I.2 Фотосинтез, необходимые для него условия. Процесс фотосинтеза Что такое надф в биологии

Фотосинтез - это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O 2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них - каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C 3 и С 4 . У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие - органические.

Выделяют две фазы фотосинтеза - световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы - наиболее распространенного продукта фотосинтеза :

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Атомы кислорода, входящие в молекулу O 2 , берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода , что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO 2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент - бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H 2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов , где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H 2 . Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды . Фотолиз также происходит при участии света и заключается в разложении H 2 O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H 2 O + НАДФ + 2АДФ + 2Ф → ½O 2 + НАДФ · H 2 + 2АТФ



Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза . Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит . При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания - окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием , а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C 3 -фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C 4 , также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO 2 . Темновая фаза протекает в строме хлоропласта.

Восстановление CO 2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H 2 , образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO 2 (карбоксилировани е ) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат ) – РиБФ . Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско .

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO 2 + H 2 O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ) , включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H 2 . ТФ - первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO 2 . Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

6CO 2 + 6H 2 O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ - это трехуглеродный сахар, а РиБФ - пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO 2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H 2 , которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) - конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат , который превращается в глюкозу . В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O 2 в окружающей среде, тем менее эффективен процесс связывания CO 2 . Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Фосфогликолат - это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание - это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С 2) → 2 Глиоксилат (С 2) →2 Глицин (C 2) - CO 2 → Серин (C 3) →Гидроксипируват (C 3) → Глицерат (C 3) → ФГК (C 3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C 3 -типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C 4 -фотосинтез, или цикл Хэтча-Слэка

Если при C 3 -фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C 4 -пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С 4 -фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С 4 -растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C 4 -пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой - обкладка проводящего пучка. Наружный слой - клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C 3 -растений. То есть C 4 -путь дополняет, а не заменяет C 3 .

В мезофилле CO 2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO 2 , чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C 4 -фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO 2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO 2 в хлоропластах клеток обкладки уходит на обычный C 3 -путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.


Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C 4 -путь возник в эволюции позже C 3 и во многом является приспособлением против фотодыхания.

I.2 Фотосинтез, необходимые для него условия

Фотосинтез у зеленых растений – это процесс преобразования света в химическую энергию органических соединений, синтезируемых из диоксида углерода и воды. Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций, совокупность которых подразделяют на две фазы – световую и темновую.

1. Световая фаза. Для этой фазы характерно то, что энергия солнечной радиации, поглощенная пигментами системы хлоропластов, преобразуется в электрохимическую.

При действии света на хлоропласт начинается электронный поток по системе переносчиков – сложных органических соединений, встроенных в мембраны тилакоидов. С переносом электронов по ЭТЦ сопряжено активное поступление протонов через тилакоидную мембрану из стромы внутрь тилакоида. В тилакоидном пространстве происходит увеличение концентрации протонов за счет расщепления молекул воды и в результате окисления электронного переносчика пластохинона на внутренней стороне мембраны. Когда протоны идут обратно по градиенту из тилакоидного пространства в строму, на наружной поверхности тилакоида с участием фермента АТФ-синтетазы из АДФ и фосфорной кислоты синтезируется АТФ, т. е. происходит фотосинтетическое фосфореилирование с запасанием энергии в АТФ, которая затем переходит в строму хлоропласта.

Заканчивается передача электронов следующим образом. Достигнув внешней поверхности мембраны тилакоида, пара электронов следует с ионом водорода, находящимся в строме. Оба электрона и ион водорода присоеденяются к молекуле переносчика водорода – НАДФ+ (никатиномидадениндинуклетидфосфат), который при этом переходит в свою востановленную форму

НАДФ Н+Н+:

НАДФ++2Н++2е-→НАДФ Н+Н+

Следовательно активированные световой энергией электроны используются на присоедининие атома водорода к его переносчику, т. е. на восстановление НАДФ+ в НАДФ Н+Н+, который с наружной поверхности фотосинтетической мембраны переходит в строму.

