он занимался философией, математикой, физикой, механикой, астрономией, увлекался поэзией. Ученый оказал значительное влияние на науку своего времени, сделал многочисленные научные открытия в этих областях.

Наиболее плодотворный период научной деятельности Галилея был, когда он переехал в город Падуя.

Здесь Галилей очень скоро стал самым знаменитым профессором в городе. Открытия и изобретения Галилея заинтересовывали многих: студенты с интересом приходили на его лекции послушать об идеях профессора, венецианское правительство непрестанно поручало Галилею разработку разного рода технических устройств, с ним активно переписываются молодой Кеплер и другие научные деятели того времени. В эти годы он написал трактат «Механика», который вызвал некоторый интерес и был переиздан во французском переводе. В ранних работах, а также в переписке, в которой Галилей описывал все свои открытия и изобретения, он дал первый набросок новой общей теории падения тел и движения маятника. Галилей является основателем экспериментальной физики.

Великие открытия и изобретение, изменившие мир. Орбитальный телескоп "Хаббл" Фото: NASA/Getty Images Поводом к новому этапу в научных исследованиях Галилея послужило открытие в 1604 году новой звезды, называемой сейчас сверхновой звездой Кеплера (SN 1604).

Это великое открытие пробудило всеобщий интерес к астрономии, и Галилей выступает с циклом частных лекций. Узнав об изобретении зрительной трубы в Голландии, Галилей в 1609 году конструирует собственноручно первый телескоп и направляет его в небо. Галилей первым использовал телескоп для наблюдения за планетами и другими небесными телами, сделал ряд выдающихся астрономических открытий.

Великие открытия и изобретение, изменившие мир. Орбитальный телескоп "Хаббл" Фото: NASA/Getty Images Впервые Галилей опробовал свое изобретение во Флоренции.

Оно состояло из куска дерева длиной в один метр и двух кусочков стекла. Позднее ученый усовершенствовал телескоп, увеличение которого стало 30-кратным. Галилей рассмотрел поверхность Луны и сделал открытие, что на Луне имеются кратеры и хребты. С помощью телескопа Галилей открыл спутники Юпитера и Млечный путь. После чего написал книгу "Звездный вестник", которая разошлась тиражом в 550 экземпляров.

В настоящее время астрономы, используя американский орбитальный телескоп «Хаббл» (новейшее изобретение века), сумели открыть галактики, образовавшиеся на крайне раннем этапе развития Вселенной. Британские ученые вели наблюдения за тридцатью пятью чрезвычайно отдаленными галактиками. Это великое открытие в астрономии утверждает, что речь идет о галактиках, сформировавшихся спустя всего 600 млн. лет после Большого взрыва.

Самым последним изобретением в области изобретений астрономических телескопов является космический инфракрасный телескоп. Проект за 735 миллионов долларов будет четвертым и заключительным элементом орбитальных "Великих Обсерваторий НАСА", таких как Космический телескоп «Хаббл», Обсерватория Гамма – лучей «Комптон» и Космическая рентгеновская обсерватория «Чандра».

Надо отметить еще следующее, что на скалах , которые были одеты в галифе, на голове – шляпа. В руках некоторые держали телескоп. Учёные, которые исследуют рисунки на скалах, установили, что этим рисункам 30 с лишним тысяч лет. Такое открытие сделали учёные, занимающиеся исследованием наскальных рисунков. Значит, Галилей не был первым человеком, кто изобрёл телескоп. А, возможно, что эти рисунки сделали люди, жившие до нашей нынешней цивилизации. Но это уже совсем другое открытие.

Представление о форме Земли менялись на протяжении развития человечества. Древние народы Земли представляли ее плоской. В Древней Греции во времена Гомера (IX-VIII вв. До н. Э.) Землю представляли немного выпуклым диском, подобным щита воина, и считали, что сушу отовсюду омывает океан.

Во времена Пифагора (VI в. До н. Э.) Предполагали, что Земля - шар, как и другие планеты. Первые доказательства шарообразности Земли принадлежат древнегреческом ученому Аристотелю (IV в. До н. Э.). К ним он относил наблюдения за лунными затмениями, во время которых тень от Земли, попадает на поверхность Луны, всегда круглая; изменение вида звездного неба при продвижении по меридиану; расширение горизонта, когда становишься выше.

Постепенно представление о Земле как шар стали базироваться не на наблюдениях, а на точных расчетах и измерениях. Первым, кто установи в размеры земного шара, был древнегреческий ученый Эратосфен (III-II вв. До н. Э.). Он измерил длину дуги 1 ° меридиана, а затем на этой основе определил длину всей Земли за меридианом (около 40000 км).

