Подготовка к ЕГЭ по физике. Рекомендации

Если вы собираетесь поступать на технические специальности, то физика является для вас одним из основных предметов. Эта дисциплина далеко не всем даётся на ура, поэтому придётся потренироваться, чтобы хорошо справиться со всеми заданиями. Мы расскажем вам, как подготовиться к ЕГЭ по физике, если у вас в распоряжении ограниченное количество времени, а результат хочется получить максимально возможный.

Структура и особенности ЕГЭ по физике

В 2018-м году ЕГЭ по физике состоит из 2-х частей:

  1. 24 задания, в которых вам нужно дать краткий ответ без решения. Это может быть целое число, дробь, либо же последовательность чисел. Сами задачи различного уровня сложности. Есть простые, например: максимальная высота, на которую поднимается тело массой 1 кг, составляет 20 метров. Найти кинетическую энергию в момент сразу же после броска. Решение не подразумевает большого количества действий. Но есть и такие задания, где придётся поломать голову.
  2. Задания, которые нужно решить с подробным объяснением (записью условия, ходом решения и конечным ответом). Здесь все задачи достаточно высокого уровня. Например: баллон, содержащий m1 = 1 кг азота, при испытании на прочность взорвался при температуре t1 = 327°С. Какую массу водорода m2 можно было бы хранить в таком баллоне при температуре t2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M1 = 28 г/моль, водорода M2 = 2 г/моль.

В сравнении с прошлым годом количество заданий увеличилось на одно (в первой части добавили задачу на знание основ астрофизики). Всего 32 задание, которые вам нужно решить в течение 235 минут.

В этом году у школьников задач поприбавится

Так как физика является предметом на выбор, ЕГЭ по этому предмету обычно целенаправленно сдают те, кто собирается идти на технические специальности, а значит, выпускник знает, как минимум, основы. Уже исходя из этих знаний можно набрать не только минимальный балл, но и куда выше. Главное, чтобы вы готовились к ЕГЭ по физике правильно.

Мы предлагаем ознакомиться с нашими советами по подготовки к ЕГЭ, в зависимости от того, сколько времени у вас есть на то, чтобы выучить материал и прорешать задачи. Ведь кто-то начинает готовиться за год до сдачи экзамена, кто-то за несколько месяцев, ну а кто-то вспоминает о ЕГЭ по физике лишь за неделю до сдачи! Мы расскажем, как подготовиться в сжатые сроки, но максимально эффективно.

Как самостоятельно подготовиться за несколько месяцев до дня X

Если у вас есть 2–3 месяца на подготовку к ЕГЭ, то можно начать с теории, так как у вас будет время на её прочтение и усвоение. Разделите теорию на 5 основных частей:

  1. Механика;
  2. Термодинамика и молекулярная физика;
  3. Магнетизм;
  4. Оптика;
  5. Электростатика и постоянный ток.

Прорабатывайте каждую из этих тем отдельно, выучите все формулы, сначала основные, а потом и специфические в каждом из этих разделов. Также нужно знать на память все величины, их соответствие тем или иным показателям. Это даст вам теоретическую основу для того, чтобы решать как задания первой части, так и задачи из части №2.

После того как вы научитесь решать простые задачи и тесты, переходите к более сложным заданиям

После того, как вы поработаете с теорией в данных разделах, приступайте к решению простых задач, которые рассчитаны всего на пару действий, чтобы использовать формулы на практике. Также после чёткого знания формул решайте тесты, старайтесь прорешать их максимальное количество, чтобы не только подкрепить свои теоретические знания, но и понять все особенности заданий, научиться правильно понимать вопросы, применять те или иные формулы и законы.

После того как вы научитесь решать простые задачи и тесты, переходите к более сложным заданиям, старайтесь строить решение максимально грамотно, используя рациональные пути. Решайте как можно больше заданий из второй части, что поможет понять их специфику. Часто бывает, что задания в ЕГЭ практически повторяют прошлогодние, нужно лишь найти несколько иные значения или выполнить обратные действия, поэтому обязательно просмотрите ЕГЭ за прошлые года.

За день же до сдачи ЕГЭ лучше отказаться от решения задач и повторения и просто отдохнуть.