В молекулах хлорофилла, утративших свои электроны, образовавшиеся электронные «дырки» действуют как сильный окислитель и отрывают электроны от молекул воды. Через ряд переносчиков эти электроны передаются на молекулу хлорофилла и заполняют «дырку». Внутри тилакоида происходит фотоокислние (фотолиз) воды, в результате которого выделяется свободный кислород, а также накапливаются ионы водорода

2Н2О→4Н++4е-+О2

Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ Н2 транспортируются в матрикс пластид и участвуют в процессе темновой фазы.

2.Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступаещего из воздуха. Осуществляются реакции темновой фазы за счет энергии АТФ и НАДФ Н2 и использовании имеющихся в пластидах пятиуглеродных сахаров, один из которых – рибулозодифосфат – является акцептором СО2. Ферменты связывают пятиуглеродный сахар с углекислым газом воздуха. При этом образуются соединения которые последовательно восстанавливаются до шестиуглеродной молекулы глюкозы.

Суммарная реакция фотосинтеза

6СО2+6Н2 энергия света С6Н12О6+6О2

Хлорофилл

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединений – аминокислоты, глицерин и жирные кислоты. Таким образом, благодоря фотосинтезу растительные, а точнее – хлорофиллсодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

I.3 Деление клетки

Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).

Амитоз – относительно редкий способ деления клетки. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшем не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель.

Митоз. Митоз, или непрямое деление, - основной способ деления эукариотических клеток. Митоз – это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и был в родительском ядре.

В непрерывном процессе митотического деления различают четыре фазы: профазу, метафазу, анафазу и телофазу.

Профаза – самая длительная фаза митоза, когда происходит перестройка всей структуры ядра для деления. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные (удвоение происходит в S-периоде интерфазы), состоят из двух хроматид, связанных между собой в области первичной перетяжки осбой структурой – цетромерой. Одновременно с утолщением хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. Начинается формирование ахромативного веретена – веретена деления, которое представляет систему нитей, идущих от полюсов клетки. Нити веретена имеют диаметр около 25нм. Это пучки микротрубочек, состоящих из субъедениц белка тубулина. Микротрубочки начинают формироваться со стороны центриолей либо со стороны хромосом (в клетках растений).

Метафаза. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и ценросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т.е. располагаются на равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. Именно в этот период легко подсчитать число хромосом, изучать их морфологические особенности.

Анафаза начинается делением центромеры. Каждая из хроматид одной хромосомы становится самостоятельной хромосомой. Сокращение тянущих нитей ахроматинового веретена увлекает их к противоположным полюсам клетки. В результате у каждого из полюсов клетки оказывается столько же хромосом, сколько было их в материнской клетке, причем набор их одинаков.

Телофаза – последняя фаза митоза. Хромосомы деспирализуются, становятся плохо заметными. На каждом из полюсов вокруг хромосом воссоздается ядерная оболочка. Формируются ядрышки, веретено деления исчезает. В образовавшихся ядрах каждая хромосома состоит теперь всего из одной хроматиды, а не из двух.


Биохимические функции

Перенос гидрид-ионов Н– (атом водорода и электрон) в окислительно-восстановительных реакциях

Благодаря переносу гидрид-иона витамин обеспечивает следующие задачи:

1. Метаболизм белков, жиров и углеводов . Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях

  • при синтезе и окислении жирных кислот,
  • при синтезе холестерола,
  • обмена глутаминовой кислоты и других аминокислот,
  • обмена углеводов: пентозофосфатный путь, гликолиз,
  • окислительного декарбоксилирования пировиноградной кислоты,
  • цикла трикарбоновых кислот.

2. НАДН выполняет регулирующую функцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот.

3. Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК, что замедляет некробиоз и апоптоз клеток.

4. Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки.

5. НАДФН участвует в реакциях ресинтеза тетрагидрофолиевой кислоты из дигидрофолиевой, например после синтеза тимидилмонофосфата.

Гиповитаминоз

Причина

Пищевая недостаточность ниацина и триптофана. Синдром Хартнупа.

