Теорема об изменении главного момента количества движения. Теорема об изменении момента количества движения точки (теорема моментов)

  • 1. Алгебраический момент количества движения относительно центра. Алгебраический О -- скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля количества движения m на расстояние h (перпендикуляр) от этого центра до линии, вдоль которой направлен вектор m :
  • 2. Векторный момент количества движения относительно центра.

Векторный момент количества движения материальной точки относительно некоторого центра О -- вектор, приложенный в этом центре и направленный перпендикулярно плоскости векторов m и в ту сторону, откуда движение точки видно против хода часовой стрелки. Это определение удовлетворяет векторному равенству


Моментом количества движения материальной точки относительно некоторой оси z называется скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля проекции вектора количества движения на плоскость, перпендикулярную этой оси, на перпендикуляр h, опущенный из точки пересечения оси с плоскостью на линию, вдоль которой направлена указанная проекция:

Кинетический момент механической системы относительно центра и оси

1. Кинетический момент относительно центра.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторого центра называется геометрическая сумма моментов количеств движения всех материальных точек системы относительно того же центра.

2. Кинетический момент относительно оси.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторой оси называется алгебраическая сумма моментов количеств движения всех материальных точек системы относительно той же оси.

3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси z с угловой скоростью.

Теорема об изменении момента количества движения материальной точки относительно центра и оси

1. Теорема моментов относительно центра.

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна моменту силы, действующей на точку, относительно того же центра

2. Теорема моментов относительно оси.

Производная по времени от момента количества движения материальной точки относительно некоторой оси равна моменту силы, действующей на точку, относительно той же оси

Теорема об изменении кинетического момента механической системы относительно центра и оси

Теорема моментов относительно центра.

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра равна геометрической сумме моментов всех внешних сил, действующих на систему, относительно того же центра;

Следствие. Если главный момент внешних сил относительно некоторого центра равен нулю, то кинетический момент системы относительно этого центра не изменяется (закон сохранения кинетического момента).

2. Теорема моментов относительно оси.

Производная по времени от кинетического момента механической системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил, действующих на систему, относительно этой оси

Следствие. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент системы относительно этой оси не изменяется.

Например, = 0, тогда L z = const.

Работа и мощность сил

Работа силы -- скалярная мера действия силы.

1. Элементарная работа силы.

Элементарная работа силы -- это бесконечно малая скалярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы: ; - приращение радиуса-вектора точки приложения силы, годографом которого является траектория этой точки. Элементарное перемещение точки по траектории совпадает с в силу их малости. Поэтому

если то dA > 0;если, то dA = 0;если , то dA < 0.

2. Аналитическое выражение элементарной работы.

Представим векторы и d через их проекции на оси декартовых координат:

, . Получим (4.40)

3. Работа силы на конечном перемещении равна интегральной сумме элементарных работ на этом перемещении

Если сила постоянная, а точка ее приложения перемещается прямолинейно,

4. Работа силы тяжести. Используем формулу:Fx = Fy = 0; Fz = -G = -mg;

где h- перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх A 12 = -mgh (точка М 1 -- внизу, M 2 -- вверху).

Итак,. Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (M 2 совпадает с М 1 ) работа равна нулю.

5. Работа силы упругости пружины.

Пружина растягивается только вдоль оси х:

F y = F z = О, F x = = -сх;

где - величина деформации пружины.

При перемещении точки приложения силы из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда

Поэтому работа силы упругости

Работа сил на конечном перемещении; Если = const, то

где - конечный угол поворота; , где п -- число оборотов тела вокруг оси.

Кинетическая энергия материальной точки и механической системы. Теорема Кенига

Кинетическая энергия - скалярная мера механического движения.

Кинетическая энергия материальной точки - скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости,

Кинетическая энергия механической системы -- арифметическая сумма кинетических энергий всех материал точек этой системы:

Кинетическая энергия системы, состоящей из п связанных между собой тел, равна арифметической сумме кинетических энергий всех тел этой системы:

Теорема Кенига

Кинетическая энергия механической системы в общем случае ее движения равна сумме кинетической энергии движения системы вместе с центром масс и кинетической энергии системы при ее движении относительно центра масс:

где Vkc -- скорость k- й точки системы относительно центра масс.

Кинетическая энергия твердого тела при различном движении

Поступательное движение.

Вращение тела вокруг неподвижной оси . ,где -- момент инерции тела относительно оси вращения.