Начало подготовки за месяц до теста

Если ваше время ограничивается 30-ю днями, то вам следует выполнить следующие действия для успешной и быстрой подготовки к ЕГЭ:

  • Из вышеуказанных разделов вы должны сделать сводную таблицу с основными формулами, выучить их на зубок.
  • Просмотрите типичные задания. Если среди них есть те, которые вы хорошо решаете, от отработки подобных заданий можно отказаться, уделив время «проблемным» темам. Именно на них и сделайте акцент в теории.
  • Заучите основные величины и их значения, порядок перевода одной величины в другую.
  • Постарайтесь решать как можно больше тестов, что поможет вам понять смысл заданий, уяснить их логику.
  • Постоянно освежайте в голове знание основных формул, это поможет вам набрать неплохие баллы в тестировании, даже если вы не помните сложных формул и законов.
  • Если вы хотите замахнуться на достаточно высокие результаты, то обязательно ознакомьтесь с прошлыми ЕГЭ. В особенности, сделайте упор на часть 2, ведь логика заданий может повторяться, а, зная ход решения, вы обязательно придёте к правильному результату! Едва ли вы сможете научиться выстраивать логику решения подобных задач самостоятельно, поэтому желательно уметь найти общее между задачами предыдущих годов и текущим заданием.

Если готовиться по такому плану, то вы сможете набрать не только минимальные баллы, но и куда выше, всё зависит от ваших знаний в данной дисциплине, базы, которая была у вас ещё до начала подготовки.

Пара быстрых недель на заучивание

Если же вы вспомнили про сдачу физики за пару недель до начала тестирования, то всё равно есть надежда набрать неплохие баллы, если у вас есть определённые знания, а также преодолеть минимальный барьер, если в физике вы полный 0. Для эффективной подготовки следует придерживать такого плана работы:

  • Выпишите основные формулы, постарайтесь запомнить их. Желательно хорошо изучить хотя бы пару тем из основной пятёрки. Но основные формулы вы должны знать в каждом из разделов!

Подготовиться к ЕГЭ по физике за пару недель с нуля нереально, поэтому не уповайте на удачу, а зубрите с начала года

  • Поработайте с ЕГЭ прошлых годов, разберитесь с логикой заданий, а также типичными вопросами.
  • Попробуйте скооперироваться одноклассниками, друзьями. При решении задач вы можете хорошо знать одну тему, а они другие, если вы просто расскажете друг другу ход решения, то получится быстрый и эффективный обмен знаниями!
  • Если вы хотите решить какие-либо задания из второй части, то вам лучше попробовать изучить прошлогодние ЕГЭ, как мы описывали при подготовке к тестированию за месяц.

При ответственном выполнении всех этих пунктов вы можете быть уверены в получении минимально допустимого балла! Как правило, на большее люди, начавшие подготовку за неделю, и не рассчитывают.

Тайм-менеджмент

Как мы уже сказали, у вас на выполнение заданий есть 235 минут или почти 4 часа. Для того, чтобы использовать это время максимально рационально, сначала выполните все простые задания, те, в которых вы меньше всего сомневаетесь из первой части. Если вы хорошо «дружите» с физикой, то у вас останется лишь несколько нерешённых заданий из данной части. Для тех же, кто начал подготовку с нуля, именно на первой части и стоит сделать максимальный акцент, чтобы набрать необходимые баллы.

Правильное распределение своих сил и времени на экзамене - залог успеха

Вторая же часть требует больших затрат времени, благо, с ним у вас проблем нет. Внимательно читайте задания, после чего выполняйте сначала те, в которых разбираетесь лучше всего. После этого переходите к решению тех заданий из частей 1 и 2, в которых вы сомневаетесь. Если у вас не так много знаний в физике, вторую часть также стоит, как минимум, прочитать. Вполне возможно, что логика решения задач будет вам знакома, вы сможете решить 1–2 задания правильно, исходя из опыта, приобретённого при просмотре прошлогодних ЕГЭ.

Благодаря тому, что времени много, спешить вам не придётся. Внимательно вчитывайтесь в задания, вникайте в суть задачи, только после этого решайте её.

Так вы сможете неплохо подготовиться к ЕГЭ по одной из сложнейших дисциплин, даже если начинаете свою подготовку, когда тестирование уже буквально «на носу».