Клиническая картина

Проявляется заболеванием пеллагра (итал.: pelle agra – шершавая кожа). Проявляется каксиндром трех Д :

  • деменция (нервные и психические расстройства, слабоумие),
  • дерматиты (фотодерматиты),
  • диарея (слабость, расстройство пищеварения, потеря аппетита).

При отсутствии лечения заболевание кончается летально. У детей при гиповитаминозе наблюдается замедление роста, похудание, анемия.

Антивитамины

Фтивазид, тубазид, ниазид – лекарства, используемые для лечения туберкулеза.

Лекарственные формы

Никотинамид и никотиновая кислота.

Витамин В5 (пантотеновая кислота)

Источники

Любые пищевые продукты, особенно бобовые, дрожжи, животные продукты.

Суточная потребность

Строение

Витамин существует только в виде пантотеновой кислоты, в ее составе находится β-аланин и пантоевая кислота (2,4-дигидрокси-3,3-диметилмасляная).

>

Строение пантотеновой кислоты

Его коферментными формами являются кофермент А (коэнзим А, HS-КоА) и 4-фосфопантетеин.

Строение коферментной формы витамина В5 — коэнзима А

Биохимические функции

Коферментная форма витамина коэнзим А не связан с каким-либо ферментом прочно, он перемещается между разными ферментами, обеспечивая перенос ацильных (в том числе ацетильных) групп :

  • в реакциях энергетического окисления глюкозы и радикалов аминокислот, например, в работе ферментов пируватдегидрогеназы, α-кетоглутаратдегидрогеназы в цикле трикарбоновых кислот),
  • как переносчик ацильных групп при окислении жирных кислот и в реакциях синтеза жирных кислот
  • в реакциях синтеза ацетилхолина и гликозаминогликанов, образования гиппуровой кислоты и желчных кислот.

Гиповитаминоз

Причина

Пищевая недостаточность.

Клиническая картина

Проявляется в виде педиолалгии (эритромелалгии) – поражение малых артерий дистальных отделов нижних конечностей, симптомом является жжение в стопах . В эксперименте проявляется поседение волос, поражение кожи и ЖКТ, дисфункции нервной системы, дистрофия надпочечников, стеатоз печени, апатия, депрессия, мышечная слабость, судороги.

Но так как витамин есть во всех продуктах, гиповитаминоз встречается очень редко.

Лекарственные формы

Пантотенат кальция, коэнзим А.

Витамин В6 (пиридоксин, антидерматитный)

Источники

Витамином богаты злаки, бобовые, дрожжи, печень, почки, мясо, также синтезируется кишечными бактериями.

Суточная потребность

Строение

Витамин существует в виде пиридоксина. Его коферментными формами являются пиридоксальфосфат и пиридоксаминфосфат.

Похожая информация:

Поиск на сайте:

Структурная формула веществ

Что такое структурная формула

Она имеет две разновидности: плоскостная (2D) и пространственная (3D) (рис. 1).

Строение окисленных форм НАД и НАДФ

Внутримолекулярные связи при изображении структурной формулы принято обозначать черточками (штрихами).

Рис. 1. Структурная формула этилового спирта: а) плоскостная; б) пространственная.

Плоскостные структурные формулы могут изображаться по-разному.

Выделяют краткую графическую формулу, в которой связи атомов с водородом не указываются:

CH3 - CH2 - OH (этанол);

скелетную графическую формулу, которую наиболее часто используют при изображении строения органических соединений, в ней не только не указываются связи углерода с водородом, но и не обозначаются связи, соединяющие атомы углерода друг с другом и другими атомами:

для органических соединений ароматического ряда используются специальные структурные формулы, изображающие бензольное кольцо в виде шестиугольника:

Примеры решения задач

Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках . АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

В клетке молекула АТФ расходуется в течение одной минуты после ее образования. У человека количество АТФ, равное массе тела, образуется и разрушается каждые 24 часа .

АТФ – мононуклеотид, состоящий из остатков азотистого основания (аденина), рибозы и трех остатков фосфорной кислоты. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам .

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ.

При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты – в АМФ (аденозинмонофосфорную кислоту).

Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет около 30,6 кДж/моль. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж/моль.

Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются.

Биологические функции.

В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии.

Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

Кроме АТФ есть и другие молекулы с макроэргическими связями – УТФ (уридинтрифосфорная кислота), ГТФ (гуанозинтрифосфорная кислота), ЦТФ (цитидинтрифосфорная кислота), энергия которых используются для биосинтеза белка (ГТФ), полисахаридов (УТФ), фосфолипидов (ЦТФ). Но все они образуются за счет энергии АТФ.

Помимо мононуклеотидов, важную роль в реакциях обмена веществ играют динуклеотиды (НАД+, НАДФ+, ФАД), относящиеся к группе коферментов (органические молекулы, сохраняющие связь с ферментом только в ходе реакции).

НАД+ (никотинамидадениндинуклеотид), НАДФ+ (никотинамидадениндинуклеотидфосфат) – динуклеотиды, имеющие в своем составе два азотистых основания – аденин и амид никотиновой кислоты – производное витамина РР), два остатка рибозы и два остатка фосфорной кислоты (рис. .). Если АТФ – универсальный источник энергии, то НАД+ и НАДФ+ – универсальные акцепторы, а их восстановленные формы – НАДН и НАДФН универсальные доноры восстановительных эквивалентов (двух электронов и одного протона).

Входящий в состав остатка амида никотиновой кислоты атом азота четырехвалентен и несет положительный заряд (НАД+ ). Это азотистое основание легко присоединяет два электрона и один протон (т.е.

восстанавливается) в тех реакциях, в которых при участии ферментов дегидрогеназ от субстрата отрываются два атома водорода (второй протон уходит в раствор):

Субстрат-Н2 + НАД+ субстрат + НАДН + Н+

В обратных реакциях ферменты, окисляя НАДН или НАДФН , восстанавливают субстраты, присоединяя к ним атомы водорода (второй протон приходит из раствора).

ФАД – флавинадениндинуклеотид – производное витамина В2 (рибофлавина) также является кофактором дегидрогеназ, но ФАД присоединяет два протона и два электрона, восстанавливаясь до ФАДН2 .

⇐ Предыдущая1234567

Нуклеозидциклофосфаты (цАМФ и цГМФ) как вторичные посредники в регуляции метаболизма клетки.

К нуклеозидциклофосфатам относятся нуклеотиды, у которых одна молекула фосфорной кислоты этерифицирует одновременно две гидроксильные группы углеводного остатка.

Практически во всех клетках присутствуют два нуклеозидциклофосфата — аденозин-3′,5′- циклофосфат (cAMP) и гуанозин-3′,5′-циклофосфат (cGMP). Они являются вторичными посредниками (мессенджерами) в передаче гормонального сигнала в клетку.

6. Строение динуклеотидов: ФАД, НАД+, его фосфата НАДФ+.

Их участие в окислительно-восстановительных реакциях.

Наиболее важными представителями этой группы соединений являются никотинамидадениндинуклеотид (NAD, или в русской литературе НАД) и его фосфат (NADP, или НАДФ). Эти соединения выполняют важную роль коферментов в осуществлении многих окислительно-восстановительных реакций.

В соответствии с этим они могут существовать как в окисленной (НАД+, НАДФ+), так и восстановленной (НАДН, НАДФН) форме.

Структурным фрагментом НАД+ и НАДФ+ является никотинамидный остаток в виде пиридиниевого катиона. В составе НАДН и НАДФН этот фрагмент превращается в остаток 1,4-дигидропиридина.

В ходе биологического дегидрирования субстрат теряет два атома водорода, т.е.

два протона и два электрона (2Н+, 2е) или протон и гидрид-ион (Н+ и Н-). Кофермент НАД+ обычно рассматривается, как акцептор гидрид-иона Н- (хотя окончательно не установлено, происходит ли перенос атома водорода к этому коферменту одновременно с переносом электрона или эти процессы протекают раздельно).