В период средневековья из-за господства религии во всех сферах жизни много научных представлений античных народов о Земле отрицались. Учение о шарообразности Земли в целом отвергалось.

С конца XV в. начинается возрождение науки. Начался период Великих географических открытий. Христофор Колумб в поисках западного пути в Индию открыл Новый Свет - Америку (одна тысяча четыреста девяносто два p.). Васко-да-Гама обошел Африку, проложил морской путь в Индию (+1497 p.).

Первым доказал шарообразности Земли на практике португалец Фернан Магеллан, экспедиция которого в 1519- 1522 гг. Осуществила первое в истории кругосветное плавание. Испания и Португалия - сильные морские страны XV в. - В 1494 г.. Заключили договор о разделе сферы влияния. Линия раздела проходила примерно по меридиану 46 ° с. д. (Азорские острова). К западу от этой линии земли, воды и возможные дальнейшие открытия считались испанскими, а на восток - португальскими. Невыясненным оставалось положение разделительной линии вблизи восточноазиатских берегов, где размещены Молуккские острова, которыми пользовались португальцы. Для выяснения достоверности размещения островов в Испании было сформировано экспедицию под руководством Магеллана. Путешествие началось 20 сентября 1519 p., И из испанского порта Сан-Лукар 5 кораблей и 265 человек пересекли в юго-западном направлении Атлантику и достигли восточного побережья Южной Америки. Затем вдоль материка поплыли на юг в поисках пролива, который ведет на запад.

В одной из бухт Магеллан остановился на зимовку. В октябре 1520 экспедиция продолжила свой путь. Через несколько дней нашли проход на запад - узкий пролив, которая позже была названа именем Магеллана. 28 ноября 1520 корабли вышли в открытый океан и поплыли на север вдоль материка, а затем начали пересекать океан. Плавание через океан продолжалось 3 месяца и 20 дней. В марте 1521 экспедиция достигла Марианских островов, затем - Филиппинских. Путь был тяжелый, не хватало продуктов, воды, почти все болели цингой, 19 человек умерли. Погода была хорошая, поэтому Магеллан назвал океан Тихим.

На Филиппинских островах Магеллан был убит в схватке с местными жителями. К Молуккских островов добрались два корабля. Эспиноса возглавил один корабль, Элькано второй. Эспиноса отправился в Испанию восточным путем, его корабль захватили португальцы. Корабль Элькано возвращался в Испанию западным путем, через Индийский и Атлантический океаны вокруг мыса Доброй Надежды. Его корабль вошел в Сан-Лукар 6 сентября 1522 Из экспедиции Магеллана вернулось лишь 18 человек и один корабль.

Экспедиция Магеллана доказала, что большая часть поверхности Земли занято не сушей, а океаном, и между Америкой и Азией - Тихий океан. Было установлено единство Мирового океана и подтверждено шарообразности Земли.

В связи с развитием знаний о природе Земли представление о ее форме продолжали совершенствоваться. В конце XVII в. на основе работы Ньютона возникло представление о том, что в результате вращения вокруг своей оси Земля должна быть сплюснутая у полюсов - то есть иметь форму сфероида или эллипсоида. Действительно, экваториальный радиус Земли на 21,4 км длиннее полярного.

Позже на основе измерения силы тяжести было установлено, что фигура Земли отличается от правильной формы сфероида через неоднородную строении недр, неравномерное распределение масс. Истинная геометрическая фигура, которая соответствует форме Земли, названная геоидом, ее поверхность везде перпендикулярна направлению силы тяжести. Поверхность геоида совпадает с выровненной поверхностью Мирового океана. Поднятие и опускание геоида над сфероидом составляют ± 50 ... ± 100 м.

Истинная физическая поверхность Земли с ее горами и впадинами не совпадает с поверхностью геоида и отступает от него на несколько километров.

Мы рассмотрели, как изменялись представления об элементарных частицах, из которых построен окружающий мир и увидели, что существует определенная иерархия в построении материи из фундаментальных частиц, размер которых меньше 10 –15 см. Находясь на планете Земля, вплоть до XV века человек считал, что Земля является центром окружающего мира - центром Вселенной. Звезды, Солнце, Луна и планеты считались прикрепленными к хрустальным сферам, вращающимся вокруг Земли. Птолемеем была построена сложная математическая модель, которая предсказывала точное положение планет на небе. Гелиоцентрическая система мира, согласно которой центральное положение отводилось Солнцу, а Земля, так же как и другие планеты, вращалась вокруг Солнца, была создана благодаря трудам Н. Коперника (1473–1543 гг.) и Джордано Бруно (1548–1600 гг.)