  • Задача 25, которая ранее была представлена в части 2 в виде задания с кратким ответом, теперь предлагается для развернутого решения и оценивается максимально в 2 балла. Таким образом, число заданий с развернутым ответом увеличилось с 5 до 6.
  • Для задания 24, проверяющего освоение элементов астрофизики, вместо выбора двух обязательных верных ответов предлагается выбор всех верных ответов, число которых может составлять либо 2, либо 3.

Структура заданий ЕГЭ по физике-2020

Экзаменационная работа состоит из двух частей, включающих в себя 32 задания .

Часть 1 содержит 26 заданий.

  • В заданиях 1–4, 8–10, 14, 15, 20, 25–26 ответом является целое число или конечная десятичная дробь.
  • Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
  • Ответом к заданию 13 является слово.
  • Ответом к заданиям 19 и 22 являются два числа.

Часть 2 содержит 6 заданий. Ответ к заданиям 27–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе .

Темы ЕГЭ по физике, которые будут в экзаменационной работе

  1. Механика (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
  2. Молекулярная физика (молекулярно-кинетическая теория, термодинамика).
  3. Электродинамика и основы СТО (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
  4. Квантовая физика и элементы астрофизики (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут .

Примерное время на выполнение заданий различных частей работы составляет:

  1. для каждого задания с кратким ответом – 3–5 минут;
  2. для каждого задания с развернутым ответом – 15–20 минут.

Что можно брать на экзамен:

  • Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
  • Перечень дополнительных устройств и , использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

Важно!!! не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2020 усилят дополнительными камерами.

Баллы ЕГЭ по физике

  • 1 балл - за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, задания.
  • 2 балла - 5, 6, 7, 11, 12, 16, 17, 18, 21, 24, 28.
  • 3 балла - 27, 29, 30, 31, 32.

Всего: 53 баллов (максимальный первичный балл).

Что необходимо знать при подготовки заданий в ЕГЭ:

  • Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
  • Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
  • Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
  • Уметь применять полученные знания при решении физических задач.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

С чего начать подготовку к ЕГЭ по физике:

  1. Изучать теорию, необходимую для каждого заданий.
  2. Тренироваться в тестовых заданиях по физике, разработанные на основе

В данной статье представлен разбор заданий по механике (динамике и кинематике) из первой части ЕГЭ по физике с подробными пояснениями от репетитора по физике. Имеется видеоразбор всех заданий.

Выделим на графике участок, соответствующий интервалу времени от 8 до 10 с:

Тело двигалось на этом интервале времени с одинаковым ускорением, поскольку график здесь является участком прямой линии. За эти с скорость тела изменилась на м/с. Следовательно, ускорение тела в этот промежуток времени было равно м/с 2 . Подходит график под номером 3 (в любой момент времени ускорение равно -5 м/с 2).


2. На тело действуют две силы: и . По силе и равнодействующей двух сил найдите модуль второй силы (см. рисунок).

Вектор второй силы равен . Или, что аналогично, . Тогда сложим два последних вектора по правилу параллелограмма:

Длину суммарного вектора можно найти из прямоугольного треугольника ABC , катеты которого AB = 3 Н и BC = 4 Н. По теореме Пифагора получаем, что длина искомого вектора равна Н.

Введём систему координат с центром, совпадающим с центром масс бруска, и осью OX , направленной вдоль наклонной плоскости. Изобразим силы, действующие на брусок: силу тяжести , силу реакции опоры и силу трения покоя . В результате получится следующий рисунок:

Тело покоится, поэтому векторная сумма всех сил, действующих на него равна нулю. В том числе равна нулю и сумма проекций сил на ось OX .

Проекция силы тяжести на ось OX равна катету AB соответствующего прямоугольного треугольника (см. рисунок). При этом из геометрических соображений этот катет лежит напротив угла в . То есть проекция силы тяжести на ось OX равна .