В результате восстановления путем присоединения гидрид-иона к НАД+ пиридиниевое кольцо переходит в 1,4-дигидропиридиновый фрагмент.

Этот процесс обратим.

В реакции окисления ароматический пиридиниевый цикл переходит в неароматический 1,4-дигидропиридиновый цикл. В связи с потерей ароматичности возрастает энергия НАДН по сравнению с НАД+. Таким способом НАДН запасает энергию, которая затем расходуется в других биохимических процессах, требующих энергетических затрат.

Типичными примерами биохимических реакций с участием НАД+ служат окисление спиртовых групп в альдегидные (например, превращение этанола в этаналь), а с участием НАДН — восстановление карбонильных групп в спиртовые (превращение пировиноградной кислоты в молочную).

Реакция окисления этанола с участием кофермента НАД+:

В ходе окисления, субстрат теряет два атома водорода, т.е.

два протона и два электрона. Кофермент НАД+, приняв два электрона и протон восстанавливается до НАДН при этом нарушается ароматичность. Эта реакция обратима.

При переходе окисленной формы кофермента в восстановленную происходит накопление энергии, выделяемой при окислении субстрата. Накопленная восстановленной формой энергия затем расходуется в других эндэргонических процессах с участием этих коферментов.

ФАД — флавинадениндинуклеотид — кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах.

ФАД существует в двух формах — окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.

ФАД может быть восстановлен до ФАДH2, при этом он принимает два атома водорода.

Молекула ФАДH2 является переносчиком энергии, и восстановленный кофермент может быть использован, как субстрат в реакции окислительного фосфорилирования в митохондрии.

Молекула ФАДH2 окисляется в ФАД, при этом выделяется энергия, эквивалентная (запасаемая в форме) двум молям ATФ.

Основной источник восстановленного ФАД у эукариот — цикл Кребса и β-окисление липидов. В цикле Кребса ФАД является простетической группой фермента сукцинатдегидрогеназы, которая окисляет сукцинат до фумарата, в β -окислении липидов ФАД является коферментом ацил-CoA дегидрогеназы.

ФАД образуется из рибофлавина, многие оксидоредуктазы, называемые флавопротеинами, для своей работы используют ФАД как простетическую группу в реакциях переноса электронов.

Первичная структура нуклеиновых кислот: нуклеотидный состав РНК и ДНК, фосфодиэфирная связь. Гидролиз нуклеиновых кислот.

В полинуклеотидных цепях нуклеотидные звенья связаны через фосфатную группу. Фосфатная группа образует две сложноэфирные связи: с С-3′ предыдущего и с С-5′ последующего нуклеотидных звеньев (рис. 1). Каркас цепи состоит из чередующихся пентозных и фосфатных остатков, а гетероциклические основания являются «боковыми» группами, присоединенными к пентозным остаткам.

Нуклеотид со свободной 5′-ОН группой называют 5′-концевым, а нуклеотид со свободной З’-ОН группой — З’-концевым.

Рис. 1. Общий принцип строения полинуклеотидной цепи

На рисунке 2 приведено строение произвольного участка цепи ДНК, включающего четыре нуклеиновых основания. Легко представить, какое множество сочетаний можно получить путем варьирования последовательности четырех нуклеотидных остатков.

Принцип построения цепи РНК такой же, как и у ДНК, с двумя исключениями: пентозным остатком в РНК служит D-рибоза, а в наборе гетероциклических оснований используется не тимин, а урацил.

Первичная структура нуклеиновых кислот определяется последовательностью нуклеотидных звеньев, связанных ковалентными связями в непрерывную цепь полинуклеотида.

Для удобства записи первичной структуры существует несколько способов сокращений.

Один из них заключается в использовании ранее приведенных сокращенных названий нуклеозидов. Например, показанный на рис. 2 фрагмент цепи ДНК может быть записан, как d(ApCpGpTp…) или d(A-C-G-T…). Часто букву d опускают, если очевидно, что речь идет о ДНК.