В отличие от Н. Коперника Дж. Бруно описывал Вселенную, которая состоит из множества солнц, вокруг которых обращаются планеты. В своем труде «О бесконечности Вселенной и мирах» (1584 г.) он описал Вселенную, состоящую из множества солнц и планет, на которых может быть жизнь.

Гелиоцентрическая система значительно укрепила свои позиции в результате открытия трех знаменитых законов движения планет И. Кеплера.

Законы Кеплера (1609–1611 гг.)

  1. Движение планет происходит по эллипсам в одном из фокусов которых находится Солнце.
  2. Линия, соединяющая планету и Солнце, «заметает» равные площади за равные интервалы времени.
  3. Период обращения планеты Т и её расстояние от Солнца R связаны соотношением R 3 /T 2 = const, постоянная const имеет одно и то же значение для всех планет.

Объяснение движения планет вокруг Солнца было дано И. Ньютоном, показавшим, что сила, с которой Солнце притягивает планеты, есть следствие общего закона взаимодействия между двумя массивными телами.


Исаак Ньютон
(1643–1727)

Согласно закону всемирного тяготения Ньютона гравитационные силы притяжения действуют мгновенно между телами, разделенными пустым пространством. Ньютона интересовало, как происходит передача взаимодействия между телами. Несмотря на многочисленные размышления, Ньютону не удалось найти ответ на этот вопрос.

И. Ньютон: «Предполагать, что тело может действовать на другое на любом расстоянии в пустом пространстве, без посредства чего-либо, передавая действие и силу, – это, по-моему, такой абсурд, который немыслим ни для кого, умеющего достаточно разбираться в философских предметах».

Для решения проблемы передачи взаимодействия на расстоянии была придумана гипотетическая всепроникающая среда − эфир.

И. Ньютон: «Теперь следовало бы кое-что добавить о некото­ром тончайшем эфире, проникающем все сплошные тела и в них содержащемся, коего силою и действиями частицы тел при весьма малых расстояниях взаимно притягиваются, а при соприкосновении сцепляются, наэлектризованные тела действуют на большие расстояния, как отталкивая, так и притягивая близкие малые тела, свет испускается, отражается, преломляется, уклоняется и нагревает тела, возбуждается всякое чувствование, заставляющее члены животных двигаться по желанию, передаваясь именно колебаниям этого эфира от внешних органов чувств мозгу, от мозга мускулам. Но это не может быть изложено вкратце, к тому же нет и достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны» .

Одним из величайших достижений XX века явилось развитие представлений о том, как возникла Вселенная, в которой мы живём, какие основные составляющие Вселенной.
В начале XX века существовало два взгляда на происхождение Вселенной.

  • Вселенная стационарна – научное мнение.
  • Вселенная имеет начало и конец – богословие.

Одно из выдающихся открытий человека состоит в понимании того, что мир, в котором он живет, существовал не всегда. Изучение физических законов окружающего мира, фундаментальных составляющих материи, глобальных космологических структур радикально изменило представление человека о Вселенной и его месте в ней.


Рис. 21. Эволюция Вселенной

Дж. Ф. Смут: «Согласно теории горячей Вселенной, в начале расширения наша Вселенная находилась в состоянии почти идеального термодинамического равновесия и имела чрезвычайно высокую температуру. С тех пор она продолжает расширяться и остывает. Когда температура во Вселенной упала до 3000 К, в реликтовом излучении перестало хватать достаточно энергичных фотонов для поддержания атомов водорода и гелия в ионизованном состоянии. Таким образом, первичная плазма, состоящая из заряженных ядер, электронов и фотонов превратилась в нейтральные атомы и фоновое реликтовое излучение. Тогда фотоны реликтового излучения стали свободно распространяться в пространстве, уменьшая свою энергию из-за продолжающегося расширения Вселенной, а барионное вещество (в основном водород и атомы гелия) под действием гравитационного притяжения стало собираться в звезды и формировать галактики и более протяженные структуры. Для того чтобы такие структуры смогли образоваться, в распределении первичного вещества и энергии должны были иметься начальные возмущения. Первичные флуктуации плотности вещества, из которых впоследствии сформировались крупномасштабные структуры во Вселенной».