3. Плоскопараллельное движение. , где - момент инерции плоской фигуры относительно оси, проходящей через центр масс.

При плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела со скоростью центра масс и кинетической энергии вращательного движения вокруг оси, проходящей через центр масс, ;

Теорема об изменении кинетической энергии материальной точки

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии материальной точки равен элементарной работе силы, действующей на точку,

Теорема в интегральной (конечной) форме.

Изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии механической системы равен сумме элементарных работ внешних и внутренних сил, действующих на систему.

Теорема в интегральной {конечной) форме.

Изменение кинетической энергии механической системы на некотором перемещении равно сумме работ внешних и внутренних сил, приложенных к системе, на том же перемещении. ; Для системы твердых тел = 0 (по свойству внутренних сил). Тогда

Закон сохранения механической энергии материальной точки и механической системы

Если на материальную точку или механическую систему действуют только консервативные силы, то в любом положении точки или системы сумма кинетической и потенциальной энергий остается величиной постоянной.

Для материальной точки

Для механической системы Т+ П= const

где Т+ П -- полная механическая энергия системы.

Динамика твердого тела

Дифференциальные уравнения движения твердого тела

Эти уравнения можно получить из общих теорем динамики механической системы.

1. Уравнения поступательного движения тела -- из теоремы о движении центра масс механической системы В проекциях на оси декартовых координат

2. Уравнение вращения твердого тела вокруг неподвижной оси - из теоремы об изменении кинетического момента механической системы относительно оси, например, относительно оси

Так как кинетический момент L z твердого тела относительно оси, то если

Так как или, то уравнение можно записать в виде или,форма записи уравнения зависит от того, что следует определить в конкретной задаче.

Дифференциальные уравнения плоскопараллельного движения твердого тела представляют собой совокупность уравнений поступательного движения плоской фигуры вместе с центром масс и вращательного движения относительно оси, проходящей через центр масс:

Физический маятник

Физическим маятником называется твердое тело, вращающееся вокруг горизонтальной оси, не проходящей через центр масс тела, и движущееся под действием силы тяжести.

Дифференциальное уравнение вращения

В случае малых колебаний.

Тогда, где

Решение этого однородного уравнения.

Пусть при t=0 Тогда

-- уравнение гармонических колебаний.

Период колебаний маятника

Приведенная длина физического маятника -- это длина такого математического маятника, период колебаний которого равен периоду колебаний физического маятника.

Направление и величина момента количества движенияопределяется точно так же, как в случае оценки момента силы (параграф 1.2.2).

Одновременно определим (главный) момент количества движения как векторную сумму моментов количества движений точек рассматриваемой системы . Он имеет и второе название – кинетический момент :

Найдем производную по времени выражения (3.40), используя правила дифференцирования произведения двух функций, а также то, что производная суммы равна сумме производных (т.е. знак суммы при дифференцировании можно перемещать как коэффициент):

.

Учтем очевидные кинематические равенства: . Тогда: . Используем среднее уравнение из формул (3.26) , а также то, что векторное произведение двух коллинеарных векторов ( и ) равно нулю, получим:

Применяя ко 2-му слагаемому свойство внутренних сил (3.36), получим выражение для теоремы об изменении главного момента количества движения механической системы:

. (3.42)

Производная по времени от кинетического момента равна сумме моментов всех действующих в системе внешних сил .

Эту формулировку часто называют кратко: теорема моментов .

Необходимо заметить, что теорема моментов формулируется в неподвижной системе отсчета относительно некого неподвижного центра О. Если в качестве механической системы рассматривается твердое тело, то удобно выбрать центр О на оси вращения тела.

Следует отметить одно важное свойство теоремы моментов (приведем его без вывода). Теорема моментов выполняется и в движущейся поступательно системе отсчета, если в качестве ее центра выбран центр масс (т. С) тела (механической системы):

Формулировка теоремы в этом случае практически сохраняется.

Следствие 1

Пусть правая часть выражения (3.42) равна нулю =0, - система изолирована. Тогда из уравнения (3.42) следует, что .

Для изолированной механической системы вектор кинетического момента системы со временем не меняется ни направлению, ни по величине .

Следствие 2

При равенстве нулю правой части какого либо из выражений (3.44), например, для оси Oz: =0 (частично изолированная система), то из уравнений (3.44) следует: =const.

Следовательно, если сумма моментов внешних сил относительно какой либо оси равна нулю, то осевой кинетический момент системы по этой оси со временем не меняется .