7. Строение фермента.

Первичная структура участка цепи ДНК

Важной характеристикой нуклеиновых кислот служит нуклеотидный состав, т. е. набор и количественное отношение нуклеотидных компонентов. Нуклеотидный состав устанавливают, как правило, путем исследования продуктов гидролитического расщепления нуклеиновых кислот.

ДНК и РНК различаются поведением в условиях щелочного и кислотного гидролиза.

ДНК устойчивы к гидролизу в щелочной среде. РНК легко гидролизуются в мягких условиях в щелочной среде до нуклеотидов, которые, в свою очередь, способны в щелочной среде отщеплять остаток фосфорной кислоты с образованием нуклеозидов. Нуклеозиды в кислой среде гидролизуются до гетероциклических оснований и углеводов.

Понятие о вторичной структуре ДНК. Комплементарность нуклеиновых оснований. Водородные связи в комплементарных парах нуклеиновых оснований.

Под вторичной структурой понимают пространственную организацию полинуклеотидной цепи.

Согласно модели Уотсона-Крика молекула ДНК состоит из двух полинуклеотидных цепей, правозакрученных вокруг общей оси с образованием двойной спирали. Пуриновые и пиримидиновые основания направлены внутрь спирали. Между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи возникают водородные связи. Эти основания составляют комплементарные пары.

Водородные связи образуются между аминогруппой одного основания и карбонильной группой другого -NH…O=C-, а также между амидным и иминным атомами азота -NH…N.

Например, как показано ниже, между аденином и тимином образуются две водородные связи, и эти основания составляют комплементарную пару, т.

е. аденину в одной цепи будет соответствовать тимин в другой цепи. Другую пару комплементарных оснований составляют гуанин и цитозин, между которыми возникают три водородные связи.

Водородные связи между комплементарными основаниями — один из видов взаимодействий, стабилизирующих двойную спираль. Две цепи ДНК, образующие двойную спираль, не идентичны, но комплементарны между собой.

Это означает, что первичная структура, т.е. нуклеотидная последовательность, одной цепи предопределяет первичную структуру второй цепи (рис. 3).

Рис. 3. Комплементарность полинуклеотидных цепей в двойной спирали ДНК

Комплементарность цепей и последовательность звеньев со-ставляют химическую основу важнейшей функции ДНК — хранения и передачи наследственной информации.

В стабилизации молекулы ДНК наряду с водородными связями, действующими поперек спирали, большую роль играют межмо-лекулярные взаимодействия, направленные вдоль спирали между соседними пространственно сближенными азотистыми основа-ниями.

Поскольку эти взаимодействия направлены вдоль стоп-ки азотистых оснований молекулы ДНК, их называют стэкинг-взаимодействиями. Таким образом, взаимодействия азотистых оснований между собой скрепляют двойную спираль молекулы ДНК и вдоль, и поперек ее оси.

Сильное стэкинг-взаимодействие всегда усиливает водород-ные связи между основаниями, способствуя уплотнению спира-ли.

Вследствие этого молекулы воды из окружающего раствора связываются в основном с пентозофосфатным остовом ДНК, полярные группы которого находятся на поверхности спирали. При ослаблении стэкинг-взаимодействия молекулы воды, про-никая внутрь спирали, конкурентно взаимодействуют с поляр-ными группами оснований, инициируют дестабилизацию и спо-собствуют дальнейшему распаду двойной спирали. Все это сви-детельствует о динамичности вторичной структуры ДНК под воздействием компонентов окружающего раствора.

4. Вторичная структура молекулы РНК

9. Лекарственные средства на основе модифицированных нуклеиновых оснований (фторурацил, меркаптопурин): структура и механизм действия.

В качестве лекарственных средств в онкологии используют синтетические производные пиримидинового и пуринового рядов, по строению похожие на естественные метаболиты (в данном случае — на нуклеиновые основания), но не полностью им идентичные, т.е.

являющиеся антиметаболитами. Например, 5-фторурацил выступает в роли антагониста урацила и тимина, 6-меркаптопурин — аденина.