Космическая шкала времени

Время от настоящего момента, млрд. лет Событие
13.7 Большой Взрыв
13 Образование Галактик
10 Сжатие нашей протогалактики
10 Образование первых звёзд
5 Образование Солнечной системы, планет
4 Образование земных пород
3 Зарождение микроорганизмов
2 Формирование атмосферы Земли
1 Зарождение жизни
0.60 Ранние окаменелости
0.45 Рыбы
0.15 Динозавры
0.05 Первые млекопитающие
2 млн. лет Человек

Таблица 10

Характеристики Вселенной в настоящее время

Возраст t 0 13.7±0.3 млрд лет
Радиус наблюдаемой части Вселенной
(горизонт видимости ) R 0 = сt 0
10 28 см
Полное количество вещества и энергии 10 56 г
Средняя плотность вещества и энергии 10 -29 г/см 3
Полное барионное число (число нуклонов) 10 78
Доля антивещества < 10 -4
Параметр Хаббла H 71±4 км/с·Мпк
Температура реликтового (фонового) излучения 2.73 K
Плотность реликтовых фотонов 410 см -3
Энергетическая плотность реликтовых фотонов 0.26 эВ/см 3 = 4.6·10 -34 г/см 3
Отношение числа барионов к числу реликтовых фотонов n б /n γ (6.1±0.2)·10 -10
Распространённость атомов (ядер):

водород
гелий
остальные ядра

Какие открытия Изменили представление человечества о строение вселенной о форме земли. Приведите примеры изобритений,изменивший жизнь человека.

Ответы:

Представление человечества было изменено навсегда, когда отдельные люди делали открытия о строении и форме Земли. Это были такие открытия: 1. Земля не является центром вселенной. Все кружится вокруг Солнца. Это доказал Коперник, который жил в 15 веке. 2. Земля круглая. Такие ученые, как Бруно, Галилео и Коперник доказали это. Колумб пересек Атлантический океан. Изобретения, которые изменили жизнь человечества: 1. Антибиотики и вакцины. Именно их появление спасло миллионы жизней. 2. Появление машин и самолетов. Люди стали быстрее передвигаться и много путешествовать. 3. Изобретение микроскопа. В 16 веке Янсен придумал микроскоп, что было большим толчком в изучении биологии. 4. Ядерное оружие. 5. Колесо. 6. Печатный пресс. 7. Связь. 8. Лампочка. 9. Компьютер. 10. Интернет.

доктор педагогических наук Е. Левитан

Вселенная, открытая во втором тысячелетии

Безвозвратно уходит, погружаясь в Лету, второе тысячелетие новой эры. Оно во многом преобразило цивилизацию нашей планеты и среду обитания людей, распростёршуюся ныне далеко за пределы Земли и околоземного космического пространства. Изменился образ жизни людей, их представления о себе и мирах, которые сейчас принято называть микромир, макромир, мегамир. Каждый из них был заново открыт наукой уходящего тысячелетия.

Средневековое фантастическое представление системы мира. (По „Астрономии“ Фламмариона.)

Что же именно, надо полагать, ярче всего запечатлят страницы будущей истории науки о мегамире, то есть о Вселенной? Попробуем выделить „главное“ среди множества сделанных за эту тысячу лет открытий в астрономии, которая теперь включает в себя астрофизику, астрометрию, небесную механику, космогонию, космологию и неразрывно связана с физикой, математикой, химией, биологией, науками о Земле, а также с различными областями техники и, конечно, с космонавтикой.

В уходящем тысячелетии были открыты законы физики, имеющие поистине всемирное значение, потому что „работают“ как на Земле, так и в далёком космосе. Они позволили понять (благодаря открытиям Галилея, Ньютона, Максвелла, Планка, Эйнштейна и других великих физиков) многие наблюдаемые во Вселенной явления и процессы.

Современные историки астрономии по дошедшим до нас памятникам культуры смогли реконструировать древнейшие периоды становления астрономии, восходящие к её зарождению, осознанию наблюдаемого видимого движения светил на дневном и ночном небе, к первым попыткам выделить созвездия в кажущемся звёздном хаосе.

Одно из древних изображений мироздания по представлению Коперника.

С рождением письменности стали появляться обобщающие астрономические произведения - звёздные каталоги, трактаты, многотомные труды великих древних астрономов. История астрономии обрела надёжные источники для анализа того, как развивались науки о Вселенной.

Человек, серьёзно заинтересовавшийся историей астрономии, сейчас имеет возможность получить массу сведений о ней, изучая соответствующую специальную и научно-популярную литературу. Перед взором этого любознательного читателя пройдёт бесконечная череда больших и малых астрономических открытий, десятки и сотни имён их авторов. Раскроется смысл грандиозного прогресса астрономии в ХХ веке и особенно во второй его половине.

Однако цель данной публикации значительно скромнее, мы ограничимся попыткой взглянуть со стартовой площадки третьего тысячелетия на то, что, если можно так сказать, было самым важным в истории астрономии за последнюю тысячу лет.