Приведенные выше в следствиях формулировки есть выражения закона сохранение момента количества движения в изолированных системах .

Кинетический момент твердого тела

Рассмотрим частный случай – вращение твердого тела вокруг оси Oz (рис.3.4).

Рис.3.4

Точка тела, отстоящая от оси вращения на расстояние h k , вращается в плоскости, параллельной Oxy со скоростью . В соответствии с определением осевого момента используем выражение (1.19), заменив проекцию F XY силы на эту плоскость количеством движения точки . Оценим осевой кинетический момент тела:

По теореме Пифагора , поэтому (3.46) можно записать так:

(3.47)

Тогда выражение (3.45) приобретет вид:

(3.48)

Если воспользоваться законом сохранения кинетического момента для частично изолированной системы (следствие 2) применительно к твердому телу (3.48), получим . В этом случае можно рассмотреть два варианта:

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Как определяется кинетический момент вращающегося твердого тела?

2. Чем отличается осевой момент инерции от осевого кинетического момента?

3. Как меняется со временем скорость вращения твердого тела при отсутствии внешних сил?

Осевой момент инерции твердого тела

Как мы убедимся впоследствии, осевой момент инерции тела имеет для вращательного движения тела такое же значение, как масса тела при его поступательном движении. Эта одна из важнейших характеристик тела, определяющая инерцию тела при его вращении. Как видно из определения (3.45), эта положительная скалярная величина, которая зависит от масс точек системы, но в большей мере от удаленности точек от оси вращения.

Для сплошных однородных тел простых форм величину осевого момента инерции, как и в случае оценки положения центра масс(3.8), считают методом интегрирования, используя вместо дискретной массы массу элементарного объема dm=ρdV:

(3.49)

Приведем для справки значения моментов инерции для некоторых простых тел:

m и длиной l относительно оси, проходящей перпендикулярно стержню через его середину (рис.3.5).

Рис.3.5

· Момент инерции тонкого однородного стержня массой m и длиной l относительно оси, проходящей перпендикулярно стержню через его торец (рис.3.6).

Рис.3.6

· Момент инерции тонкого однородного кольца массой m и радиусом R относительно оси, проходящей через его центр перпендикулярно плоскости кольца (рис.3.7).

Рис.3.7

· Момент инерции тонкого однородного диска массой m и радиусом R относительно оси, проходящей через его центр перпендикулярно плоскости диска (рис.3.7).

Рис.3.8

· Момент инерции тела произвольной формы.

Для тел произвольной формы момент инерции пишут в такой форме:

где ρ – т.н. радиус инерции тела, или радиус некого условного кольца массой m , осевой момент инерции которого равен моменту инерции данного тела.

Теорема Гюйгенса – Штейнера

Рис.3.9

Свяжем с телом две параллельные системы координат. Первая Cx"y"z", с началом координат в центре масс, называется центральной, и вторая Oxyz, с центром О, лежащей на оси Cx" на расстоянии СО = d (рис.3.9). Легко установить связи координат точек тела у этих систем:

В соответствии с формулой (3.47), момент инерции тела относительно оси Oz:

Здесь постоянные для всех членов 2-й и 3-й сумм правой части сомножители 2d и d вынесены из соответствующих сумм. Сумма масс в третьем слагаемом – это масса тела . Вторая сумма, в соответствии с (3.7), определяет координату центра масс С на оси Cx" (), причем очевидно равенство: . Учтя, что 1-е слагаемое, по определению, является моментом инерции тела относительно центральной оси Cz" (или Z C) , получим формулировку теоремы Гюйгенса - Штейнера:

(3.50)

Момент инерции тела относительно некой оси равен сумме момента инерции тела относительно параллельной центральной оси и произведения массы тела на квадрат расстояния между этими осями .

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Приведите формулы для осевых моментов инерции стержня, кольца, диска.

2. Найдите радиус инерции круглого сплошного цилиндра относительно его центральной оси.

Кинетический момент точки и механической системы

Рис. 3.14

Одной из динамических характеристик движения материальной точки и механической системы является кинетический момент или момент количества движения.

Для материальной точки кинетическим моментом относительно какого–либо центра О называют момент количества движения точки относительно этого центра (рис. 3.14),

Кинетическим моментом материальной точки относительно оси называется проекция на эту ось кинетического момента точки относительно любого центра на этой оси:

Кинетическим моментом механической системы относительно центра О называется геометрическая сумма кинетических моментов всех точек системы относительно того же центра (рис. 3.15):


(3.20)

Кинетический момент приложен к точке О , относительно которой он вычисляется.