Конкурируя с метаболитами, они нарушают синтез нуклеиновых кислот в организме на разных этапах.

Фотосинтез – синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света: 6СО 2 +6Н 2 О + Q света →С 6 Н 12 О 6 +6О 2 . Фотосинтез – сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза . Происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента – АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящеёся во внутритилакоидном пространстве. Это приводит к распаду и фотолизу воды: Н 2 О+ Q света →Н + +ОН - . Ионы гидроксида отдают свои электроны, превращаясь в реакционноспособные радикалы ∙ОН: ОН - →∙ОН+е - . Радикалы ∙ОН объединяются, образуя воду и свободный кислород: 4НО∙→ 2Н 2 О+О 2 . Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов – отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идёт на восстановление специфицеского переносчика НАДФ + до НАДФ∙Н 2: 2Н + +2 е - + НАДФ→ НАДФ∙Н 2 . Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1)синтез АТФ; 2) образование НАДФ∙Н 2 ; 3) образование кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ∙Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

Темновая фаза . Происходит в строме хлоропласта. Для её реакций нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют цепочку последовательных преобразований углекислого газа (из воздуха), приводящую к образованию глюкозы и других органических веществ. Сначала происходит фиксация СО 2 , акцептором является сахар рибулозобифосфат, катализируется рибулозобифосфаткарбоксилазой. В результате карбоксилирования рибулозобифосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты. Затем происходит цикл реакций, в которых через ряд промежуточных продуктов ФГК преобразуется в глюкозу. Используется энергия АТФ и и НАДФ·Н 2 образованых в световую фазу. (Цикл Кальвина).

23. Реакции ассимиляции со2 в темновой фазе фотосинтеза.

Цикл Кальвина – главный путь ассимиляции СО 2 . Фаза декарбоксилирования - углекислый газ, связываясь с рибулозобифосфатом, образует две молекулы фосфоглицерата. Эту реакцию катализирует рибулозобифосфат карбосилаза.

Рис. 12. Схема переноса электронов хлорофилла в процессе синтеза АТФ (фосфорилирования). При нециклическом фосфорилировании за счет энергии ФС II идет синтез АТФ, а за счет ФС I идет синтез НАДФ · 2Н. При циклическом фосфорилировании работает только ФС I и происходит синтез АТФ

Под действием света происходит возбуждение молекул хлорофилла ФС I и ФС II, которые, поглощая кванты света, испускают возбужденные электроны. За счет энергии электронов, летящих по цепи ферментов от ФС II к ФС I, происходит синтез молекул АТФ. Этот процесс называется фосфорилированием и происходит в присутствии фермента АТФ-синтетазы.

АДФ + Фн АТФ

где Фн - неорганический фосфат H3 PO4 .

Электроны ФС II, потерявшие энергию, попадают на ФС I, которая является их конечным акцептором.

Электроны, покидающие хлорофилл фотосистемы ФС I при поглощении света, также попадают на электроннотранспортную цепь. Но за счет их энергии идет соединение протонов Н+ с переносчиком НАДФ+ .

Электроны, которые теряет ФС I, восполняются электронами ФС II, а электроны, отданные молекулой воды при фотолизе, восполняют электроны, потерянные хлорофиллом ФС II, и он также восстанавливается:

хлорофилл+2 + 2ē хлорофилл.

На мембране имеются специальные протонные каналы, по которым в определенный момент ионы водорода могут переходить из Н+ -резервуара тилакоида в строму хлоропласта. Каналы связаны с ферментом АТФ-синтетазой. Когда возбужденные электроны ФС I, двигаясь по мембране, достигают протонного канала, он открывается и в него устремляются ионы водорода. Этот процесс сопряжен с синтезом АТФ и происходит синхронно.