Николай Коперник

На стене небольшого кабинета физики и астрономии в одной из московских школ, где я стараюсь заинтересовать ребят наукой о Вселенной, висят рядом два портрета - Николая Коперника и Юрия Гагарина. И хотя в кабинете есть портреты и других замечательных людей, а также привлекающие внимание карты звёздного неба, уникальные по своей наглядности карты Луны, современное мозаичное изображение Млечного Пути, подвешенная к потолку модель планетной системы, всё же именно „соседство“ Коперника и Гагарина неизменно вызывает особый интерес не только у школьников, но и у взрослых посетителей, нередко заглядывающих в кабинет. Удивление сменяется пониманием и одобрением, когда напоминаешь, что Коперник, по сути дела, открыл (1543 год) шестую планету - нашу Землю (пять других, видимых невооружённым глазом - Меркурий, Венера, Марс, Юпитер, Сатурн, - были известны давно как светила, „блуждающие“ на фоне звёздного неба).

Клавдий Птолемей

(II век н. э.)

А Гагарин - гордость нашей страны и человек, ставший известным всему миру после космического полёта 12 апреля 1961 года, - первый, кто увидел Землю, находясь вне её, со стороны, увидел как небесное тело, как планету во всей красе и был восхищён ею. Конечно, речь идёт о совершенно разных по своей научной значимости событиях и разделённых несколькими веками. Но оба эти открытия символичны, ибо переводят в ранг прописной истины представление о том, что мы - „небожители“, обитающие на одном из множества небесных тел.

Теперь это полагается знать даже младшим школьникам. А ведь до середины нынешнего тысячелетия представление о месте Земли во Вселенной было совсем иным.

„Математическое научение неба“, изложенное великим древнегреческим астрономом Клавдием Птолемеем (II век н. э.) в его главном труде „Альмагест“, основывалось на идущем от его предшественников утверждении о том, что неподвижная шарообразная Земля находится в центре Вселенной. С помощью различных (порой весьма хитроумных) предположений о характере движения планет вокруг Земли Птолемей доказывал правильность этой геоцентрической системы мира. Сам он считал её лишь математической моделью, позволяющей разобраться в запутанных видимых движениях светил и предвычислять их положение на небе. Система Птолемея почти четырнадцать веков практически неограниченно властвовала в науке.

Галилео Галилей

Только в XVI веке, то есть уже во второй половине нашего тысячелетия, на смену ей пришла гелиоцентрическая система мира. Её создатель - великий польский астроном Николай Коперник. В ней утверждалось, что не Земля, а Солнце занимает центральное положение во Вселенной, говорилось о „сфере неподвижных звёзд“, о круговых орбитах планет. Здесь впервые и навсегда было определено (а потом и доказано), что Земля - одна из планет Солнечной системы. Это открыло путь ко всё более и более детальному изучению Земли. И, наконец, в ХХ веке - к космическим полётам на Луну, к планетам и их спутникам, астероидам и кометам.

Зрительные трубы Галилея: телескоп, с помощью которого люди впервые смогли увидеть кратеры на Луне, фазы Венеры, четыре спутника Юпитера, пятна на Солнце, множество звёзд Млечного Пути.

Освоение Солнечной системы началось уже в первые десятилетия космической эры, отсчёт которой пошёл от 4 октября 1957 года - даты запуска первого искусственного спутника Земли (ИСЗ). Запуск произведён в нашей стране. Можно утверждать: во втором тысячелетии произошло открытие Солнечной системы. Хотя, конечно, и сейчас многое в наших знаниях о ней требует уточнения. Это вопросы и о происхождении Солнечной системы, о природе входящих в неё небесных тел, и о возможности существования хотя бы простейших форм жизни вне Земли. Можно надеяться, что все эти загадки в значительной мере прояснятся уже в XXI веке. Но о том, как устроена Солнечная система, что представляют собой входящие в неё большие и малые небесные тела, каким закономерностям подчинено их движение и насколько устойчива Солнечная система, - уже в основном известно.

Астрономию справедливо считают древнейшей, может быть, даже самой первой наукой на Земле. Её зарождение относится к эпохе, отдалённой от нас, возможно, на десятки тысяч лет. В таком временном масштабе уходящее тысячелетие - лишь небольшая часть истории науки о Вселенной. Но зато какая!