Сила трения покоя направлена вдоль оси OX , поэтому проекция этой силы на ось OX равна просто длине этого вектора, но с противоположным знаком, поскольку вектор направлен против оси OX . В результате получаем:

Используем известную из школьного курса физики формулу:

Определим по рисунку амплитуды установившихся вынужденных колебаний при частотах вынуждающей силы 0,5 Гц и 1 Гц:

Из рисунка видно, что при частоте вынуждающей силы 0,5 Гц амплитуда установившихся вынужденных колебаний составляла 2 см, а при частоте вынуждающей силы 1 Гц амплитуда установившихся вынужденных колебаний составляла 10 см. Следовательно, амплитуда установившихся вынужденный колебаний увеличилась в 5 раз.

6. Шарик, брошенный горизонтально с высоты H с начальной скоростью , за время полёта t пролетел в горизонтальном направлении расстояние L (см. рисунок). Что произойдёт с временем полёта и ускорением шарика, если на той же установке при неизменной начальной скорости шарика увеличить высоту H ? (Сопротивлением воздуха пренебречь.) Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

В обоих случаях шарик будет двигаться с ускорением свободного падения, поэтому ускорение не изменится. В данном случае время полёта от начальной скорости не зависит, поскольку последняя направлена горизонтально. Время полёта зависит от высоты, с которой падает тело, причём чем больше высота, тем больше время полёта (телу дольше падать). Следовательно, время полёта увеличится. Правильный ответ: 13.

В задании №1 ЕГЭ по физике необходимо решить простую задачу по кинематике. Это может быть нахождение пути, скорости, ускорения тела или объекта по графику из условия.

Теория к заданию №1 по физике

Упрощенные определения

Путь — линия перемещения тела в пространстве, имеет длину, измеряется в метрах, сантиметрах и т.д.

Скорость — количественное изменение положение тела за единицу времени, измеряется в м/с, км/час.

Ускорение — изменение скорости за единицу времени, измеряется в м/с2.

Если тело движется равномерно, его путь меняется по формуле

В декартовой системе координат имеем:

S=x –x 0 , x – x 0 =vt, x=x 0 +vt.

Графиком равномерного движения является прямая. Например, тело начало путь из точки с координатой х о =5, скорость тела равна v= 2 м/с. Тогда зависимость изменения координаты примет вид: х=5+2t . И график движения имеет вид:

Если в прямоугольной системе построен график зависимости скорости тела от времени, причем тело движется равноускоренно или равномерно, путь можно найти, определив площадь треугольника:

или трапеции:

Перейдем к разборам заданий.

Разбор типовых вариантов заданий №1 ЕГЭ по физике

Демонстрационный вариант 2018

Алгоритм решения:
  1. Записываем ответ.
Решение:

1. За отрезок времени от 4 с до 8 с скорость тела изменилась с 12 м/с до 4 /с. Уменьшаясь равномерно.

2. Поскольку ускорение равно отношению изменения скорости к отрезку времени, за который изменение происходило, имеем:

(4-12) / (8-4) = -8/4 = -2

Знак «–» поставлен по той причине, что движение было замедленным, а для такого движения ускорение имеет отрицательное значение.

Ответ: – 2 м/с2

Первый вариант задания (Демидова, №1)

Алгоритм решения:
  1. Рассматриваем по рисунку, как двигался автобус за указанный промежуток времени.
  2. Определяем пройденный путь, как площадь фигуры.
  3. Записываем ответ.
Решение:

1. По графику зависимости скорости v от времени t видим, что автобус в начальный момент времени стоял. Первые 20 секунд, он набирал скорость до 15 м/с. А потом двигался равномерно еще 30 секунд. На графике зависимость скорости от времени представляет собой трапецию.

2. Пройденный путь S определяем как площадь трапеции.

Основания этой трапеции равны промежуткам времени: a = 50 с и b = 50-20=30 с, а высота представляет собой изменение скорости и равна h = 15 м/с.

Тогда пройденный путь равен:

(50 + 30) 15 / 2 = 600

Ответ: 600 м

Второй вариант задания (Демидова, № 22)

Алгоритм решения:
  1. Рассматриваем график зависимости пути от времени. Устанавливаем изменение скорость за указанный временной промежуток.
  2. Определяем скорость.
  3. Записываем ответ.
Решение:

Участок пути из А в Б это первый отрезок. На этом промежутке координата x увеличивается равномерно с нуля до 30 км за 0,5 ч. Тогда можно найти скорость по формуле:

(S-S0) / t = (30 — 0) км / 0,5 ч = 60 км/ч.