Если спроецировать (3.20) на оси декартовой системы координат, то получим проекции кинетического момента на эти оси, или кинетические моменты относительно осей координат:

Определим кинетический момент тела относительно его неподвижной оси вращения z (рис. 3.16).

Согласно формулам (3.21), имеем

Но при вращении тела с угловой скоростью w скорость причем количество движения точки перпендикулярно отрезку d k и лежит в плоскости перпендикулярной оси вращения Oz , следовательно,

Рис. 3.15 Рис. 3.16

Для всего тела:

где J z – момент инерции относительно оси вращения.

Следовательно, кинетический момент твердого тела относительно оси вращения равен произведению момента инерции тела относительно данной оси на угловую скорость тела.

2. Теорема об изменении кинетического момента
механической системы

Кинетический момент системы относительно неподвижного центра O (рис. 3.15)

Возьмем от левой и правой части этого равенства производную по времени:


(3.22)

Учтем, что тогда выражение (3.22) примет вид

Или, с учетом того, что

– сумма моментов внешних сил относительно центра O , окончательно имеем:

(3.23)

Равенство (3.23) выражает теорему об изменении кинетического момента.



Теорема об изменении кинетического момента. Производная по времени от кинетического момента механической системы относительно неподвижного центра равна главному моменту внешних сил системы относительно того же центра.

Спроектировав равенство (3.23) на неподвижные оси декартовых координат, получим запись теоремы в проекциях на эти оси:

Из (3.23) следует, что если главный момент внешних сил относительно какого-либо неподвижного центра равен нулю, то кинетический момент относительно этого центра остается постоянным, т.е. если


(3.24)

Если же сумма моментов внешних сил системы относительно какой–либо неподвижной оси равна нулю, то соответствующая проекция кинетического момента остается постоянной,


(3.25)

Утверждения (3.24) и (3.25) представляют собой закон сохранения кинетического момента системы.

Получим теорему об изменении кинетического момента системы, выбрав в качестве точки при вычислении кинетического момента точку A , движущуюся относительно инерциальной системы отсчета со скоростью

Кинетический момент системы относительно точки A (рис. 3.17)

Рис. 3.17

так как то

Учитывая, что где – скорость центра масс системы, получаем

Вычислим производную по времени от кинетического момента

В полученном выражении:

Объединяя второе и третье слагаемое, и учитывая, что

окончательно получаем

Если точка совпадает с центром масс системы C , то и теорема принимает вид

т.е. она имеет ту же форму, что и для неподвижной точки О .

3. Дифференциальное уравнение вращения твердого тела
вокруг неподвижной оси

Пусть твердое тело вращается вокруг неподвижной оси Az (рис. 3.18) под действием системы внешних сил
Запишем уравнение теоремы об изменении кинетического момента системы в проекции на ось вращения:

Рис. 3.18

Для случая вращения твердого тела вокруг неподвижной оси:

где J z – постоянный момент инерции относительно оси вращения; w – угловая скорость.

Учитывая это, получаем:

Если ввести угол поворота тела j, то, учитывая равенство имеем

(3.26)

Выражение (3.26) есть дифференциальное уравнение вращения твердого тела вокруг неподвижной оси.

4. Теорема об изменении кинетического момента системы
в относительном движении по отношению к центру масс

Для исследования механической системы выберем неподвижную систему координат Ox 1 y 1 z 1 и подвижную Cxyz с началом в центре масс C , движущуюся поступательно (рис. 3.19).

Из векторного треугольника:

Рис. 3.19

Дифференцируя это равенство по времени, получаем

или

где – абсолютная скорость точки M k , - абсолютная скорость центра масс С ,
- относительная скорость точки M k , т.к.

Кинетический момент относительно точки О

Подставляя значения и , получим

В этом выражении: ­– масса системы; ;

– кинетический момент системы относительно центра масс для относительного движения в системе координат Сxyz .

Кинетический момент принимает вид

Теорема об изменении кинетического момента относительно точки О имеет вид

Подставим значения и получим

Преобразуем это выражение с учетом, что

или

Эта формула выражает теорему об изменении кинетического момента системы относительно центра масс для относительного движения системы по отношению к системе координат, движущейся поступательно с центром масс. Она формулируется так же, как если бы центр масс был неподвижной точкой.