Джордано Бруно

Сейчас, когда один за другим вступают в строй гигантские оптические телескопы, интенсивно развиваются радиоастрономия и рентгеновская астрономия, а космонавтика открыла невиданные ранее возможности для внеатмосферных наблюдений, превративших „оптическую“ астрономию во „всеволновую“, трудно представить, что лишь в начале XVII века люди впервые стали проводить простейшие наблюдения с крошечным телескопом… А до этого все астрономические наблюдения велись только невооружённым глазом. Но как много древние и средневековые астрономы сумели увидеть и понять на звёздном небе, подметить и осмыслить особенности различных небесных явлений! Нас поражает и восхищает то, что сохранилось от громадных культовых сооружений, которые в далёком прошлом использовались ещё и в качестве астрономических обсерваторий. Мы знаем о разнообразных угломерных инструментах, с которыми работали астрономы во многих странах. Коперник всего несколько десятилетий не дожил до того времени, когда появилась возможность увидеть в телескоп кратеры на Луне, фазы Венеры, четыре спутника Юпитера, пятна на Солнце, множество звёзд Млечного Пути…

Иоганн Кеплер

Всё это пришло, когда итальянский учёный Галилео Галилей построил телескоп, который считается первым. Это дало огромный скачок в росте астрономических знаний.

Прошло ещё немалое время и стали блестяще подтверждаться гениальные догадки о природе звёзд, высказанные некоторыми древними мыслителями и более чётко сформулированные Джордано Бруно в XVI веке. В опровержение представлений о „неподвижных“ звёздах, как эдаких „серебряных гвоздиках“, воткнутых в небесный свод (в средневековье так думали о звёздах, хотя задолго до этого некоторые древние мыслители высказывали предположение, что звёзды могут быть раскалёнными светилами), одно за другим стали появляться доказательства тому, что звёзды - это далёкие солнца в беспредельном пространстве. Что именно эти громадные раскалённые светящиеся плазменные (водородно-гелиевые) шары составляют основное „население“ Вселенной. Они входят в состав систем различной сложности - от двойных звёзд и звёздных скоплений до гигантских галактик.

Среди мира звёзд, поражающего многообразием, где наряду с „обычными“ есть не совсем и совсем необычные (физические переменные, новые, сверхновые, различные звёзды-карлики, нейтронные), наше Солнце оказалось довольно „заурядной“ звездой. Хотя обнаружить в Галактике другие точно такие звёзды, как Солнце, очень трудно.

Исаак Ньютон

Солнце не нужно было открывать: естественно, что люди знали его всегда, но знали о нём очень мало. Довольно долго, примерно до XVIII века, его вместе с Луной включали в число семи планет. Даже в середине XIX века высказывались предположения о возможности жизни на Солнце.

Ну а с точки зрения нынешних представлений о природе Солнца, его строении, источниках энергии, феноменах циклической солнечной активности и их земных проявлений можно сказать, что Солнце было открыто лишь в конце XIX - первой половине ХХ века. И значение этого открытия невозможно переоценить, так как Солнце - не только центр Солнечной системы, не только источник жизни на Земле, но и своеобразная лаборатория, дающая астрофизикам возможность детально исследовать одну из звёзд, самую близкую к нам.

Вильям Гершель

Утверждая, что звёзды - это далёкие солнца, Джордано Бруно с присущим ему энтузиазмом и страстью рассуждал и о том, что вокруг других звёзд тоже должны быть планеты. Эта вполне логичная гипотеза получила реальное подтверждение лишь в самом конце ХХ века. Вокруг десятков звёзд сейчас открыты не только протопланетные диски (в них рождаются планеты), но и уже образовавшиеся планеты. Как правило, экзопланеты (те, что вне нашей Солнечной системы) довольно массивны, сравнимы с такими гигантами, как Юпитер, Сатурн, и жизнь на них невозможна. Однако уже есть данные и об открытии внесолнечных планет, по массе близких к планетам земной группы.

Модель Галактики

по Гершелю.

Подобные открытия воодушевляют искателей внеземных цивилизаций. Кстати говоря, в последние десятилетия эта проблема приобрела научный статус, хотя ещё сравнительно недавно большинство учёных считали её всего лишь увлекательной научной фантастикой. Абсолютное „молчание“ Вселенной, то есть то, что до сих пор нет бесспорных космических проявлений деятельности гипотетических цивилизаций и посещений ими Земли, конечно же, в известной мере озадачивает энтузиастов поисков внеземной жизни, но не лишает их надежды на успех… И оснований у наших современников для подобного оптимизма, безусловно, во много раз больше, чем у тех, кто в прошлом отстаивал идею множественности обитаемых миров.

Эдвин Хаббл

Хотя бы потому, что принципиальным образом изменилось представление о масштабе и структуре Вселенной, о практически бесконечном числе входящих в неё небесных тел и их систем. Те несколько тысяч звёзд, которые доступны наблюдению невооружённым глазом в идеальных условиях, - ничтожно малая часть светил, входящих в нашу Галактику, содержащую, по разным оценкам, сотни миллиардов или даже триллион звёзд.