Третий вариант задания (Демидова, №30)

Алгоритм решения:
  1. Рассматриваем по рисунку, как изменилась скорость тела за указанный отрезок времени.
  2. Определяем ускорение, как отношение изменения скорости ко времени.
  3. Записываем ответ.
Решение:

На отрезке времени от 30 с до 40 с скорость тела возрастала равномерно с 10 до 15 м/с. промежуток времени, в течение которого произошло изменение скорости равен:

40 с – 30 с=10 с. А сам промежуток времени равен 15 – 10 = 5м/с. Автомобиль на указанном промежутке двигался с постоянным ускорением. Тогда оно равно:

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Подготовка к ЕГЭ по физике: примеры, решения, объяснения

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t . Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.


Решение. Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v = 10 м/с, т.е.

S = (30 + 20) с 10 м/с = 250 м.
2

Ответ. 250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V груза на ось, направленную вверх, от времени t . Определите модуль силы натяжения троса в течение подъема.



Решение. По графику зависимости проекции скорости v груза на ось, направленную вертикально вверх, от времени t , можно определить проекцию ускорения груза

a = v = (8 – 2) м/с = 2 м/с 2 .
t 3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T mg = ma (2);

из формулы (2) модуль силы натяжения

Т = m (g + a ) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ . 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F ?



Решение. Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х . Проекция силы F положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F cosα – F тр = 0; (1) выразим проекцию силы F , это F cosα = F тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N = F cosα V (3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N = 16 Н · 1,5 м/с = 24 Вт.

Ответ. 24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x груза от времени t . Определите, чему равна масса груза. Ответ округлите до целого числа.


Решение. Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х от времени t , определим период колебаний груза. Период колебаний равен Т = 4 с; из формулы Т = 2π выразим массу m груза.


= T ; m = T 2 ; m = k T 2 ; m = 200 H/м (4 с) 2 = 81,14 кг ≈ 81 кг.
k 4π 2 4π 2 39,438

Ответ: 81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два верных утверждения и укажите в ответе их номера.


  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h , нужно вытянуть участок веревки длиной 3h .
  4. Для того чтобы медленно поднять груз на высоту h h .

Решение. В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h , нужно вытянуть участок веревки длиной 2h .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ. 45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.


Решение. Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a , действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

V = m .
p

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V ж < V a . Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F упр + F a mg = 0; (1) Выразим силу натяжения F упр = mg F a (2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a = ρgV п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V ж < V a , поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ. 13.

Брусок массой m соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a , модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg cosα

4) sinα – a
g cosα

Решение. Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.


Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y = N ; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y = mg cosα ; проекция вектора ускорения a y = 0, так как вектор ускорения перпендикулярен оси. Имеем N mg cosα = 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N = mg cosα (3). Запишем проекции на ось OX.

На ось OX: проекция силы N равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x = mg sinα (4) из прямоугольного треугольника. Проекция ускорения положительная a x = a ; Тогда уравнение (1) запишем с учетом проекции mg sinα – F тр = ma (5); F тр = m (g sinα – a ) (6); Помним, что сила трения пропорциональна силе нормального давления N .

По определению F тр = μN (7), выразим коэффициент трения бруска о наклонную плоскость.

μ = F тр = m (g sinα – a ) = tgα – a (8).
N mg cosα g cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ. A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение. Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T = t °С + 273, объем V = 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P = 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ. 48 г.

Задание 9. Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение. Во-первых, газ одноатомный число степеней свободы i = 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q = 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U + A г; (1) выразим работу газа A г = –∆U (2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ. 25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение. Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ 1 = 10 % ; φ 2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P 2 = φ 2 = 35 = 3,5
P 1 φ 1 10

Ответ. Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение. Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ. 14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение. Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑ n U i = 0 (1);
i = 1

где ∆U – изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ. 23.

Протон p , влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)


Решение. На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ. от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение. Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d = 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d – расстояние между пластинами.

Выразим напряжение U = E · d (4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q = C · Ed = 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ. 20 мкКл.


Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение. В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

sinα = n 2 ,
sinβ n 1

где n 2 – абсолютный показатель преломления стекла, среда куда идет свет; n 1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n 1 = 1. α – угол падения луча на поверхность стеклянного полуцилиндра, β – угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t 0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t так, как показано на графике.


Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t = 0,1 с t = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение. По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t = 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф = (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ. 13.


По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение. Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t = 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I = 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

| Ɛ | = 2 ·10 –6 В, или 2 мкВ.

Ответ. 2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n 2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


Решение. Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n 2 = 1,77; n 1 = 1 (воздух).

Запишем закон преломления

sinβ = sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ . 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x + y ;

Решение. При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x = 1; y = 2

Ответ. 1 – α -частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение. Импульс второго фотона больше импульса первого фотона по условию значит можно представить p 2 = p 1 + Δp (1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E = mc 2 (1) и p = mc (2), тогда

E = pc (3),

где E – энергия фотона, p – импульс фотона, m – масса фотона, c = 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E 2 = p 2 = 8,18;
E 1 p 1

Ответ округляем до десятых и получаем 8,2.

Ответ. 8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение. Позитронный β – распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ. 21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение. Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d sinφ = k λ (1),

где d – период дифракционной решетки, φ – угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ – длина световой волны, k – целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ. 42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение. Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U = I R (3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ. 13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение. Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T = 2π (1);

l – длина математического маятника; g – ускорение свободного падения.

По условию

Выразим из (3) g п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ. 14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В = 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение. Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F А = I LB sinα ;

F А = 0,6 Н

Ответ. F А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение. Энергия магнитного поля катушки рассчитывается по формуле

W м = LI 2 (1);
2

По условию W 1 = 120 Дж, тогда W 2 = 120 + 5760 = 5880 Дж.

I 1 2 = 2W 1 ; I 2 2 = 2W 2 ;
L L

Тогда отношение токов

I 2 2 = 49; I 2 = 7
I 1 2 I 1

Ответ. Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.


Решение. Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ. Загорится вторая лампа.

Алюминиевая спица длиной L = 25 см и площадью поперечного сечения S = 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l = 10 см. Найти силу F , с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ а = 2,7 г/см 3 , плотность воды ρ в = 1,0 г/см 3 . Ускорение свободного падения g = 10 м/с 2

Решение. Выполним поясняющий рисунок.


– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m и модуль архимедовой силы выражаются следующим образом: m = SL ρ a (1);

F a = Sl ρ в g (2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М (Т ) = 0 – момент силы натяжения; (3)

М (N) = NL cosα – момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL cosα + Sl ρ в g (L l ) cosα = SL ρ a g L cosα (7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F д с которой спица давит на дно сосуда запишем N = F д и из уравнения (7) выразим эту силу:

F д = [ 1 L ρ a – (1 – l )l ρ в ]Sg (8).
2 2L

Подставим числовые данные и получим, что

F д = 0,025 Н.

Ответ. F д = 0,025 Н.

Баллон, содержащий m 1 = 1 кг азота, при испытании на прочность взорвался при температуре t 1 = 327°С. Какую массу водорода m 2 можно было бы хранить в таком баллоне при температуре t 2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M 1 = 28 г/моль, водорода M 2 = 2 г/моль.

Решение. Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V – объем баллона, T 1 = t 1 + 273°C. По условию водород можно хранить при давлении p 2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m 2 = m 1 M 2 T 1 (5).
5 M 1 T 2

После подстановки числовых данных m 2 = 28 г.

Ответ. m 2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I m = 5 мА, а амплитуда напряжения на конденсаторе U m = 2,0 В. В момент времени t напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение. В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C U 2 + L I 2 = L I m 2 (1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

C = I m 2 (4).
L U m 2

Подставим (4) в (3). В результате получим:

I = I m (5)

Таким образом, сила тока в катушке в момент времени t равна

I = 4,0 мА.

Ответ. I = 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение. Сделаем поясняющий рисунок


α – угол падения луча;

β – угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

sinβ = sinα (3)
n 2

Рассмотрим прямоугольный ΔАDВ. В нем АD = h , тогда DВ = АD

tgβ = h tgβ = h sinα = h sinβ = h sinα (4)
cosβ

Получаем следующее выражение:

АС = 2 DВ = 2h sinα (5)

Подставим числовые значения в полученную формулу (5)

Ответ. 1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В. и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я. Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.