Сначала рассмотрим случай одной материальной точки. Пусть - масса материальной точки М, - ее скорость, - количество движения.

Выберем в окружающем пространстве точку О и построим момент вектора относительно этой точки по тем же правилам, по которым в статике вычисляется момент силы. Получим векторную величину

которая называется моментом количества движения материальной точки относительно центра О (рис. 31).

Построим с началом в центре О декартову прямоугольную систему координат Oxyz и спроектируем вектор ко на эти оси. Его проекции на эти оси, равные моментам вектора относительно соответствующих координатных осей, называются моментами количества движения материальной точки относительно координатных осей:

Пусть теперь имеем механическую систему, состоящую из N материальных точек . В этом случае момент количества движения можно определить для каждой точки системы:

Геометрическая сумма моментов количеств движения всех материальных точек, входящих в состав системы, называется главным моментом количеств движения или кинетическим моментом системы.


Динамика:
Динамика материальной точки
§ 28. Теорема об изменении количества движения материальной точки. Теорема об изменении момента количества движения материальной точки

Задачи с решениями

28.1 Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути. При торможении развивается сила сопротивления, равная 0,1 веса поезда. В момент начала торможения скорость поезда равняется 20 м/с. Найти время торможения и тормозной путь.
РЕШЕНИЕ

28.2 По шероховатой наклонной плоскости, составляющей с горизонтом угол α=30°, спускается тяжелое тело без начальной скорости. Определить, в течение какого времени T тело пройдет путь длины l=39,2 м, если коэффициент трения f=0,2.
РЕШЕНИЕ

28.3 Поезд массы 4*10^5 кг входит на подъем i=tg α=0,006 (где α угол подъема) со скоростью 15 м/с. Коэффициент трения (коэффициент суммарного сопротивления) при движении поезда равен 0,005. Через 50 с после входа поезда на подъем его скорость падает до 12,5 м/с. Найти силу тяги тепловоза.
РЕШЕНИЕ

28.4 Гирька М привязана к концу нерастяжимой нити MOA, часть которой OA пропущена через вертикальную трубку; гирька движется вокруг оси трубки по окружности радиуса MC=R, делая 120 об/мин. Медленно втягивая нить OA в трубку, укорачивают наружную часть нити до длины OM1, при которой гирька описывает окружность радиусом R/2. Сколько оборотов в минуту делает гирька по этой окружности?
РЕШЕНИЕ

28.5 Для определения массы груженого железнодорожного состава между тепловозами и вагонами установили динамометр. Среднее показание динамометра за 2 мин оказалось 10^6 Н. За то же время состав набрал скорость 16 м/с (вначале состав стоял на месте). Найти массу состава, если коэффициент трения f=0,02.
РЕШЕНИЕ

28.6 Каков должен быть коэффициент трения f колес заторможенного автомобиля о дорогу, если при скорости езды v=20 м/с он останавливается через 6 с после начала торможения.
РЕШЕНИЕ

28.7 Пуля массы 20 г вылетает из ствола винтовки со скоростью v=650 м/с, пробегая канал ствола за время t=0,00095 c. Определить среднюю величину давления газов, выбрасывающих пулю, если площадь сечения канала σ=150 мм^2.
РЕШЕНИЕ

28.8 Точка M движется вокруг неподвижного центра под действием силы притяжения к этому центру. Найти скорость v2 в наиболее удаленной от центра точке траектории, если скорость точки в наиболее близком к нему положении v1=30 см/с, а r2 в пять раз больше r1.
РЕШЕНИЕ

28.9 Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение М. Дано: v0=500 м/с; α0=60°; v1=200 м/с; масса снаряда 100 кг.
РЕШЕНИЕ

28.10 Два астероида М1 и М2 описывают один и тот же эллипс, в фокусе которого S находится Солнце. Расстояние между ними настолько мало, что дугу М1М2 эллипса можно считать отрезком прямой. Известно, что длина дуги М1М2 равнялась a, когда середина ее находилась в перигелии P. Предполагая, что астероиды движутся с равными секториальными скоростями, определить длину дуги М1М2, когда середина ее будет проходить через афелий A, если известно, что SP=R1 и SA=R2.
РЕШЕНИЕ

28.11 Мальчик массы 40 кг стоит на полозьях спортивных саней, масса которых равна 20 кг, и делает каждую секунду толчок с импульсом 20 Н*с. Найти скорость, приобретаемую санями за 15 c, если коэффициент трения f=0,01.
РЕШЕНИЕ