Современные телескопы открывают перед астрономами удивительный и загадочный мир галактик.

Открытие Галактики - тоже одно из величайших достижений астрономии XVIII-XX веков. В отличие от Земли, которой могут любоваться космонавты во время своих полётов и которую всесторонне исследуют „извне“ специализированные ИСЗ, Галактика недоступна (может быть, лишь пока?) внешнему обзору. Исследования её ведутся только „изнутри“. Этим астрономы успешно занимаются, начиная с английского астронома Вильяма Гершеля и по сей день. Кропотливо подсчитывая число звёзд на многих сотнях отдельных площадок (метод „черпков“) и выявляя обнаруживаемые при этом закономерности, Гершель сумел определить общую форму Галактики (именно он назвал её Млечный Путь), он построил и первую модель Галактики. В конце XVIII - начале ХIХ века этот талантливейший астроном понял, что наш „звёздный остров“ неизмеримо больше Солнечной системы. С этого, а также с изучения мира загадочных „туманностей“ началось открытие крупномасштабной структуры Вселенной.

Солнечная система в современном представлении.

В постепенно раскрываемой картине мироздания нашей „планете людей“ отводилось всё более скромное место. Сначала стало ясно, что Земля - не центр Солнечной системы, потом, что сама Солнечная система расположена довольно далеко от центра Галактики, а наша Галактика - одна из множества разнообразных галактик „расширяющейся Вселенной“, в которой понятие „центра“ вообще не имеет смысла.

Такой увидели Землю астронавты „Аполлона-17“, расставаясь с Луной. Декабрь 1972 года.

Внегалактической астрономии и релятивистской космологии (теории нестационарной вселенной) в ХХ веке потребовался ничтожно малый в масштабах истории астрономии срок, чтобы создать современную грандиозную картину эволюционирующей Вселенной. Вспомним, что объектами исследования Солнечной системы были Солнце, планеты с их спутниками и разные малые тела Солнечной системы. Объектами звёздной астрономии - звёзды (расстояния до них, их пространственное расположение, движение, природа) и наша Галактика. В последние десятилетия (одновременно со всем этим) усилия астрономов и мощь их новейших инструментов нацелены на исследование мира галактик, включая квазары (космические объекты, удалённые от Солнечной системы на несколько тысяч мегапарсек, а это миллиарды(!) световых лет. Обнаружить квазары удаётся потому, что они излучают в десятки раз больше энергии, чем самые мощные галактики). Изучаются системы галактик - Местная Группа (наша Галактика с её спутниками), Туманность Андромеды и наконец - скопления и сверхскопления галактик. Последние, по-видимому, представляют собой самые крупные фрагменты нашей Вселенной (Метагалактики). Они как бы сосредоточены в узлах объёмных сот (ячеек).

Изображение Солнца в рентгеновских лучах, полученное во время внеатмосферных наблюдений.

Наблюдаемое расширение Метагалактики - самый грандиозный из всех известных эволюционных процессов во Вселенной. Открытие этого явления неразрывно связано с именем американского астронома Эдвина Хаббла (1889–1953), в честь которого назван уникальный космический телескоп, работающий на околоземной орбите с 1990 года.

Экстраполяция в ранний период расширения Метагалактики привела не только к гипотезам о „Большом Взрыве“, „горячей Вселенной“ и сценариям „раздувающейся Вселенной“, но и к первым (совсем недавним) попыткам экспериментально воспроизвести в земных лабораториях некоторые из тех экзотических процессов, которые, возможно, примерно 15 миллиардов лет назад происходили в совсем юной Вселенной. Это был период, когда ещё только-только появлялись многие из сегодня привычных „элементарных“ частиц. И то, что этот процесс в известной степени удаётся воспроизвести в лабораторных условиях, - пожалуй, ещё один важный факт в пользу современных представлений о рождении нашей Вселенной. Реликтовое излучение, возникшее всего через несколько сотен лет после „Большого Взрыва“, открыто в 1965 году и до сих пор скрупулёзно исследуется различными методами.

Туманность Андромеды - ближайшая к нам и наиболее изученная галактика. Разумные обитатели этого звёздного острова видят нашу Галактику примерно такой же.

Как всегда, с ростом области знания растёт область незнания того, что пока ещё непознано и представляется таинственным. Даже простое перечисление проблем, ждущих решения в грядущих веках, составит огромный список. Поэтому ограничимся лишь несколькими примерами.