С наружной стороны мембраны тилакоида, т. е. в строме хлоропласта, скапливаются молекулы переносчика водорода НАДФ+ в окисленном состоянии. Они принимают электроны от ФС I, за счет чего происходит их соединение с ионами водорода Н+ и образование НАДФ · 2H:

НАДФ+ + 2H+ + 2ē НАДФ · 2Н. (4)

Синтез АТФ и НАДФ · 2Н протекает на мембранах тилакоидов и сопряжен с переносом возбужденных электронов по электронно-транспортной цепи. Таким образом, энергия солнца преобразуется в энергию возбужденных электронов, а далее запасается в процессе синтеза в молекулах АТФ и НАДФ · 2Н.

Суммарное уравнение реакций световой фазы:

H2 O + НАДФ+ + 2АДФ + 2Фн НАДФ · 2Н + 2АТФ + 1 /2 O2 .

Темновая фаза

Реакции темновой фазы (рис. 13) протекают в строме хлоропластов, куда поступают молекулы НАДФ · 2Н и АТФ, синтезированные в световую фазу, и углекислый газ из атмосферы. Последовательность циклических реакций этой фазы была описана американским ученым-биохимиком Мэлвином Кальвином и получила название цикла Кальвина. Здесь происходит связывание молекул CO2 , активирование соединений за счет АТФ (фосфорилирование), восстановление углерода водородом из НАДФ · 2Н и синтез глюкозы. Источником энергии являются синтезированные на первой стадии молекулы АТФ.

Рис. 13. Общая схема темновых реакций фотосинтеза. Цикл Кальвина

В строме хлоропласта постоянно присутствует пятиуглеродный углевод (пентоза), связанный с двумя остатками фосфорной кислоты - рибулозодифосфат.

Образующееся шестиуглеродное соединение неустойчиво и сразу же распадается на два триозофосфата.

С5 -углевод-2Ф + CO2 С6 -углевод-2Ф 2С3 -Ф

2С3 Ф + 2АТФ 2АДФ + 2С3 ~2Ф.

Рис. 14. Фиксация углерода, его фосфорилирование и восстановление

После этого происходит восстановление триозодифосфатов молекулами НАДФ · 2Н:

2С3 ~2Ф + 2НАДФ · 2Н 2С3 + 2НАДФ+ + 2Ф.

Две молекулы триозы соединяются между собой, и образуется глюкоза, которая может в дальнейшем превращаться в сахарозу, крахмал и другие полисахариды:

2С3 С6 Н12 O6 .

Часть молекул триоз может использоваться для синтеза аминокислот, глицерина, высших жирных кислот.

Частично триозы продолжают участвовать в циклических реакциях и превращаются вновь в пентозу, которая замыкает цикл.

В реакции участвуют одновременно шесть молекул каждого вещества. Таким образом, для синтеза одной полностью новой молекулы глюкозы цикл должен повториться шесть раз, т. е. должно усвоиться шесть молекул CO2 .

Освобожденные молекулы АТФ и НАДФ+ вновь возвращаются к мембранам тилакоидов для участия в световых реакциях.

Влияние на скорость фотосинтеза различных факторов

Интенсивность фотосинтеза зависит от целого ряда факторов. Во-первых, это длина световой волны.

Наиболее интенсивен процесс в ультрафиолетовой и красной части спектра. Кроме того, скорость фотосинтеза зависит от степени освещенности, и до определенной величины она возрастает пропорционально освещенности, но далее уже не зависит от нее (рис. 15).

Рис. 15. Влияние различных факторов на скорость фотосинтеза

Другим фактором является концентрация углекислого газа. Чем выше количество углекислого газа, тем интенсивнее идет процесс фотосинтеза. В обычных условиях недостаток углекислого газа является главным лимитирующим фактором, так как в атмосферном воздухе содержится небольшой его процент. Однако в условиях теплиц можно устранить этот дефицит, что благоприятно влияет на интенсивность роста и развития растений.

Немаловажным фактором является температура.

Все реакции фотосинтеза катализируются ферментами, для которых оптимальной температурой является интервал 25–30 °C. При низких температурах скорость действия ферментов резко снижается.

Вода является также важным фактором, влияющим на фотосинтез. Однако оценить количественно этот фактор невозможно, так как она участвует во многих других обменных процессах.