28.12 Точка совершает равномерное движение по окружности со скоростью v=0,2 м/с, делая полный оборот за время T=4 c. Найти импульс S сил, действующих на точку, за время одного полупериода, если масса точки m=5 кг. Определить среднее значение силы F.
РЕШЕНИЕ

28.13 Два математических маятника, подвешенных на нитях длин l1 и l2 (l1>l2), совершают колебания одинаковой амплитуды. Оба маятника одновременно начали двигаться в одном направлении из своих крайних отклоненных положений. Найти условие, которому должны удовлетворять длины l1 и l2 для того, чтобы маятники по истечении некоторого промежутка времени одновременно вернулись в положение равновесия. Определить наименьший промежуток времени T.
РЕШЕНИЕ

28.14 Шарик массы m, привязанный к нерастяжимой нити, скользит по гладкой горизонтальной плоскости; другой конец нити втягивают с постоянной скоростью a в отверстие, сделанное на плоскости. Определить движение шарика и натяжение нити T, если известно, что в начальный момент нить расположена по прямой, расстояние между шариком и отверстием равно R, а проекция начальной скорости шарика на перпендикуляр к направлению нити равна v0.
РЕШЕНИЕ

28.15 Определить массу M Солнца, имея следующие данные: радиус Земли R=6,37*106 м, средняя плотность 5,5 т/м3, большая полуось земной орбиты a=1,49*10^11 м, время обращения Земли вокруг Солнца T=365,25 сут. Силу всемирного тяготения между двумя массами, равными 1 кг, на расстоянии 1 м считаем равной gR2/m Н, где m масса Земли; из законов Кеплера следует, что сила притяжения Земли Солнцем равна 4π2a3m/(T2r2), где r расстояние Земли от Солнца.
РЕШЕНИЕ

28.16 Точка массы m, подверженная действию центральной силы F, описывает лемнискату r2=a cos 2φ, где a величина постоянная, r расстояние точки от силового центра; в начальный момент r=r0, скорость точки равна v0 и составляет угол α с прямой, соединяющей точку с силовым центром. Определить величину силы F, зная, что она зависит только от расстояния r. По формуле Бине F =-(mc2/r2)(d2(1/r)/dφ2+1/r), где c удвоенная секторная скорость точки.
РЕШЕНИЕ

28.17 Точка M, масса которой m, движется около неподвижного центра O под влиянием силы F, исходящей из этого центра и зависящей только от расстояния MO=r. Зная, что скорость точки v=a/r, где a величина постоянная, найти величину силы F и траекторию точки.
РЕШЕНИЕ

28.18 Определить движение точки, масса которой 1 кг, под действием центральной силы притяжения, обратно пропорциональной кубу расстояния точки от центра притяжения, при следующих данных: на расстоянии 1 м сила равна 1 Н. В начальный момент расстояние точки от центра притяжения равно 2 м, скорость v0=0,5 м/с и составляет угол 45° с направлением прямой, проведенной из центра к точке.
РЕШЕНИЕ

28.19 Частица M массы 1 кг притягивается к неподвижному центру O силой, обратно пропорциональной пятой степени расстояния. Эта сила равна 8 Н на расстоянии 1 м. В начальный момент частица находится на расстоянии OM0=2 м и имеет скорость, перпендикулярную к OM0 и равную 0,5 м/с. Определить траекторию частицы.
РЕШЕНИЕ

28.20 Точка массы 0,2 кг, движущаяся под влиянием силы притяжения к неподвижному центру по закону тяготения Ньютона, описывает полный эллипс с полуосями 0,1 м и 0,08 м в течение 50 c. Определить наибольшую и наименьшую величины силы притяжения F при этом движении.
РЕШЕНИЕ

28.21 Математический маятник, каждый размах которого длится одну секунду, называется секундным маятником и применяется для отсчета времени. Найти длину l этого маятника, считая ускорение силы тяжести равным 981 см/с2. Какое время покажет этот маятник на Луне, где ускорение силы тяжести в 6 раз меньше земного? Какую длину l1 должен иметь секундный лунный маятник?
РЕШЕНИЕ

28.22 В некоторой точке Земли секундный маятник отсчитывает время правильно. Будучи перенесен в другое место, он отстает на T секунд в сутки. Определить ускорение силы тяжести в новом положении секундного маятника.