Чёрные дыры, предсказанные общей теорией относительности, астрофизики начали открывать в самые последние годы уходящего тысячелетия. Их обнаружили и в системах двойных звёзд, и в центральных областях некоторых галактик. К каким новым представлениям о свойствах пространства и времени это приведёт? Не будет ли когда-нибудь найдено практическое воплощение фантастической идеи о путешествиях во времени с помощью чёрных дыр?

Космический телескоп имени Хаббла запечатлел кольца вокруг вспыхнувшей в 1987 году сверхновой звезды в Большом Магеллановом Облаке. Фото 1998 года.

А как разрешится загадочная проблема „скрытой массы“ или „тёмной материи“, из которой, возможно, состоит более 90 процентов нашей Вселенной? Где и как распределена эта пока ещё таинственная материя, но, как уже известно, обладающая подобно обычному веществу тяготением? Учёные стремятся выяснить это, исследуя улавливаемые искажения форм многих тысяч галактик. Полагают, что эти деформации связаны с воздействием „скрытой массы“. Что это за масса? Аморфные скопища каких-нибудь экзотических частиц, или просто неуловимые по разным причинам космические системы (вроде галактик), или вообще что-то ещё совершенно неведомое нам, похожее, например, на „физический вакуум“? Надо полагать, что это выяснится уже в недалёком будущем.

Человек на Луне. Впервые он вступил на неё 20 июля 1969 года. На фото: Эдвин Олдрин (экспедиция США „Аполлон-11“). Снимок сделан Нилом Армстронгом. Его отражение видно в стекле шлема Олдрина.

Найдёт ли подтверждение гипотеза о множестве мини-вселенных, одна из которых Метагалактика? Увенчается ли успехом поиск „братьев по разуму“ с помощью специально созданных гигантских телескопических систем и станут ли возможными практически значимые контакты с ними? Будет ли осуществляться идея Циолковского об освоении землянами миров, далёких от нашей планеты? Многие из этих вопросов, строго говоря, выходят за рамки чисто астрономических проблем. Но они показывают, что если земной цивилизации предстоит стать цивилизацией космической, то в этом процессе астрономия будет играть исключительно важную роль. И, кто знает, быть может, через сотни или даже тысячу лет некоторые из перечисленных здесь загадок люди станут относить к числу своих важнейших открытий в области познания и освоения Вселенной. Впрочем, вряд ли сегодня возможно предугадать, какие достижения науки земляне будут перечислять в канун четвёртого тысячелетия. Ясно лишь одно: астрономии как науке навсегда суждено оставаться вечно юной долгожительницей.

Первое послание внеземным цивилизациям, которое было отправлено в космическое пространство 16 ноября 1974 года.

А Человек? В современной безгранично сложной пространственно-временной картине мироздания он, казалось бы, совершенно затерялся. Но когда-то он ощущал себя „микрокосмом“, неким миниатюрным подобием окружающего „трёхслойного“ мира - земного, скрытого под землёй и распростёртого над землёй. Надо думать, что сравнить с собой такую нехитрую модель мироздания проще, чем современную.

К сожалению, из-за повсеместно бытующей астрономической безграмотности подавляющее большинство нынешних землян не имеют почти никакого представления о той картине Вселенной, какую раскрывает наука в ХХ веке. Поэтому в наше время „обычному“ человеку трудно ощутить себя „микрокосмом“, неразрывно связанным со Вселенной. Между тем именно такая связь составляет то, что принято называть „антропокосмической сущностью духовности“. Автор, развивая эту идею в своих публикациях (в том числе на страницах научно-популярного журнала Российской АН „Земля и Вселенная“), приходит к выводу о связи двух социокультурных проблем - ликвидации астрономической безграмотности и возрождении утерянной в последние годы духовности. Можно предположить, что в будущем актуальность решения этих проблем станет возрастать.

Сторонники „антропного принципа“, ставшего в последнее десятилетие предметом оживлённых дискуссий, утверждают, что в самом рождении и эволюции нашей Вселенной, по сути, уже запрограммировано появление жизни и разума. В частности, существование жизни на Земле обусловлено множеством тонко „подогнанных“ условий, удивительным образом реализуемых как в микромире (например, набор определённых элементарных частиц), так и в мегамире (например, существование Солнца и нашей планеты, пригодной для жизни). Не ставит ли это вновь Человека (причём, конечно, в принципиально ином смысле) в центр Мироздания? Не приведёт ли развитие подобных идей к разгадке тайны космической миссии Жизни и Разума в эволюционирующей Вселенной? Интересно, какие ответы даст на эти вопросы наука грядущего тысячелетия…